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Abstract
Federated learning (FL) has emerged as a promising collabo-
rative and secure paradigm for training a model from decen-
tralized data without compromising privacy. Group fairness
and client fairness are two dimensions of fairness that are im-
portant for FL. Standard FL can result in disproportionate dis-
advantages for certain clients, and it still faces the challenge
of treating different groups equitably in a population. The
problem of privately training fair FL models without compro-
mising the generalization capability of disadvantaged clients
remains open. In this paper, we propose a method, called
mFairFL, to address this problem and achieve group fair-
ness and client fairness simultaneously. mFairFL leverages
differential multipliers to construct an optimization objective
for empirical risk minimization with fairness constraints. Be-
fore aggregating locally trained models, it first detects con-
flicts among their gradients, and then iteratively curates the
direction and magnitude of gradients to mitigate these con-
flicts. Theoretical analysis proves mFairFL facilitates the
fairness in model development. The experimental evaluations
based on three benchmark datasets show significant advan-
tages of mFairFL compared to seven state-of-the-art base-
lines.

Introduction
The widespread adoption of machine learning models has
given rise to significant apprehensions regarding fairness,
spurring the emergence of fairness criteria and models. In
recent times, a multitude of fairness criteria have been put
forth, with one of the most widely acknowledged ones be-
ing group fairness (Hardt, Price, and Srebro 2016; Ustun,
Liu, and Parkes 2019). Group fairness might also be man-
dated by legal statutes (EU et al. 2012), necessitating mod-
els to impartially treat distinct groups concerning sensitive
attributes such as age, gender, and race. Building upon these
concepts of group fairness, numerous methodologies have
been introduced to train equitable models, predicated on
the premise that the model can directly access the complete
training dataset (Zafar et al. 2017; Roh et al. 2021). How-
ever, the ownership of these datasets often resides with dis-
parate institutions, rendering them inaccessible for sharing
due to privacy safeguarding considerations.
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Federated learning (FL) (Wang et al. 2021a) stands as a
distributed learning paradigm that facilitates the collective
training of a model by multiple data owners, all while re-
taining their data within their local domains. If each data
owner was to individually train a fairness model on their own
data and subsequently contribute it for aggregation, akin to
the methods of FedAvg (McMahan et al. 2017) and FedOPT
(Reddi et al. 2020), a promising way opens up for augment-
ing model fairness within decentralized contexts. However,
the presence of data heterogeneity, manifesting in variations
in sizes and distributions across different clients, introduces
a distortion to the localized efforts aimed at enhancing fair-
ness in the global model.

Consequently, a disparity emerges between the impar-
tial model aggregated in a straightforward manner, utiliz-
ing fairness models trained on diverse client datasets, and
the model achieved under centralized circumstances. Mean-
while, a simplistic pursuit of minimizing the aggregation
loss in the federated system can lead the global model astray,
favoring certain clients excessively and disadvantaging oth-
ers, thereby engendering what is termed as client fairness
(CF). Preceding endeavors have predominantly centered
on rectifying issues concerning client fairness. These ef-
forts encompass methodologies such as re-weighting client
aggregation weights (Zhao and Joshi 2022), tackling dis-
tributed mini-max optimization challenges (Mohri, Sivek,
and Suresh 2019), or mitigating conflicts between clients
(Hu et al. 2022).

In contrast, our emphasis pivots toward multi-dimensional
fairness, encompassing both group and client fairness, align-
ing with legal stipulations and ethical considerations. This
dual focus also significantly influences the willingness of
clients to actively engage in the FL process, thereby con-
tributing to datasets that are more comprehensive and rep-
resentative for the training of the global model. However,
the inherent decentralized nature of this approach provokes
complexities in achieving equitable training for a global
model, particularly when confronted with the complexities
of heterogeneous data distributions spanning the client land-
scape. The intricate challenge of privately training an equi-
table model from such decentralized, disparate data, while
ensuring equitable treatment for each contributing client,
poses a formidable conundrum. We aim to address this open
and intricate quandary.
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We propose the Multi-dimensional Fair Federated
Learning (mFairFL) method, which aims to ensure equity
not only among distinct sensitive groups but also across in-
dividual clients. The core principle of mFairFL involves
the optimization of client models under the guidance of fair-
ness constraints. Prior to the execution of gradient aggrega-
tion on the central server, mFairFL evaluates the potential
presence of conflicting gradients among clients by assess-
ing their gradient similarities. Subsequently, mFairFL un-
dertakes an iterative process wherein it tactically adjusts the
direction and magnitude of conflicting gradients to mitigate
such disparities. Through this nuanced strategy, mFairFL
adeptly navigates the delicate balance between equitable
treatment and optimal accuracy, catering to both marginal-
ized sensitive groups and individual clients. The schematic
framework of mFairFL is depicted in Figure 1. Our contri-
butions can be succinctly outlined as follows:
(i) We introduce an innovative framework for fair federated
learning, denoted as mFairFL, and establish its capacity to
bolster model fairness concerning sensitive groups within a
decentralized data context.
(ii) mFairFL conceptualizes the pursuit of fairness opti-
mization through a meticulously designed minimax frame-
work, replete with a group fairness metric as constraints. It
analyzes and adjusts the trajectory and magnitude of po-
tentially conflicting gradients throughout the training pro-
cess, which adeptly augments group fairness across the en-
tire populace while ensuring an impartial treatment of each
client within the global model.
(iii) Through both theoretical and experimental analysis, we
demonstrate that mFairFL excels in mitigating gradient
conflicts among clients, ultimately achieving a higher degree
of group fairness compared to the state of the art (SOTA).

Related Work
With the growing concern surrounding fairness, various ap-
proaches have been proposed. To analyze the problem, we
categorize fairness models into two types: centralized and
federated, based on their training protocols.

Fairness models on centralized data. In the context of
centralized data, it is common to modify the training frame-
work to attain an appropriate level of group fairness, ensur-
ing that a classifier exhibits comparable performance across
different sensitive groups. Several techniques have been de-
vised to address group fairness issues within the central-
ized setting, which can be categorized into three types:
pre-processing (Salimi et al. 2019), in-processing (Garg
et al. 2019), and post-processing (Mishler, Kennedy, and
Chouldechova 2021) methods. For more extensive insights
into fairness methods applied to centralized data, refer to the
recent literature survey (Pessach and Shmueli 2022).

Fairness FL models on decentralized data. In contrast,
achieving fairness within the practical FL setting has re-
ceived limited attention compared to centralized solutions
(Wang et al. 2021b). The notion of ‘fairness’ in FL differs
slightly from the standard concept in centralized learning.
Client fairness, a popular fairness definition in FL, aims
to ensure that all clients (i.e., data owners) achieve simi-
lar accuracy. Previous attempts to achieve client fairness in
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Figure 1: An overview of mFairFL, which formulates a min-
imax constrained optimization problem in terms of accuracy
and fairness. Before aggregating client gradients, it detects
the presence of gradient conflicts, and then mitigates the
conflicting gradients through gradient adjustments to align
them with the overall fairness objective.

FL include modifying the aggregation weights of clients to
achieve a uniform service quality for all clients (Li et al.
2019; Zhao and Joshi 2022; Yue, Nouiehed, and Al Kontar
2023), selecting biased clients for update (Cho et al. 2020),
and finding the common update direction for all clients (Hu
et al. 2022). Only a few studies are dedicated to group fair-
ness in FL (Abay et al. 2020; Du et al. 2021; Gálvez et al.
2021). For example, Zeng, Chen, and Lee (2021) updated
the weight of local loss for each sensitive group during the
global aggregation phase. Ezzeldin et al. (2023) adapted
client weights based on local fairness of each client and de-
viations from global one. However, these methods disregard
the gradient conflicts, which lead to performance decline and
unfavourable outcomes for certain clients.
mFairFL aims to eliminate bias towards different groups

(group fairness) based on sensitive attributes and to learn
a global model that benefits all clients, thereby achieving
better client fairness alongside group fairness.

Preliminaries
Federated Learning
Following the typical FL setting (McMahan et al. 2017),
suppose there are K different clients, and each client can
only access its own dataset Dk = {dik = (sik, x

i
k, y

i
k)}

nk
i=1 ∈

D, where sik is the sensitive attribute of client k, yik is the la-
bel, xi

k is other observational attributes, nk is the number of
client samples. The goal of FL is to train a global model pa-
rameterized with w ∈ Rm (m is the number of parameters)
on client datasets Dk with guaranteed privacy:

min
w∈Rm

∑K

i=1
piL(Di, w) (1)

where L(Di, w) = 1
ni

∑ni

i=1 l(d
i
k, w) is the local objective

function of client i with weights pi ≥ 0,
∑K

i=1 pi = 1.
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Fairness Notions
In this paper, We focus on three canonical group fairness no-
tions, i.e., Demographic Parity (DP), Equalized Odds (EO),
and Accuracy Parity (AP) (Pessach and Shmueli 2022). For
the sake of exposition, we describe these notions in the cen-
tralized setting.

Definition 1 (Demographic Parity) The model’s predic-
tions Ŷ =ŷ are statistically independent of the sensitive at-
tribute S. The extent of a model’s unfairness with respect to
Demographic Parity can be measured as follows:

DP (ŷ) = |P[Ŷ = ŷ|S = s]− P[Ŷ = ŷ]| ∀s ∈ S (2)

Definition 2 (Equalized Odds) Given the label Y =y, the
predictions Ŷ =ŷ are statistically independent of the sensi-
tive attribute S. i.e., for all s ∈ S and y ∈ Y , we can mea-
sure the absolute difference between two prediction rates to
quantify how unfair a model is in term of Equalized Odds:

EO(ŷ) = |P[ŷ|S = s, Y = y]− P[ŷ|Y = y]| (3)

Definition 3 (Accuracy Parity) The model’s mis-
prediction rate is independent of the sensitive attribute:

P[ŷ ̸= y|S = s] = P[ŷ ̸= y] ∀s ∈ S (4)

where, equivalently, we can measure the degree of unfair-
ness in the model with respect to Accuracy Parity as follows:

AP (ŷ) = |P[L(D, w)|S = s]− P[L(D, w)]| (5)

where L(D, w) is the loss function minimized in problem (1).

The above discussed fairness notions can be interpreted
as the difference between each group and the overall popu-
lation (Fioretto, Mak, and Van Hentenryck 2020). Formally,
these notions can be rewritten as:

FN = |F (D, w)− F (Ds, w)| (6)

where F (D, w) = 1
n

∑
d∈D f(d,w), F (Ds, w) =

1
ns

∑
ds∈D f(ds, w). Ds is the subset of D with S=s, and

f is one of the fairness notions described above.

Necessity for FL to Improve Fairness
In this subsection, we analyse the advantage of FL for im-
proving fairness in decentralized settings. To build a fair
model in decentralized settings, an intuitive solution (hereon
referred to as “IndFair”) is to independently train the fair lo-
cal model using client data. Specifically, for client k, IndFair
trains a fair model by solving the following problem:

min L(Dk, w)

s.t. |F (Dk, w)− F (Ds
k, w)| ≤ α, ∀s ∈ S

(7)

where α∈[0, 1] is the fairness tolerance threshold. Let gαk be
the trained model of client k, then the overall performance

of IndFair is defined as the mixture of all clients:

ŷ|x, s ∼


Bern(gα1 (x, s)), w.p. 1/K

Bern(gα2 (x, s)), w.p. 1/K

· · · · · ·
Bern(gαK(x, s)), w.p. 1/K

= Bern((gα1 (x, s) + · · ·+ gαK(x, s))/K)

= Bern(gSeq
α )

(8)

where Bern stands for Bernoulli distribution, and w.p. is the
abbreviation for ‘with probability’.

On the other hand, we can train a fair global model
(hereon referred to as “FedFair”) on decentralized data
through FL. The fair global model gFed

α is obtained by solv-
ing a constrained problem:

min L(D, w),
s.t. |F (Dk, w)− F (Ds

k, w)| ≤ α,

for all k = 1, 2, ...,K.

(9)

Here, an important question raises: can FedFair achieve a
better fairness than IndFair? The following theorem gives
the confirm answer.
Theorem 1 (Necessity for FL) If the data distribution is
highly heterogeneous across clients, then minFN(gIndα ) >
minFN(gFed

α ).
Theorem 1 means that in decentralized setting, there is a

fairness gap between federated methods and non-federated
ones, and FL improves the fairness performance. The proof
and formal representation are deferred into the Supplemen-
tary file (Su et al. 2023).

The Proposed Approach
Theorem 1 demonstrates the potency of FL in effectively
bolstering model fairness while safeguarding against data
leakage within a decentralized context. Nevertheless, em-
ploying fairness methods directly within the FL frame-
work might not be the optimal approach. This challenge
arises from the significant heterogeneity in data distributions
across clients. Consequently, the localized fairness perfor-
mance could diverge from fairness across the entire popula-
tion. Additionally, in this scenario, the concept of client fair-
ness gains prominence as another critical facet of fairness
that necessitates consideration.

To tackle these intricacies, we introduce mFairFL, a
solution designed to confidentially train a global model
while integrating group fairness. This approach effectively
mitigates the adverse effects of gradient conflicts among
clients, as depicted in Figure 1. mFairFL strategically
transforms the fairness-constrained problem into an uncon-
strained problem that enforces fairness through the use of
Lagrange multipliers. In each communication round, every
client computes its training loss, measures of fairness viola-
tions, and gradients. Subsequently, these statistics are com-
municated to the FL server (aggregation phase). The server
then identifies and rectifies conflicting gradients’ direction
and magnitude before aggregation. This refined model is
then updated and distributed to clients (local training phase).
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This intricate process enables mFairFL to attain a pre-
cise global model that remains equitable for both sensitive
groups and individual clients. The subsequent subsections
delve into the finer technical intricacies of our approach.

Local Statistics Computation Phase
Our goal is to train an optimal model from decentralized data
while satisfying group fairness. For this purpose, we directly
inject the group fairness constraint into the model training:

w∗ = min
w∈Rm

L(D, w)

s.t. |F (D, w)− F (Ds, w)| ≤ α, ∀s ∈ S
(10)

where L(D, w) = 1
n

∑
d∈D l(d,w), F (D, w) is the fairness

metric defined in Eq. (6).
Let h(w)=[h1(w), h2(w), · · · , h|S|(w)] where

hs(w)=|F (D, w) − F (Ds, w)| − α. We use the simi-
lar technique from the Lagrangian approach (Fioretto et al.
2021) to relax the constraint:

J(w,α) = L(D, w) + λh(w). (11)

The relaxation provides more freedom for the optimization
algorithm to find solutions that may not strictly satisfy all
the constraints, but rather approximate them within an ac-
ceptable range.

Thus, the objective function in Eq. (11) can be optimized
using gradient descent/ascent:{

λ← λ+ γh(w),

w ← w − η(∇wL(D, w) + λ∇wh(w)).
(12)

Based on Eq. (12), each client computes the following
statistics required for the server to perform model updates:

L(D, w);∇wL(D, w);F (D, w); [F (Ds, w)]s∈S ;

∇wF (D, w);∇w[F (Ds, w)]s∈S .
(13)

In fact, some of these statistics can be ob-
tained from others: F (D, w)=

∑
s∈S F (Ds, w),

∇wF (D, w)=
∑

s∈S ∇wF (Ds, w). Therefore, in each
communication round, a client reports a statistics vector to
the server as:

zk =[L(Dk, w);∇wL(Dk, w); [F (Ds
k, w)]s∈S ;

∇w[F (Ds
k, w)]s∈S ]

(14)

We define the training loss of client k in round
t as ltk=L(Dk, w) + λh(w), and the updated gradient
gtk=∇wL(Dk, w) + λ∇wh(w). Let Gt={gt1, gt2, · · · , gtK}
represent the gradients received by the server from clients,
and Lt={lt1, lt2, · · · , ltK} be the received client losses.

Aggregation Phase
During the aggregation phase, the server leverages zk pro-
vided by clients to refine and update the global model via
Eq. (12). Owing to the presence of diverse data distributions,
gradient conflicts emerge among clients. In isolation, these
conflicts might not be inherently detrimental, as straightfor-
ward gradient averaging can effectively optimize the global
objective function (McMahan et al. 2017). However, when

conflicts among gradients involve considerable variations
in magnitudes, certain clients could encounter pronounced
drops in performance. For instance, consider the scenario of
training a binary classifier. If a subset of clients holds a ma-
jority of data pertaining to one class, and conflicts in gradi-
ents arise between these two classes, the global model could
become skewed toward the majority-class clients, thereby
compromising performance on the other class. Moreover,
even when class balance is maintained among clients, dis-
parities in gradient magnitudes may persist due to divergent
sample sizes across clients.

Therefore, before aggregating clients’ gradients in each
communication round, mFairFL first checks whether there
are any conflicting gradients among clients. If there are
gradient conflicts, then at least a pair of client gradients
(gti , g

t
j) such that cos(gti , g

t
j) < ϕ̂t

ij , where ϕ̂t
ij ≥ 0 is

the gradient similarity goal of t-th communication round.
Note that interactions among gradients (gradient similarity
goal) change significantly across clients and communication
rounds. Thus, mFairFL performs Exponential Moving Av-
erage (EMA) (Wang and Tsvetkov 2021) to set appropriate
gradient similarity goals for clients i and j in round t:

ϕ̂t
ij = δϕ̂t−1

ij + (1− δ)ϕt
ij (15)

where δ is the hyper-parameter, and ϕt
ij = cos(gti , g

t
j) is the

computed gradient similarity. Specifically, ϕ̂0
ij = 0.

In order to mitigate the adverse repercussions stemming
from gradient conflicts among clients, mFairFL introduces
an innovative gradient aggregation strategy. Specifically, the
approach initiates by arranging clients’ gradients within Gt

in ascending order, based on their respective loss values.
This orchestrated arrangement yields POt, which outlines
the sequence for utilizing each gradient as a reference pro-
jection target. Subsequently, through an iterative process,
mFairFL systematically adjusts the magnitude and orienta-
tion of the k-th client gradient, denoted as gtk, so as to align
with the desired similarity criteria between gtk and the target
gradient gtj ∈ POt, in accordance with the prescribed order
set by POt:

gtk = c1 · gtk + c2 · gtj (16)

Since there are infinite valid combinations of c1 and c2, we
fix c1 = 1 and apply the Law of Sines on the planes of gtk
and gtj to calculate the value of c2, and obtain the derived
new gradient for the k-th client:

gtk = gtk−
||gtk||(ϕt

kj

√
1− (ϕ̂t

kj)
2 − ϕ̂t

kj

√
1− (ϕt

kj)
2)

||gtj ||
√
1− (ϕ̂t

kj)
2

· gtj

(17)
The derivation detail is deferred into the Supplementary file.

Theorem 2 Suppose there is a set of gradients G =

{g1, g2, ..., gK} where gi always conflicts with g
tj
j before

adjusting g
tj
j to match similarity goal between g

tj
j and gi

(gtjj represents the gradient adjusting gj with the target gra-
dients in G for tj times). Suppose ϵ1 ≤ |cos(gtii , g

tj
j )| ≤ ϵ2,
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0<ϵ1<ϕ̂ij≤ϵ2≤ 1, for each gi ∈ G, as long as we iter-
atively project gi onto gk’s normal plane (skipping gi it-
self) in the ascending order of k=1, 2, · · · ,K, the larger
the k is, the smaller the upper bound of conflicts between
the aggregation gradient of global model gglobal and gk
is. The maximum value of |gglobal · gk| is bounded by
K−1
K (maxi ||gi||)2 ϵ2Xmax(1−Xmin)(1−(1−Xmin)

K−k)
Xmin

, where

Xmax= ϵ2
√

1−ϕ̂2−ϕ̂
√

1−ϵ22√
1−ϕ̂2

and Xmin= ϵ1
√

1−ϕ̂2−ϕ̂
√

1−ϵ21√
1−ϕ̂2

.

Theorem 2 substantiates that the later a client’s gradient
assumes the role of the projection target, the fewer conflicts
it will engage in with the ultimate averaged gradient com-
puted by mFairFL. Consequently, in the pursuit of refin-
ing the model’s performance across clients with compara-
tively lower training proficiency, we position clients with
higher training losses towards the end of the projecting tar-
get order list, denoted as POt. Additionally, these gradi-
ents provide the optimal model update direction. To further
amplify the focus on client fairness, we permit βK clients
with suboptimal performance to retain their original gradi-
ents. The parameter β modulates the extent of conflict miti-
gation and offers a means to strike a balance. When β=1, all
clients are mandated to mitigate conflicts with others. Con-
versely, when β=0, all clients preserve their original gradi-
ents, aligning mFairFL with FedAvg. By adopting this ap-
proach, mFairFL effectively alleviates gradient conflicts,
corroborated by the findings in Theorem 2. Consequently,
mFairFL is equipped to set an upper limit on the maxi-
mum conflict between any client’s gradient and the aggre-
gated gradient of the global model. This strategic stance en-
ables mFairFL to systematically counteract the detrimental
repercussions stemming from gradient conflicts. Algorithm
1 in the Supplementary file outlines the main procedures of
mFairFL.

Theorem 3 proves that mFairFL can find the optimal
value w∗ within a finite number of communications. This
explains why mFairFL can effectively train a group and
client fairness-aware model in the decentralized setting. The
proof can be found into the Supplementary file.

Theorem 3 Suppose there are K objective functions
J1(w), J2(w), · · · , JK(w), and each objective function is
differentiable and L-smooth. Then mFairFL will converage
to the optimal w∗ within a finite number of steps.

Experimental Evaluation
Experimental Setup

In this section, we conduct experiments to evaluate the effec-
tiveness of mFairFL using three real-world datasets: Adult
(Dua and Graff 2017), COMPAS (ProPublica. 2016), and
Bank (Moro, Cortez, and Rita 2014). The Adult dataset con-
tains 48,842 samples, with ‘gender’ treated as the sensitive
attribute. There are 7,214 samples in the COMPAS dataset,
with ‘gender’ treated as the sensitive attribute. As for the
Bank dataset with 45,211 samples, with ‘age’ treated as the
sensitive attribute. We split the data among five FL clients in

an non-iid manner.1

For the purpose of comparative analysis, we consider sev-
eral baseline methods, categorized into three groups: (i) in-
dependent training of the fair model within a decentral-
ized context (IndFair); (ii) fair model training via FedAvg
(FedAvg-f); (iii) fair model training within a centralized
setting (CenFair). Three SOTA FL with group fairness: (i)
FedFB (Zeng, Chen, and Lee 2021), which adjusts each
sensitive group’s weight for aggregation; (ii) FPFL (Gálvez
et al. 2021), which enforces fairness by solving the con-
strained optimization; (iii) FairFed (Ezzeldin et al. 2023),
which adjusts clients’ weights based on locally and global
trends of fairness mtrics. In addition to these, we evaluate
our proposed mFairFL against cutting-edge FL methods
that emphasize client fairness, including: (i) q-FFL (Li et al.
2019), which adjusts client aggregation weights using a hy-
perparameter q; (ii) DRFL (Zhao and Joshi 2022), which au-
tomatically adapts client weights during model aggregation;
(iii) Ditto (Li et al. 2021), a hybrid approach that merges
multitask learning with FL to develop personalized mod-
els for each client; and (iv) FedMGDA+ (Hu et al. 2022),
which frames FL as a multi-objective optimization prob-
lem. Throughout our experiments, we adhere to a uniform
protocol of 10 communication rounds and 20 local epochs
for all FL algorithms. For other methods, we execute 200
epochs, leveraging cross-validation techniques on the train-
ing sets to determine optimal hyperparameters for the com-
parative methods. All algorithms are grounded in ReLU neu-
ral networks with four hidden layers, thereby ensuring an
equal count of model parameters.2 We use the same server
(Ubuntu 18.04.5, Intel Xeon Gold 6248R and Nvidia RTX
3090) to perform experiments.

Estimation on Group Fairness
We undertake a comprehensive comparative analysis, focus-
ing on the accuracy and group fairness aspects of the eval-
uated methods. To delve into the intricate relationship be-
tween method performance and data heterogeneity, we ex-
tend the setting of McMahan et al. (2017) for construct-
ing heterogeneous data, emphasizing the heterogeneity in
the sensitive attributes and data sizes across clients. Specif-
ically, we group the datsets by sensitive attributes, and ran-
domly assign 30%, 30%, 20%, 10%, 10% of the samples
from group 0 and 10%, 20%, 20%, 20%, 30% of the samples
from group 1 to five clients, respectively. The outcomes of
this data splitting strategy, encompassing average accuracy
along with standard deviations and the Demographic Parity
violation score for each method, are outlined in Table S2.
Furthermore, for datasets characterized by pronounced data
heterogeneity, we draw samples from each group across five
clients at a ratio of 50%, 10%, 10%, 20%, 10%, and 10%,
40%, 30%, 10%, 10%, respectively. The corresponding ex-
perimental outcomes are showcased in Table 1. From the

1Due to page limit, we include the experiments conducted in a
more general setting with multiple sensitive attributes and multiple
values for sensitive attributes in Supplementary file (In Table S3).

2Further elaboration on the selection of hyperparameters for
mFairFL can be found in the Supplementary file.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15087



Adult Compas Bank
Acc. DP EO AP CF Acc. DP EO AP CF Acc. DP EO AP CF

IndFair .768• .083• .071• .077• - .573• .083• .097• .085• - .831 .028• .025• .029• -
FedAvg-F .706• .224• .164• .218• .232• .558• .059• .066• .062• .184• .828• .033• .034• .033• .143•

FedFB .779 .014 .007 .011 .058• .557• .023• .019• .021• .033 .837 .014• .016• .009 .067•
FPFL .754• .023• .016• .019• .228• .553• .033• .018• .024• .157• .822• .008 .012• .010• .153•

FairFed .756• .009 .004 .008 .244• .551• .009 .003 .004 .186• .824• .003 .004 .004 .164•
FedMGDA+ .837◦ .238• .237• .238• .063• .635◦ .136• .141• .137• .044• .874◦ .084• .077• .085• .065•

CenFL .812◦ .014 .008 .013 - .616 .014• .008 .011• - .866◦ .001 .000 .002 -
mFairFL .792 .012 .003 .007 .036 .596 .005 .009 .003 .022 .844 .005 .006 .003 .028

Table 1: Accuracy and the violation of Group fairness and Client Fairness results on the three datasets with high data het-
erogeneity among clients. The best results in fairness are highlighted in boldface. ◦/• indicates that mFairFL is statistically
worse/better than the compared method by student pairwise t-test at 95% confident level. ‘-’ implies not applicable.

insights gleaned from Tables S2 and 1, we observe that:
(i) mFairFL prominently enhances fairness, achieving
a parity of fairness akin to CenFair. This substantiates
mFairFL’s efficacy in skillfully training fair models for
sensitive groups within the decentralized data landscape.
(ii) The lackluster performance of IndFair in terms of group
fairness accentuates that in a decentralized scenario, fairness
models exclusively trained on local data fall considerably
short of achieving group fairness at a population-wide level.
It is also noteworthy that FedAvg-f occasionally exhibits
lower accuracy than IndFair. This discrepancy arises from
the aggregation strategy of FedAvg-f, which can have un-
intended consequences for certain clients. Conversely, Ind-
Fair manages to ensure fairness for specific sub-distributions
through the training of each local model.
(iii) In direct comparison, mFairFL distinctly outperforms
FedAvg-f in both accuracy and fairness, thus underscoring
the constraints inherent in merely grafting fairness tech-
niques onto the FL paradigm. Evidently, the group fair-
ness achieved by FedAvg-f lags behind the fairness exhib-
ited across the entire population. This gap is particularly
pronounced in scenarios characterized by high data hetero-
geneity among clients. Through the judicious amalgama-
tion of fairness techniques with the decentralized essence of
FL, and its steadfast commitment to ensuring advantageous
model updates for all clients, mFairFL adeptly enhances
both the overarching fairness and accuracy, thereby offering
a comprehensive improvement.
(iv) Notably, mFairFL can better trade-off accuracy and
group fairness than FedFB, FPFL and FairFed. This is be-
cause they overlook the detrimental effects of the conflict-
ing gradients with large difference in the magnitudes, lead-
ing to accuracy reduction and harming certain clients. Fed-
MGDA+ frequently yields the highest accuracy in various
scenarios, but markedly infringes upon the fairness of model
decisions as applied to disadvantaged groups. This is primar-
ily attributed to the fact that FedMGDA+ concentrate solely
on aligning client accuracy without due regard for mitigating
discrimination against sensitive groups.
(v) Upon juxtaposing the outcomes presented in Table 1
(high heterogeneity) with those in Table S2 (low heterogene-
ity), a salient observation arises: mFairFL demonstrates a
marginal decrease in both fairness and accuracy when tran-

sitioning from low to high data heterogeneity. This under-
scores the robustness intrinsic to mFairFL when grappling
with heterogeneous data. Such a consistency aligns with our
initial expectations, as mFairFL adeptly orchestrates gradi-
ent directions and magnitudes to navigate conflicts, thereby
ensuring equitable model updates across all clients. Con-
versely, FedAvg-f manifests notable performance dispari-
ties across distinct data heterogeneity levels, with a partic-
ularly steep decline observed in scenarios characterized by
high data heterogeneity. This vulnerability is attributed to
FedAvg-f’s simplistic gradient averaging approach, which
insufficiently accommodates the intricate impact of data het-
erogeneity on the global model.

Estimation on Client Fairness
The group fairness-aware model cultivated by mFairFL
brings about advantages for each participating client, all
while avoiding any undue preference towards specific
clients. To further validate this assertion, we embark on a se-
ries of experiments designed to evaluate mFairFL’s perfor-
mance in terms of Client Fairness, subsequently juxtapos-
ing it against other pertinent fairness methods. Client Fair-
ness stands as a potent metric for gauging whether the global
model disproportionately favors particular clients while dis-
regarding the rest. To further accentuate the discerning ca-
pabilities of mFairFL, we undertake the random allocation
of samples: 50% and 10% of group 0 samples, coupled with
10%, 20%, and 10% of group 1 samples, are assigned to
the 1st, 2nd, 3rd, 4th, and 5th clients, respectively. This de-
liberate strategy accentuates pronounced data heterogeneity
across clients. For reference, FedAvg constitutes the base-
line in this experimental setup. The resulting accuracy and
violation scores pertinent to Client Fairness for each method
are succinctly presented in Table 2. Our observations from
this comparative analysis are as follows:
(i) Remarkably, mFairFL emerges as the frontrunner,
boasting the most modest client fairness violation scores
while achieving accuracy on par with other fairness-focused
FL methods. In essence, mFairFL excels in abating the po-
tential biases inherent to FL contexts. Through its meticu-
lous consideration of conflicting gradients and adept adjust-
ments to their directions and magnitudes, mFairFL guaran-
tees a more equitable distribution of model updates among
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FedAvg q-FFL DRFL Ditto FedMGDA+ mFairFL

Adult Accuracy .792• .718• .762• .834• .837 .853
CF Vio. .219• .081• .084• .074• .063• .035

Compas Accuracy .594• .566• .598• .629• .635• .668
CF Vio. .179• .058• .031• .024 .044• .018

Bank Accuracy .842• .816• .864• .877 .874• .889
CF Vio. .147• .110• .090• .068• .065• .022

Table 2: Accuracy (↑) and Client Fairness violation score (↓) on three datasets with high heterogeneity among clients. ◦/•
indicates that mFairFL is statistical worse/better than the compared method (student pairwise t-test at 95% confident level).

clients. This concerted effort tangibly diminishes the breach
of client fairness, ultimately heralding a more even alloca-
tion of model updates among all participating clients. In
contrast, both q-FFL and DRFL endeavor to tackle client
fairness by manipulating client aggregation weights, but fal-
ter in effectively addressing conflicts characterized by sub-
stantial gradient magnitude disparities. Ditto aims to strike a
balance between local and global models, engendering per-
sonalized models for individual clients. However, its global
model aggregation strategy closely resembles that of Fe-
dAvg, potentially yielding unfavorable outcomes for certain
clients. In the same vein, FedMDGA+ aspires to pinpoint a
shared update direction for all clients during federated train-
ing, inadvertently overlooking the influential role played by
gradient magnitudes in model aggregation. Therefore, it is
evident that mFairFL stands as the epitome of achieve-
ment, outperforming its counterparts both in terms of client
fairness and accuracy.
(ii) FedAvg, unfortunately, languishes at the bottom of the
performance spectrum, marked by inferior accuracy and
client fairness. This regression is traceable to its rudimentary
averaging strategy, which disregards the disparate contribu-
tions of individual clients. Consequently, when confronting
gradients in conflict with significantly divergent magnitudes,
FedAvg becomes susceptible to overfitting certain clients at
the detriment of others. The significant difference in perfor-
mance between mFairFL and FedAvg demonstrates the po-
tency of mFairFL in counteracting client conflicts.
(iii) To further solidify mFairFL’s efficacy, we furnish the
number of iterations imperative for all compared methods
to attain their optimal performance in Figure S1 of the Sup-
plementary file. This visual depiction affords insights into
the convergence trajectories undertaken by distinct methods
over iterations. Notably, mFairFL exhibits commendable
performance levels and converges towards the pinnacle of
client fairness within a noticeably fewer (or comparable)
count of communication rounds. This clearly underscores
mFairFL’s capacity to efficiently train the model, attain-
ing the desired accuracy and client fairness benchmarks with
commendable efficacy.

Ablation Study

To prove the necessity of the projection order of mFairFL,
we introduce two variants of mFairFL: (i) mFairFL-rnd
adjusts the gradients in a random order of the projection tar-
get. (ii) mFairFL-rev adjusts gradients in the opposite or-
der. The experimental settings are the same as the previous

ours-rnd ours-rev ours

Adult

Acc. .774 .768• .792
DP. .018 .027• .012
EO .013• .026• .003
AP .017• .028• .007
CF .049• .064• .036

Compas

Acc. .577• .580 .596
DP .014• .020• .005
EO .015• .018• .009
AP .012• .019• .003
CF .044• .049• .022

Bank

Acc. .837 .822• .844
DP .009 .023• .005
EO .013 .019• .006
AP .007 .021• .003
CF .047• .077• .028

Table 3: Accuracy (↑), Group fairness and Client Fairness
violation scores (↓) of mFairFL and its variants. • indicates
that mFairFL is statistical better than the variant.

subsection. The results are shown in Table 3. It can be ob-
served that the projection order has significant impact on the
effectiveness of gradient projection. mFairFL-rnd ignores
the information provided by client losses. Thus, it loses to
mFairFL in terms of group fairness and client fairness.
mFairFL-rev achieves lower fairness than mFairFL-rnd,
indicating that the global model tends to neglecting clients
with poorer performance when adjusting gradients in the op-
posite order of mFairFL. The best multi-dimensional fair-
ness performance is obtained by mFairFL. This confirms
that its loss-based order helps improve fairness.

Conclusions
Addressing both group fairness and client fairness is
paramount in the realm of FL. This paper introduces the
novel mFairFL method as a groundbreaking solution
that adeptly navigates these dual dimensions of fairness.
mFairFL formulates the optimization conundrum as a min-
imax problem featuring group fairness constraints. Through
meticulous adjustments to conflicting gradients throughout
the training regimen, mFairFL orchestrates model updates
that distinctly benefit all clients in an equitable manner. Both
theoretical study and empirical results confirm that mitigat-
ing client conflicts during global model update improves
the fairness for sensitive groups, and mFairFL effectively
achieves both group fairness and client fairness. How to mit-
igate the privacy risks of mFairFL is our future work.
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