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Abstract

Federated learning (FL) enables multiple clients to collab-
oratively train a global model without disclosing their data.
Previous researches often require training the complete model
parameters. However, the emergence of powerful pre-trained
models makes it possible to achieve higher performance with
fewer learnable parameters in FL. In this paper, we propose
a federated adaptive prompt tuning algorithm, FedAPT, for
multi-domain collaborative image classification with powerful
foundation models, like CLIP. Compared with direct federated
prompt tuning, our core idea is to adaptively unlock specific
domain knowledge for each test sample in order to provide
them with personalized prompts. To implement this idea, we
design an adaptive prompt tuning module, which consists of a
meta prompt, an adaptive network, and some keys. The server
randomly generates a set of keys and assigns a unique key
to each client. Then all clients cooperatively train the global
adaptive network and meta prompt with the local datasets and
the frozen keys. Ultimately, the global aggregation model can
assign a personalized prompt to CLIP based on the domain fea-
tures of each test sample. We perform extensive experiments
on two multi-domain image classification datasets across two
different settings — supervised and unsupervised. The results
show that FedAPT can achieve better performance with less
than 10% of the number of parameters of the fully trained
model, and the global model can perform well in diverse client
domains simultaneously.

Introduction
As privacy protection gains increasing attention, federated
learning (FL) (McMahan et al. 2017), a special machine learn-
ing paradigm, becomes more popular. FL has been applied
to mobile phone album classification, automatic driving, and
medical image analysis. FL enables multiple parties to coop-
eratively train a global model without sharing their training
data. In each round of communication, the server sends the
global model to the clients, and each client updates the global
model with the private dataset to obtain the local model. The
server collects the local models for aggregation, and obtains
the global model for the next communication round. In com-
puter vision, FL has been applied to classification (Hsu, Qi,
and Brown 2020; Li, He, and Song 2021; Yang et al. 2023),
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detection (Liu et al. 2020; Su et al. 2023), ReID (Zhuang,
Wen, and Zhang 2021; Zhuang et al. 2020), etc.

Currently used FL techniques (McMahan et al. 2017; Li
et al. 2020; Karimireddy et al. 2020) require all model pa-
rameters to be updated from the clients and shared on the
server. As a result, collaborative learning incurs substantial
client training costs, as well as communication costs for both
clients and the server. The non-IID problem of various client
data also poses significant difficulties for the federated learn-
ing algorithm. The performance of the global aggregation
model will be impacted when the client datasets come from
diverse data domains. Thus, training a more effective global
model with fewer communication costs by adjusting only a
few parameters remains an open research question.

The emergence of powerful vision-language pre-trained
models, such as CLIP (Radford et al. 2021), opens up new
avenues for solving this problem. CLIP formalizes object
recognition into image-text matching, rather than an image-
label mapping problem. Text encoder and image encoder
are two of the Transformer (Vaswani et al. 2017) branches
that are included in CLIP. About 400 million web-crawled
image-text pairs are used for contrastive learning to establish
semantic associations between images and texts. Pre-trained
CLIP performs admirably in the zero-shot image classifica-
tion task and demonstrates high transferability in a number of
downstream applications. With the powerful representation
ability of CLIP, it becomes possible to fine-tune only a few
parameters for each client in the federated learning scenarios.

Inspired by the promising capabilities of CLIP, in this
research, we propose a federated prompt tuning algorithm,
FedAPT, for multi-domain collaborative image classifica-
tion in cross-silo federated learning. Consider that there are
multiple participants in diverse data domains; the ultimate
objective is to develop a global classification model through
federated prompt tuning that can perform well in all data
domains. We employ a prompt tuning based strategy to pro-
vide learnable prompts for the CLIP. To make the global
prompt adapt to all domains, we propose an adaptive method
to set customized prompts for various test images in order to
address the cross-domain challenge.

The underlying intuition is that images contain domain-
specific information. By incorporating this domain-specific
information into prompts, we can better guide the pre-trained
CLIP model to activate relevant knowledge to that domain,
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then the classification ability of the corresponding domain
can be improved. The adaptive prompt tuning module in-
cludes a meta prompt, an adaptive network, and some frozen
keys. Before federated learning, the server randomly assigns
each client a frozen key. In local training, each client trains
the adaptive network and the prompt using local data and the
frozen key. Considering that the client may not have labels
in the real scene, we also design an unsupervised training
method for FedAPT. After local training, all updated pa-
rameters and prompts are sent to the server for aggregation.
During inference, we leverage an adaptive network to select
a specific key for each test image, so as to generate a specific
prompt from the meta prompt.

We conduct extensive experiments on two multi-domain
image classification datasets, Office-Caltech10 and Domain-
Net, across two different settings: supervised and unsuper-
vised. The results show that FedAPT can build a more pow-
erful global model than fully-trained ResNet50 or ViT with
less than 10% of the number of parameters, and demonstrates
its ability to perform well in a variety of scenarios. All ex-
periments show that our scheme has significantly improved
performance compared with the competitors. In general, our
contributions are as follows:

• We utilize CLIP for the first time in federated cross-domain
image classification, across two distinct scenarios — su-
pervised and unsupervised. Our results demonstrate the
significant potential of CLIP in federated learning.

• We propose a federated adaptive prompt tuning framework,
FedAPT. With the leverage of keys, FedAPT can provide
a personalized prompt for each test image without adding
any learnable parameters.

• Our experiments conducted across different settings on
both Office-Caltech10 and DomainNet demonstrate that
FedAPT outperforms both the fully-trained models and the
existing federated prompt tuning methods.

Related Work
Federated Learning. The idea of aggregating client data
distribution information to the cloud can be traced back to
SCM (Li et al. 2007). Recently, FedAvg (McMahan et al.
2017) extends the aggregation idea to neural networks and
proposes the federated averaging algorithm. Despite Fe-
dAvg’s strong performance under the assumption of IID,
as the non-IID degree increases (due to the diverse distribu-
tions of client datasets), the aggregation model’s performance
continues to deteriorate, making the non-IID problem a key
area of research. Some efforts attempt to enhance the per-
formance of the global aggregation model by improving the
optimization algorithm (Li et al. 2020; Karimireddy et al.
2020; Reddi et al. 2020; Wang et al. 2020b; Su, Li, and Xue
2023) or designing better aggregation methods (Wang et al.
2020a; Singh and Jaggi 2020), while others (Dinh, Tran, and
Nguyen 2020; Fallah, Mokhtari, and Ozdaglar 2020; Hanzely
et al. 2020; Li et al. 2021; Luo et al. 2022) turn to assigning
different models to each client, i.e., personalized FL, such as
using local batch normalization (Li et al. 2021), decoupling
the model into personalized and global parts (Luo et al. 2022).
The proposed FedAPT belongs to the former, i.e., to enhance

the global model.
Some works (Chen et al. 2022; Nguyen et al. 2023) study

the impact of pre-training on FL. Unlike the fine-tuning meth-
ods, they need to train the complete model. FedPCL (Tan
et al. 2022) studies a setting where each client has K fixed
backbones, they fine-tune the projection head by sharing the
prototype features of user data. Unlike FedPCL, we do not
need to maintain multiple backbones locally, and we do not
upload any prototype features. All in all, different from the
existing works, we pay more attention to how to effectively
utilize the knowledge in the powerful pre-trained models.

Recently, FedIns (Feng et al. 2023) shares a similar spirit
with our work, both enabling Instance-adaptive Inference.
The difference lies in the implementation: FedIns achieves
adaptive inference for ViT through learnable Keys and SSF
pool, while our approach achieves adaptive inference for
CLIP through randomly initialized keys and a learnable query
network coupled with prompts.

CLIP and Prompt Tuning. The contrastive vision-
language pre-trained model CLIP (Radford et al. 2021)
transforms image recognition into an image-text matching
problem, freeing the object recognition task from human-
annotated data, such that a huge amount (400M) of noisy
image-text pairs can be used for training. The pre-trained
model can be transferred to multiple datasets. Google re-
leases ALIGN (Jia et al. 2021) to expand CLIP’s training
data to 1.8B, which achieves better results. Thanks to its
powerful representation capability, CLIP has also been suc-
cessfully applied to a variety of downstream visual tasks,
such as RegionCLIP (Zhong et al. 2022) and DetCLIP (Yao
et al. 2022) for object detection, MedCLIP (Wang et al. 2022)
for medical image analysis, CCR-CLIP (Yu et al. 2023) for
text recognition.

Prompt (Liu et al. 2021a) adds additional words or sen-
tences to the input text of the pre-trained language model,
to make the pre-trained model better handle downstream
tasks. The succeeding works (Li and Liang 2021; Liu et al.
2021b) treat the prompts as continuous vectors in order to
learn new knowledge in the process of fine-tuning, which
is called Prompt Tuning. In CLIP’s follow-up work, other
researchers (Zhou et al. 2022b,a) tried to improve prompt tun-
ing in CLIP. The work most relevant to ours is CoCoOp (Zhou
et al. 2022a), which trains prompts conditioned on visual fea-
tures. However, it is designed for centralized training and
heavily relies on high GPU computational power, making it
hard to apply to clients in federated learning. In contrast, in
this paper, the training of conditions and prompts are decou-
pled, significantly accelerating the training process.

CLIP in Federated Learning. In the field of feder-
ated image classification, work related to CLIP is rare.
PromptFL (Guo et al. 2022) extends CoOp (Zhou et al.
2022b) to the federated learning scenarios, averaging mul-
tiple prompts on the server. PromptFL shows the potential
application of prompt tuning for CLIP in FL, however, it
lacks optimizations tailored for multi-domain scenarios. In
comparison, FedAPT proposes an adaptive prompt tuning
method for multi-domain image classification. FedCLIP (Lu
et al. 2023) adds an adapter consisting of two fully connected
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layers to the end of the image encoder. FedTPG (Qiu et al.
2023) proposes a prompt generator with better generalization
performance on unknown categories. However, they do not
generate personalized prompts for the images based on the
domain information.

Preliminaries
Notations. Consider a federated learning scenario, such as
autonomous driving, where multiple cars are deployed in K
regions (domains). Data from the same region exhibits simi-
lar styles, while data from different regions possesses distinct
styles. Each region has Ndom clients. We assume that each
client has sufficient computing power to train the prompts.
In supervised setting, Dn = {xi, yi}mn

i=1, n = 1, · · · , N de-
note the local datasets, mn is the number of images in the
n-th client. In unsupervised setting, Dn = {xi}mn

i=1, n =
1, · · · , N . Images in diverse domains have different styles.
Note that there may exist domain and category divergences
across different clients at the same time, the divergence of
category refers to the different label distribution of differ-
ent clients. Let I(·) and T (·) denote the image encoder and
the text encoder. To reduce the calculation and communica-
tion costs, we freeze the parameters of the two encoders and
perform the training task by fine-tuning the prompts.

Prompt Tuning. Let tc be the word embedding of the cth-
class, the class text could have the form ‘a picture of a dog’.
Then the prediction of CLIP for image classification is:

p(c | x) = exp (cos (T (tc), I(x)) /τ)∑C
i=1 exp (cos (T (ti), I(x)) /τ)

(1)

where C is the number of classes, τ is a temperature parame-
ter learned by CLIP.

To fine-tune the model, one method is to manually set
prompts, such as replacing ‘a picture of a dog’ with ‘a picture
of a cute dog’. However, in this way, because the change of
words will directly affect the performance of the model, we
need to find the most appropriate words. Another method is
prompt tuning (Li and Liang 2021; Liu et al. 2021b; Zhou
et al. 2022b). Let pc = [vc

1,v
c
2, . . . , v

c
M ] be the prompt. The

input of the c-th class for the text encoder is (pc; tc), where
{vc

i}Mi=1 are learnable prompts for the c-th class. vc
i has the

same dimension as word embedding tc, M is the number of
learnable prompts.

Federated Learning with Prompt. The concept of FL is
introduced in FedAvg (McMahan et al. 2017) to collabora-
tively train a global model that works for each participant. A
straightforward way to apply CLIP’s prompt tuning to the
FL field is that each client trains its own prompt and uploads
the prompt to the server. The server averages the prompts of
all clients and distributes them to the clients. Let pc

n denotes
the prompt for the c-th class in the n-th client. For the sake
of brevity, we omit c and use pn to denote the prompt in the
n-th client. Let pg denotes the prompt of the global model.
Then the global objective is:

pg = arg min
p∈Rd

1

N

N∑
n=1

Ex,y∼Dn [ℓ(T (p); I(x))] (2)

where ℓ is the loss of the n-th client. Although this approach
can handle scenarios where multiple clients are IID, it is still
difficult for a single global prompt to process clients from
diverse data domains.

Method
The overview of the proposed FedAPT is in Figure 1. We
focus on the problem setting of one-model-fits-all, that is,
learning a powerful global model to adapt to the data distri-
bution across all domains. With the parameters of the CLIP
frozen, we introduce an additional adaptive prompt tuning
(APT) module for the global model. APT accepts image fea-
tures as input and outputs a specific prompt for each sample.
The learnable parts of APT are the prompt and the adaptive
network, which are obtained through the federated training
of multiple clients.

Adaptive Prompt Tuning
The input of the text encoder in PromptFL always uses a fixed
prompt for all samples: pg ∈ RC×s×d, which is the learned
prompt by federated averaging, C is the number of classes,
s is the length of prompt, d is the embedding dimension.
However, under the setting in this paper, each client may
come from a specific domain, and there are obvious domain
divergences among the images. A fixed prompt is no longer
suitable for images in all domains. It is necessary to design
a new form. An intuitive way is to introduce personalized
prompts into the input of the text encoder for each domain:

pg + ppk
(3)

where ppk
encodes the personalized domain knowledge of

the k-th domain. Unfortunately, under the goal of one-model-
fits-all, we need a unified global model, rather than adding
personalized parameters ppk

for each client. Then a compro-
mise improvement for Eq. 3 is to keep all ppk

in the global
model, then filter prompts based on the image features:

pg + f([pp1
, · · · ,ppK

],Q(I(x))) (4)

where ppk
is the personalized prompt for the k-th domain,

f(·) is a filter function, Q is an adaptive network that is used
to provide auxiliary information for filtering. However, this
operation needs to retain a number of ppk

, thus introducing
additional parameters in the global model.

Finally, we adopt an adaptive prompt tuning approach. Let
P denotes the output of the APT module, the input for this
module is the image features I(x). We use the key vector
ek ∈ Rs×d to encode personalized domain knowledge into
pg , and decode it when necessary. P in the global model is:

P(I(x)) = pg + pg ⊙
K∑

k=1

qke
′
k (5)

where qk = Qg(I(x))k,
∑

k qk = 1, ⊙ represents the
element-wise multiplication, e′k ∈ RC×s×d is copied from
ek for C times to match the dimension of pg, and Qg is the
adaptive network with parameters ϕ, which can give a one-
hot or soft-membership vector of K dimensions. In the n-th
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Figure 1: Overview of FedAPT. The federated training process is as follows: Step1: The server first randomly generates a set of
random keys and assigns each client a frozen key. Step2: In local training, the key is used to give a constraint to the prompt. In
addition, each client trains the adaptive network Qn with local data. Step3: After local training, the server averages the prompts
and adaptive networks learned by the clients and sends the results back to the clients. Repeat Steps 2∼3 for multiple rounds, we
can obtain pg and Qg to establish our target global model which can generate a personalized prompt according to image features.

client from the k-th domain, the prompt for the text encoder
in the training process is:

pn + pn ⊙ e′k (6)

where pn is initialized by pg, e′k is frozen. Through the
design of Eqs.5 and 6, we do not need to introduce additional
learnable parameters ppk

, but use the unified pg, which is
named “meta prompt”. The objective for the meta prompt is:

pg = argmin
p

1

N

N∑
n=1

Ex∼Dn
[ℓ(T (p+ p⊙ e′n); I(x))]

Federated Training
To enable multiple clients to train APT cooperatively, there
are three steps. At the beginning of federated training, the
server randomly initializes the keys and sends them to differ-
ent clients (Step 1).

Step2: Local Training. To evaluate the capabilities of
CLIP and FedAPT in various FL settings, we consider two
different client settings:

In the supervised setting, each client updates the global pg

and Qg with the local data respectively to obtain pn and Qn.
The prediction of the n-th local model is:

p(c | x) = ecos(T (pc
n+pc

n⊙ek),I(x))/τ∑C
i=1 e

cos(T (pi
n+pi

n⊙ek),I(x))/τ

where k is the domain index of the client. Then the cross
entropy loss for image classification is:

Lc =
1

|Dn|
∑

xi,yi∼Dn

− log p (yi | xi,pn) (7)

In an unsupervised setting, we design a two-stage training
approach. In the first stage, we augment the unlabeled data
(same augment strategy as SimCLR (Chen et al. 2020)) and
utilize pseudo-labels with high confidence from the original
data as supervised information to perform self-training on

the augmented data. The training loss is:

Lpseudo =
1

|Dn|
∑

xi∼Dn

− log p (ŷi | x̂i,pn) (8)

where ŷi is the pseudo one-hot label of xi predicted by the
original CLIP, x̂i is the augmented version of xi. After the
first stage, we can get a coarse prompt.

In the second stage, use zi to represent the prediction
score vector of xi, we hope to compare the outputs among
different samples. For inter-sample comparison, motivated
by AaDLoss (Yang et al. 2022) in domain adaptation, for
a certain sample, the logits of K-nearest neighbor samples
with similar image features should be as similar as possible,
otherwise, there should be differences. Then the loss is:

Linter =
1

|Dn|
∑

xi∼Dn

(−
∑
j∈Ci

z⊤i zj + λ
∑
m∈Bi

z⊤i zm) (9)

where Ci contains K-nearest neighbors, Bi contains the rest
samples. A feature bank and a score bank are used to effi-
ciently implement this loss.

As for intra-sample comparison, we need that the predic-
tion of a sample is close to that of its augmented counterpart:

Lintra =
1

|Dn|
∑

xi∼Dn

KL(ẑi∥zi) (10)

where ẑi is the predict score of the augment data, zi is ex-
tracted from the score bank. Then the overall loss in the
second stage is Lc = Linter + Lintra.

The adaptive network Qn(·) is a fully-connection layer
with parameters ϕn, which tries to classify domain infor-
mation from the features of images. Each client in the k-th
domain trains its own adaptive network with the following
cross-entropy loss:

Lq =
1

|Dn|
∑

x∈Dn

− log p (k | xi, ϕn) (11)

The whole loss function for local training is Lc + Lq .
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Figure 2: Improve inference efficiency.

Note that training Qg(·) is a special FL problem, because
each client can only access the data of its own domain. In
this paper, we find that in the multi-domain scenario, we can
obtain good enough Qg(·) by directly using cross-entropy
for local training and federated averaging for aggregation.
To further improve the effect of Qg(·), it is necessary to use
special training methods, such as FedAws (Yu et al. 2020).
In addition, directly uploading the data prototype (Tan et al.
2022; Peng et al. 2019b), can also train the Qg(·) in the
server, but in order to prevent privacy disclosure, we do not
upload any data features or prototypes.

Step3: Aggregation. After the local training step, the n-
th client uploads pn and ϕn to the server. Due to ϕn ∈
Rdimg×K , dimg is the dimension of each image feature,
which is 512 in CLIP, the additional traffic brought by trans-
mitting ϕn is extremely small compared with prompts. The
server averages the parameters to obtain the aggregation
model parameters:

pg =
1

N

N∑
n=1

pn, ϕg =
1

N

N∑
n=1

ϕn (12)

Repeat Step 2 and Step 3 for T rounds, then pg and Qg(·)
with parameters ϕg can be used to establish the global model.

Improve inference efficiency. Notably, during the infer-
ence process, assuming a batch size of B, since each sample
is associated with distinct prompts, the text encoder needs to
be executed B times. This issue is also encountered in other
visually conditioned prompt methods (Zhou et al. 2022a). To
address this concern, we propose an enhanced strategy in
Figure 2. By precomputing the text encodings for each key,
we eliminate the need for redundant execution of the text
encoder, leading to a significant reduction in inference costs.

Experiments
We conduct extensive experiments to evaluate the efficacy
of FedAPT. We aim to answer the following questions: 1)
Can we achieve better performance with fewer learnable
parameters in FL using the pre-trained model CLIP, compared
to a fully-trained ViT or ResNet? 2) How much improvement
in global model can FedAPT achieve compared to existing
federated tuning algorithms?

We first compare FedAPT with various baselines on two
large-scale multi-domain image classification datasets. We
consider two scenarios, where each domain acts as a client
independently and each domain is divided into five non-IID
clients. Then we conduct several ablation studies to observe

amazon

webcam

caltech

dslr

quickdraw sketch

clipart infograph painting

real

(a) Office-Caltech10

(b) DomainNet

Figure 3: (a) Office-Caltech10, which includes four domains.
(b) DomainNet, which includes six domains.

the impact of keys on the client model and global model. We
also explore the impact of different initialized key values on
the performance of the global model.

Experimental Setup
Datasets. We adopt two datasets, Office-Caltech10 (Gong
et al. 2012) and DomainNet (Peng et al. 2019a). Office-
Caltech10 (OC) is a small dataset that has four domains
(amazon, caltech, dslr, and webcam), and each domain
contains 10 overlapping categories between the Office-
31 (Saenko et al. 2010) dataset and the Caltech-256 (Griffin,
Holub, and Perona 2007) dataset. There are at least 100 and
at most 800 images in different domains. Since the number of
images is small, we use each domain as a client. DomainNet
(DN) is a large-scale multi-domain dataset containing six
domains (clipart, infograph, painting, quickdraw, real, and
sketch), and each domain contains about 33k-120k images
with 345 categories. We set the number of clients Ndom in
each domain as 1 or 5. When Ndom = 5, we use the Dirichlet
distribution to construct the non-IID property across clients.
Both datasets contain 224×224 pixel images.

Compared Methods. To comprehensively evaluate the
performance, we compare the following methods: 1) ResNet-
full: Federated training with ResNet50 (He et al. 2016), all
parameters participate in the training procedure. 2) ResNet-
tuning, where the backbone of ResNet50 is frozen, only the
last layer is trained. 3) ViT-full and 4) ViT-tuning: Replace
ResNet in the above two baselines with ViT. 5) CLIP-zs
do not make any changes to the CLIP, and directly perform
zero-shot image classification in all domains. This helps us
understand how much the prompt tuning improves the CLIP.
6) CLIP-FC: Freeze the parameters of CLIP, and insert a
learnable fully-connection layer at the end of the image en-
coder. Only the learnable layer is shared to the server. 7) Fed-
CLIP (Lu et al. 2023): Add an adapter at the end of the visual
backbone and perform federated tuning. 8) PromptFL (Guo
et al. 2022): A prompt tuning method for CLIP, details can be
seen in Preliminaries. 9) FedAPT: our proposed method. In
the unsupervised experiment part, we utilize the local training
method proposed in Method section uniformly as FedCLIP
and PromptFL have not yet explored federated tuning in an
unsupervised setting.
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fully-trained fine-tune
Datasets

& Domains
CLIP

-zs
ResNet

-full
ViT
-full

ResNet
-tuning

ViT
-tuning

CLIP
-FC

Fed
-CLIP

Prompt
-FL

Fed
-APT

DN

c 65.86 32.44 63.55 52.32 71.93 74.53 70.25 75.84 77.36
i 40.50 59.58 27.07 20.85 48.39 48.00 45.70 49.82 52.17
p 62.25 59.58 49.00 44.66 68.06 69.08 66.16 70.81 72.51
q 13.36 43.25 62.20 7.13 21.24 31.84 16.98 32.98 48.84
r 80.04 74.73 68.35 65.85 80.43 83.87 83.04 83.55 84.79
s 57.92 61.81 54.05 38.33 63.45 65.29 61.75 67.31 68.69
avg 53.32 55.23 54.04 38.19 58.92 62.10 57.31 63.39 67.39

OC

a 95.69 95.31 36.97 95.31 96.87 96.35 95.31 95.83 95.83
w 93.24 100.00 36.20 98.27 100.00 100.00 98.27 98.27 100.00
d 95.23 100.00 12.90 93.54 96.77 93.54 96.77 96.77 100.00
c 92.54 96.44 29.77 93.77 97.33 96.00 96.00 98.22 96.44
avg 94.18 97.94 28.96 95.22 97.74 96.47 96.58 97.27 98.07

#params (M) 0 24.21 87.86 0.71 0.18 0.26 0.52 2.826 2.829

Table 1: The accuracy of the global model in various domains in supervised setting with domain differences. The last row is the
number of parameters to be transmitted in each round of communication. Overall, these results indicate that FedAPT achieves
the best performance with few learnable parameters.

β c i p q r s

0.01

CLIP-FC 67.6 44.3 65.3 22.9 79.4 59.6
FedCLIP 68.4 45.0 64.4 16.7 82.2 60.1
PromptFL 66.6 43.7 65.3 24.4 77.7 58.7
FedAPT 67.2 43.6 66.4 26.7 77.8 57.8

0.5

CLIP-FC 71.8 46.7 68.1 31.8 83.0 63.2
FedCLIP 69.5 45.6 65.1 18.0 82.6 60.3
PromptFL 73.1 47.7 69.5 37.3 82.9 64.8
FedAPT 74.7 49.9 71.2 46.8 84.4 66.6

5

CLIP-FC 73.5 47.3 68.6 34.0 83.8 64.3
FedCLIP 69.3 45.6 65.5 18.6 82.7 60.7
PromptFL 74.4 48.3 69.7 38.3 83.9 66.0
FedAPT 75.6 50.6 71.5 50.5 85.0 67.6

Table 2: The accuracy of the global model in supervised
setting with domain and category differences. There are 30
clients in total. FedAPT’s global model can significantly
improve performance in various domains.

Implementation Details. We use PyTorch to implement
all methods. The SGD optimizer is used for both datasets.
We set Office-Caltech10 with a learning rate of 0.001 and
batch size of 32, and DomainNet with a learning rate of
0.01 and batch size of 256. The global communication round
Tg is set to 50, and the local training epoch Tl is set to 1.
The length of prompts s is 16. In supervised setting, we set
class-specific prompts pg ∈ RC×s×d. In unsupervised set-
ting, due to the lack of supervision information, we use the
class-shared prompts pg ∈ Rs×d. The CLIP used in this
paper takes ViT-B/32 (Dosovitskiy et al. 2020) as the image
encoder. Each experiment is repeated three times with differ-
ent seeds, and the mean result is reported. All experiments
are completed with one GeForce RTX 3090 GPU.

Main Results
Supervised setting with domain differences. We first treat
each domain as a separate client with the same class distribu-
tion but different domain characteristics.

The results on the two datasets are reported in Table 1.
We highlight the following points: 1) From ResNet-full vs.
ResNet-tuning and ViT-full vs. ViT-tuning, we can see that
pre-trained ViT has more powerful representation ability than
pre-trained ResNet. As a result, ResNet must be fully trained
in order to achieve the accuracy rate obtained through ViT-
tuning. 2) CLIP’s zero-shot classification capability is in-
sufficient to meet the requirements of various domains. The
performance gap with federated prompt tuning is large, which
indicates that the original CLIP lacks knowledge of the client
domains. 3) Inserting a fully-connection layer after the image
encoder of CLIP can remarkably enhance the performance on
DomainNet, as indicated by CLIP-FC, which approaches the
basic version of PromptFL. 4) Considering the performance
of different methods and the amount of communication pa-
rameters in each round, FedAPT achieves the highest perfor-
mance at a very low cost, which shows its great potential in
the application of pre-trained CLIP to FL scenarios.

Supervised setting with domain and category differ-
ences. We split each domain in DomainNet into five clients,
i.e., sample πc ∼ Dir (β15) and allocate a πc,i proportion of
the instances with label c to the training set of the i-th client
in each domain. Smaller β leads to larger data distribution dif-
ferences among clients and more imbalanced classes. Finally,
we obtain 30 clients. In addition to the divergences in data
domains, there are also divergences in category distribution
among clients. In each communication round, we randomly
select one client from each domain, meaning six clients are
selected for training. Note that because the random seeds
are the same, the clients selected in each round by different
methods are consistent.

The results are shown in Table 2. As we can see, FedAPT
still outperforms the competitors overall. Furthermore, it is
worth noting that when dealing with extremely unbalanced
categories, all CLIP tuning methods exhibit similar perfor-
mance. This suggests that the pre-trained CLIP model needs
to be augmented with additional designs to achieve better
performance, as its existing capabilities may be insufficient.
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c i p q r s
domain differences

FedCLIP 68.2 45.1 64.7 18.0 82.0 60.0
PromptFL 68.3 46.6 65.6 17.3 82.1 60.4
FedAPT 69.4 47.1 66.1 17.8 83.0 61.1

domain and category differences

β
=0.01

FedCLIP 67.6 43.3 63.4 17.5 81.3 59.1
PromptFL 68.3 44.4 64.3 16.3 81.2 60.2
FedAPT 68.2 44.9 64.2 16.7 81.5 60.1

β
=0.5

FedCLIP 67.5 44.1 63.6 18.2 81.5 59.0
PromptFL 68.7 46.2 65.1 17.6 82.9 60.6
FedAPT 69.0 46.6 65.8 18.3 83.0 60.9

β
=5

FedCLIP 67.8 44.3 63.8 18.1 81.5 59.2
PromptFL 68.6 46.2 65.6 17.5 82.5 60.3
FedAPT 69.1 47.3 66.4 18.4 83.3 61.5

Table 3: The accuracy of the global model in various domains
in unsupervised settings.

c i p q r s Avg
pg 74.6 48.0 68.8 22.1 82.7 65.9 60.3
+pg ⊙ e′0 78.7 44.7 65.8 20.4 80.8 63.8 59.0
+pg ⊙ e′1 70.9 52.7 65.8 19.2 81.0 62.4 58.7
+pg ⊙ e′2 71.9 46.05 74.5 16.6 81.1 61.2 58.5
+pg ⊙ e′3 69.6 39.9 60.2 48.8 75.7 58.6 58.8
+pg ⊙ e′4 73.7 47.5 68.1 19.6 85.9 64.4 59.9
+pg ⊙ e′5 72.2 44.9 65.1 20.6 81.0 70.4 59.0
Eq. 5 77.3 52.1 72.5 48.8 84.7 68.6 67.3

Table 4: The impact of combining meta prompts with keys of
different domains.

Unsupervised setting. We replicate the above experiments
in an unlabeled setting, and the results are shown in Table 3.
Specifically, we observe that 1) On DomainNet dataset, the
performance of unsupervised federated tuning is compara-
ble to that of supervised tuning. This indicates that the un-
supervised fine-tuning method proposed in Preliminaries is
effective. 2) Under the unsupervised setting, FedAPT still out-
performs the baseline methods, demonstrating its significant
effectiveness. In addition, as we use the class-shared prompts
for FedAPT and PromptFL in this setting, the communication
parameter sizes per round are 0.011M and 0.008M, respec-
tively. This demonstrates the advantage of federated prompt
tuning in terms of communication costs.

Impact of keys. We do a comprehensive study of the
role of ‘key’. We disassemble the global model trained with
FedAPT in Table 1 and compare its performance under dif-
ferent situations: 1) Use the learned meta prompt pg to test
without any key. 2) Use keys from different domains for
testing, such as pg + pg ⊙ e′k. 3) Use the complete APT
module, i.e., Eq. 5. The results are reported in Tabe 4. The
classification ability of the meta prompt pg is shown in the
first row. Because there is no suitable key, its performance is
mediocre. Then the middle six rows show the performance of
pg with different keys. We can see that the k-th key e′k can
significantly improve the accuracy in the k-th domain.

The affect of the adaptive network. We evaluate the per-
formance of the global model in both client domains and

c i p q r s
w/o key 78.30 51.48 73.99 49.05 85.35 69.72
w key 78.03 51.59 74.00 49.35 85.67 69.73

Table 5: The impact of keys in local training. We show that
adding the keys does not destroy the local training.

i p q r s unseen (c )
PromptFL 49.7 71.1 34.0 83.5 67.2 70.6

FedAPT τ = 0.01 52.2 72.7 51.2 84.6 69.3 68.2
τ = 1 52.2 72.1 51.0 84.1 68.7 70.5

Table 6: The impact of the adaptive network on seen and
unseen domains.

unseen new domains. We introduce softmax temperature τ
to the output of the adaptive network, and the performance at
τ = 0.01 can be interpreted as directly determining “which
key should be used”. The results in Table 6 show that directly
selecting a single key (τ = 0.01) improves the performance
in client domains but sacrifices generalization in unseen do-
mains. By adjusting τ , we can significantly enhance client
performance while maintaining nearly unchanged generaliza-
tion performance in unknown domains.

Other results. 1) One worrying point about using the key
on the client side is whether the key will limit the learning
ability of the local model. We verify this point with an ex-
periment. We repeat the experiment in Table 1 and report the
performance of local models from different domains in Ta-
ble 5. The results show that the use of the key does not limit
the learning of the local model. 2) We also compare different
initialized keys. The results suggest that the keys work well
for different types of random initialization, including the uni-
form and the standard normal distribution initialization and
random orthogonal initialization. We provide the numerical
results in the supplementary materials. 3) After precomput-
ing and saving the text branch outputs of different keys, only
the image branch and domain classification weights need to
be computed during inference. The final inference cost is as
follows: CLIP’s GFLOPs is 4.42 while that of ResNet50 is
4.14. 4) We demonstrate the impact in inference efficiency of
the strategy in Figure 2. While maintaining nearly unchanged
accuracy, the inference time has been reduced from thirty
minutes to 30 seconds in one GPU card. Detailed numerical
results are provided in the supplementary materials.

Conclusions
In this paper, we apply the pre-trained CLIP to the multi-
domain federated learning in both supervised and unsuper-
vised settings, and propose an adaptive prompt tuning method
that uses domain-specific keys to generate specific prompts
for each test sample. We have extensively validated the effec-
tiveness of FedAPT. With less than 10% of learnable parame-
ters, FedAPT achieves performance surpassing that of fully-
trained models. Moreover, when faced with challenges such
as feature and category differences in client data, FedAPT
demonstrates a significant performance improvement com-
pared with the competitors.
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