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Abstract

Domain incremental object detection (DIOD) aims to grad-
ually learn a unified object detection model from a dataset
stream composed of different domains, achieving good per-
formance in all encountered domains. The most critical obsta-
cle to this goal is the catastrophic forgetting problem, where
the performance of the model improves rapidly in new do-
mains but deteriorates sharply in old ones after a few sessions.
To address this problem, we propose a non-exemplar DIOD
method named learning domain bias (LDB), which learns
domain bias independently at each new session, avoiding sav-
ing examples from old domains. Concretely, a base model is
first obtained through training during session 1. Then, LDB
freezes the weights of the base model and trains individual
domain bias for each new incoming domain, adapting the
base model to the distribution of new domains. At test time,
since the domain ID is unknown, we propose a domain selec-
tor based on nearest mean classifier (NMC), which selects the
most appropriate domain bias for a test image. Extensive ex-
perimental evaluations on two series of datasets demonstrate
the effectiveness of the proposed LDB method in achieving
high accuracy on new and old domain datasets. The code is
available at https://github.com/SONGX1997/LDB.

Introduction
With the rapid development of artificial intelligence, ob-
ject detection plays an important role in many application
fields (Arnold et al. 2019; Li et al. 2021; Zou et al. 2023).
However, current object detection methods (Redmon et al.
2016; He et al. 2017; Carion et al. 2020; Li et al. 2022) are
quite weak in the face of domain changes. These changes
refer to variations in data distribution, attributable to back-
ground factors such as picture style, lighting, weather, etc.,
and object factors such as shape, appearance, and color, etc.
All of them hinder the algorithm’s capacity to detect objects
accurately. Given the continuous emergence of new domains
in real-world scenarios, learning new domains while not for-
getting knowledge of old ones presents a formidable chal-
lenge to existing object detection methods. Therefore, the
domain incremental object detection (DIOD) problem (Ding
et al. 2023) is a vital but challenging problem in real-world
scenarios.
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Figure 1: The illustration of domain bias. Φ(W 1, b1) is a
ViT model pre-trained on domain A, where W 1 and b1 are
its weight and bias, respectively. Φ(W 1, b2) is a model ob-
tained by fixing the weight while training the bias on do-
main B. (a) Testing Φ(W 1, b1) on domain A. The model
shows good performance. (b) Testing Φ(W 1, b1) on domain
B. Though the samples of the same class are clustered to-
gether, the clusters of different classes are mixed (i.e., the
clusters of (1, 4, 6) and (2, 3)), leading to performance drops.
(c) Testing Φ(W 1, b2) on domain B. Freezing the model
weight W 1 and learning a new bias b2 for the new domain
B, the model clusters the samples of the same class as well
as separates clusters of different classes.

Compared with the widely studied class incremental
learning (CIL) paradigm (Li and Hoiem 2017; Rebuffi et al.
2017; Zhu et al. 2021), the DIOD problem faces two pri-
mary challenges: 1) How to maintain the performances
of classification and localization at the same time. In con-
trast to CIL methods which focus on the image classification
task, the DIOD problem requires the model to simultane-
ously prevent the forgetting of classification and location of
the objects during the incremental process. 2) How to in-
crementally learn a unified model handling various data
distributions with large domain gaps. In CIL, the model
only needs to adjust the feature space slightly to learn new
classes, while DIOD is more challenging, which requires the
model to change the entire feature space to adapt to new do-
mains with large gaps in the data distribution.
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A plausible approach to address the DIOD problem
involves adapting the class incremental object detection
(CIOD) methods to the DIOD task. Most existing CIOD
methods (Hao et al. 2019; Feng, Wang, and Yuan 2022)
leverage knowledge distillation to assimilate new knowledge
within a single feature space, thereby mitigating catastrophic
forgetting. However, when applied to the DIOD task, these
methods result in multiple domains sharing a single fea-
ture space, leading to suboptimal results for each individ-
ual domain. Another alternative strategy involves introduc-
ing state-of-the-art domain incremental classification meth-
ods such as L2P (Wang et al. 2022c) and S-Prompt (Wang,
Huang, and Hong 2022) to the DIOD task. These meth-
ods freeze powerful pre-trained models, appending learnable
prompts to input embeddings to learn knowledge from new
domains. However, when applied to the DIOD task, due to
the frozen backbone, these methods cannot modify the fea-
ture space by only fine-tuning prompts. Therefore, it is dif-
ficult for them to adapt the feature space to the data dis-
tribution of new domains. Furthermore, Ding et al. (Ding
et al. 2023) have explored the DIOD task and presented an
exemplar-based method, saving examples from old domains
to mitigate the catastrophic forgetting issue. However, re-
taining examples from previous datasets may not be advis-
able due to data security and privacy, and storing such sam-
ples inevitably increases storage space.

To address the above challenges, we propose a non-
exemplar-based DIOD method by learning domain bias,
which does not preserve previous old samples. As shown in
Figure 1(a), Φ(W 1, b1) is a vision transformer (ViT) (Doso-
vitskiy et al. 2020) model pre-trained on domain A, where
W 1 and b1 are its weight and bias, respectively. When test-
ing it on domain B (Figure 1(b)), although samples of the
same class can be clustered together, clusters of different
classes are confused (i.e., the clusters of (1,4,6) and (2,3)),
leading to performance drops. In Figure 1(c), we freeze the
model weight and only learn a new bias b2 for new domain
B. The obtained model Φ(W 1, b2) can cluster samples of the
same class and separate different clusters in the new domain
B. Therefore, we observe that given a pre-trained model, its
weights can cluster samples of the same class together and
are robust to domain changes, while biases can separate dif-
ferent clusters and are sensitive to domain changes. Inspired
by this observation, we can freeze the model’s weights and
learn independent biases for each domain (i.e., domain bias)
to adapt the model to the distribution of new domains.

On this basis, we propose a learning domain bias (LDB)
method to address the DIOD problem. Concretely, based on
state-of-the-art transformer-based object detection method
ViTDet (Li et al. 2022), our LDB method trains the base
model at the first session without retaining extra parame-
ters. Starting from the second session, LDB freezes the base
model and adds individual domain bias for each new domain
to adapt the new domain’s feature distribution. The domain
bias includes two parts: multi-layer perceptron (MLP) bias
and multi-head attention (MHA) bias, which are integrated
into the base model’s backbone. At test time, a domain se-
lector based on nearest mean classifier (NMC) (Mensink
et al. 2013; Rebuffi et al. 2017) is devised. We adopt the

ImageNet-1K pre-trained model to extract the mean features
of each domain training set as the classification head. For an
input test image, the Euclidean distance of its features to the
classification head is computed to select the most appropri-
ate domain bias. In summary, the principal contributions of
this work are as follows:

1) We propose LDB, a novel non-exemplar DIOD method,
adapting the base model to the data distribution of con-
tinuous new domains by learning individual domain bias
for each domain.

2) We design a domain selector via nearest mean classifier,
which infers the most appropriate domain bias for an in-
put image at test time.

3) The experimental results on two datasets demonstrate
that our LDB method significantly outperforms the state-
of-the-art incremental learning methods and domain
adaptation methods on the non-exemplar DIOD problem.

Related Work
Incremental Learning
In the field of incremental learning, many works have been
devoted to addressing the catastrophic forgetting in class in-
cremental learning (CIL), which has led to its recent surge
of attention (Rebuffi et al. 2017; Wu et al. 2019; Zhao et al.
2020; Tao et al. 2020a; Wang et al. 2022a, 2023). A ma-
jor solution is the rehearsal-based method (Tao et al. 2020a;
Yan, Xie, and He 2021; Wang et al. 2022b; Douillard et al.
2022), which utilizes a memory buffer to store some rep-
resentative samples from old data for replay to prevent old
knowledge from being forgotten. However, this method may
have privacy and data leakage risks. Therefore, some ex-
isting methods focus on the more valuable but challenging
non-exemplar CIL problem. LwF (Li and Hoiem 2017) is
one of the classic non-exemplar CIL methods, which assigns
previous models as teachers and leverages knowledge distil-
lation to alleviate forgetting. PASS (Zhu et al. 2021) mem-
orizes a class representative prototype for each old class to
maintain the decision boundary of previous tasks and em-
ploys self-supervised learning to learn more general and
transferable features.

In addition to CIL, several works (Tao et al. 2020b; Tang
et al. 2021; Volpi, Larlus, and Rogez 2021; Xie, Yan, and
He 2022) have focused on another representative incremen-
tal learning problem—domain incremental learning (DIL),
where classes are kept constant but the domains involved
often vary a lot in sequence. L2P (Wang et al. 2022c)
firstly proposes learning a set of prompts that dynamically
inform a pre-trained model to solve corresponding tasks.
Subsequently, based on the contrastive language-image pre-
training model (Radford et al. 2021), S-Prompt (Wang,
Huang, and Hong 2022) learns prompts for each domain in-
dependently to solve the catastrophic forgetting problem in
DIL.

Recently, some works adapts the CIL methods to class in-
cremental object detection (CIOD), such that achieving class
incremental learning in the object detection problem. Simi-
lar to CIL, most solutions (Liu et al. 2020; Joseph et al. 2021;
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Yang et al. 2023; Liu et al. 2023) are rehearsal-based meth-
ods, which preserve old samples and exploit knowledge dis-
tillation to mitigate catastrophic forgetting. A few works ad-
dress the non-exemplar CIOD problem. CIFRCN (Hao et al.
2019) extends the region proposal network and only uses
new class images for knowledge distillation. ERD (Feng,
Wang, and Yuan 2022) proposes a response-based non-
exemplar CIOD method that learns classification head and
regression head information, thereby transferring category
knowledge.

Source-Free Domain Adaptation
A similar problem setting to our DIOD paradigm is source-
free domain adaptation (SFDA). Researches (Chidlovskii,
Clinchant, and Csurka 2016; Liang et al. 2019; Kundu et al.
2020; Liang et al. 2021; Yang et al. 2022) utilize a model
trained in the source domain to transfer knowledge to an un-
labeled target domain. Data from the source domain is not
available during this process. MCC (Jin et al. 2020) proposes
a loss function for minimal class confusion that does not re-
quire source domain data for domain alignment. IRG (VS,
Oza, and Patel 2023) designs a contrast loss to represent the
object relation of the input in the target domain. These ob-
ject relations are modeled using an instance-relation graph
network and then used to guide contrastive learning.

SFDA aims to leverage knowledge from old domains to
improve the discriminative ability of models on new do-
mains, however, the knowledge of the source domain is
prone to catastrophic forgetting. In contrast, the goal of our
method is to gradually build a unified model that learns
knowledge from new domains without forgetting knowledge
from old domains, eventually achieving satisfactory object
detection performance on both old and new domains.

Bias Tuning
Recently, a series of efficient fine-tuning methods for large
language models have been proposed, e.g., Prompt (Lester,
Al-Rfou, and Constant 2021), Adapter (Pfeiffer et al. 2021)
and LoRA (Hu et al. 2022), etc. Bitfit (Ben Zaken, Goldberg,
and Ravfogel 2022) is a competitive method among them,
where only the bias term of the model is modified during
fine-tuning and other parameters are frozen. Based on this,
AdapterBias (Fu et al. 2022) is proposed, which assigns dif-
ferent representation shifts to task-related tokens according
to the importance of tokens, so as to obtain better fine-tuning
effects. Inspired by this advance, we investigate the value
of the bias term for domain incremental learning, and intro-
duce the concept of domain bias in our framework to achieve
state-of-the-art performance.

Method
Problem Definition
Assuming T disparate domain datasets {D1,D2, . . . ,DT },
where each dataset Dt = {Xt,Zt} consists of a training set
Xt and a test set Zt. All domain datasets consist of objects
belonging to the same class. Each training set Xt can be de-
fined as Xt = {(xt

i, yti)}
Nx
i=1, where xti represents the i-th

training example, and yt
i refers to a collection of categories

and bounding-boxes of objects labeled in xt
i. Within the non-

exemplar DIOD setting, a unified object detection model is
designed to learn incrementally from the sequential training
sets, without saving any samples from previous domains. At
each session t, Xt constitutes the solely accessible training
set, and the model thus acquired will be assessed utilizing
the aggregated test sets Z1∼t = Z1 ∪ · · · ∪ Zt.

Overall Framework

The object detector ViTDet can be considered a combina-
tion of a transformer-based feature extractor f(; θ) and a
Mask R-CNN detection head g(;ϑ, ϕc, ϕb). ϕc and ϕb are
class score predictor and bounding box predictor, respec-
tively, both of which are fully connected (FC) layers. ϑ is
the rest parameters of Mask R-CNN detection head. We
use Θ = {θ, ϑ, ϕc, ϕb} to represent the total parameters of
ViTDet. Initially, loading ImageNet-1K pre-trained model
Θ0, we train a base model Θ1 using X1 by classification
loss, bounding-box loss and average binary cross-entropy
loss (He et al. 2017; Li et al. 2022). Then, we use the same
loss functions to incrementally fine-tune the base model on
X2,X3, · · · , and get Θ2,Θ3, · · · .

Figure 2 illustrates the framework of LDB. The key idea
of our method is to freeze the base model and train indepen-
dent domain bias for each domain, adapting the base model
to the data distribution of new domains. During the train-
ing process, the base model Θ1 is obtained at session 1,
and no additional parameters need to be learned. Starting
from session t (t > 1), new predictors ϕt

c, ϕt
b and domain

bias bt are added for training, while the base model, as well
as predictors and domain biases that are not relevant to the
current session, are frozen. When testing, since we do not
know which domain the input image belongs to (i.e., the do-
main ID is unknown), we design a domain selector based
on NMC. We adopt the feature extractor of the pre-trained
model Θ0, calculating the mean feature for each domain as
the classification head. For a test image, the distance of its
feature to the classification head is calculated to determine
the domain ID. Thus, the values of α2, α3, · · · , αt are ob-
tained to select appropriate domain bias and predictors for
inference.

Learning Domain Bias

As shown in Figure 2, for each transformer block, the do-
main bias bt appended to the base model consists of MLP
bias and MHA bias. Both of them share the same modules:
learnable token v ∈ RC and γ ∈ RH×W , where H , W ,
and C are the length, width, and number of channels of the
feature map, respectively. Similar to the ordinary bias term
of neural networks, v is the token added to the output of
MLP/MHA to learn domain-specific bias information. γ is
generated by a linear layer and is used to weight v. Com-
pared with the ordinary bias term (adding the same bias to
each input token), γ can adaptively weight v to add different
biases for different input tokens, thereby helping the model
to better learn feature distribution of new domains.

At session t, t > 1, let the MLP bias be bt
p, the MHA bias
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Figure 2: The framework of our proposed LDB. During training, a ViTDet model is first trained at session 1, obtaining the base
model (gray parts). Then, at session t (t >= 2), additional domain bias and predictor (gold parts) are added for training and αt

is set to 1, while the base model, previously trained domain biases, and predictors (blue parts) are frozen and α2, α3, · · · , αt−1

are set to 0. The classification head µ1, µ2, · · · , µt of NMC is initialized by f(; θ0) at each session. During testing, the feature
of a test image is extracted by f(; θ0). Then, the distance of the feature to µ1, µ2, · · · , µt is calculated, determining the value
of α2, α3, · · · , αt (see Eq.(6) and (7)) to select the most appropriate domain bias and predictor for inference.

be bt
a. We can calculate bt

a as follows:
bt
a = α2b2a + α3b3a + · · ·+ αtbta, (1)

where α2, α3, · · · , αt ∈ {0, 1} is used to determine
the value of MHA bias for training or inference. When
training at session t, bta is trainable and αt is set to 1,
while b2a, b

3
a, · · · , bt−1

a are frozen, and their corresponding
α2, α3, · · · , αt are set to 0, so

bt
a = bta, (2)

where bta can be defined as follows:
bta = Linear(e1) ◦ vta = γt

a ◦ vta

=


γt
a,11v

t
a γt

a,12v
t
a · · · γt

a,1W vta
γt
a,21v

t
a γt

a,22v
t
a · · · γt

a,2W vta
...

...
. . .

...
γt
a,H1v

t
a γt

a,H2v
t
a · · · γt

a,HW vta

 ,
(3)

where γt
a ∈ RH×W is the weight used to adjust MHA bias,

vta is the MHA bias token, ◦ is hadamard product, and e1 ∈
RH×W×C is the input embedding of block l. At this point,
the output of the MHA becomes e3 = e2 + bt

a, where e2 is
the original output of MHA. Similarly, we can also get the
MLP bias:

bt
p = Linear(e3) ◦ vtp = γt

p ◦ vtp

=


γt
p,11v

t
p γt

p,12v
t
p · · · γt

p,1W vtp
γt
p,21v

t
a γt

p,22v
t
p · · · γt

p,2W vtp
...

...
. . .

...
γt
p,H1v

t
a γt

p,H2v
t
p · · · γt

p,HW vtp

 ,
(4)

where γt
p is the weight used to adjust MLP bias and vtp is the

MLP bias token. The output of transformer block l becomes
e5 = e4 + bt

p, where e4 is the original output.

Domain Selector Based on Nearest Mean Classifier
(NMC)
In domain incremental learning, the domain ID is not avail-
able at test time. Hence, it is essential to infer the domain
ID using the input image to select the most appropriate do-
main bias. To this end, we propose an NMC-based (Mensink
et al. 2013; Rebuffi et al. 2017) domain selector that can effi-
ciently judge which domain an input image belongs to. Con-
cretely, in the training stage of session t, we use the feature
extractor f(; θ0) of the ImageNet-1K pre-trained model to
initialize the domain selector:

µt =
1∥∥Xt
∥∥ ∑

xt∈Xt

Avg(f(xt; θ0)), (5)

where µt is the mean feature of domain t, xt is a train sam-
ple, and Avg performs average pooling on the output fea-
tures: RH×W×C → RC . At test time of session t, the fea-
ture of a test sample z ∈ Z1∼t is extracted by f(; θ0). We
then select the closest µ to get domain ID:

k = argmin
i

L2(µ
i, Avg(f(z; θ0))), i = 1, · · · , t (6)

where k is the domain ID of test sample z, and L2 is the Eu-
clidean distance. Finally, we can calculate αj (j = 2, · · · , t)
to select the most suitable domain bias:

αj =

{
1, k = j
0. else

(7)

Eq.(7) means that if the input z belongs to the domain
k, k > 1, the corresponding bka and bkp will be appended to
model Θ1 for inference. If z belongs to the first domain, all
αj (j = 2, · · · , t) are set to 0, and model Θ1 is used directly
for inference.
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Predictor Design
As described in Overall Framework, the score predictor ϕt

c
and bounding box predictor ϕt

b are all FC layers, so we can
parameterize them as [W t

c , b
t
c] and [W t

b , b
t
b], respectively,

where W t
c ∈ Rn+1, W t

b ∈ R4n, n is the number of class.
Formally, these predictor outputs are calculated by

ŷ = W t
cg(f(x

t; θ);ϑ) + btc, (8)

ô = W t
bg(f(x

t; θ);ϑ) + btb, (9)

Since each session t has three predictors independent of
other sessions, we could construct a predictor pool P =
{[W t

c , b
t
c], [W

t
b , b

t
b]}t=T

t=1 to store them. During inference,
when the domain ID is obtained, the corresponding predic-
tors are also selected for class score and bounding box pre-
diction.

Experiments
Benchmarks and Implementation
Datasets. We adopt the Pascal VOC series and BDD100K
series dataset to evaluate the effectiveness of our LDB on
the DIOD task. The Pascal VOC series consists of datasets
from four different domains: Pascal VOC 2007 (Everingham
et al. 2010), Clipart, Watercolor, and Comic (Inoue et al.
2018). We choose the same 6 categories of images for the
four datasets. Thus, Pascal VOC 2007 contains 3,551 images
for training and 3,527 images for testing. Clipart contains
372 images for training and 352 images for testing. Water-
color and Comic contain 1,000 images for training and 1,000
images for testing, respectively.

The BDD100K series consists of autonomous driv-
ing datasets from three different domains: BDD100k (Yu
et al. 2020), Cityscape (Cordts et al. 2016) and Rainy
Cityscape (Hu et al. 2019), each containing 8 types of ob-
jects. BDD100K is one of the largest and most diverse pub-
licly available driving datasets. We use 70,000 images from
the training set for training, and 10,000 images from the val-
idation set for testing. Cityscape contains 2,975 images for
training and 500 for testing. Rainy Cityscape is synthesized
from Cityscape using the digital synthesis method to simu-
late rainy weather, of which 9,432 images are used for train-
ing and 1,188 for testing.
Evaluation Metrics. Following (Ding et al. 2023; Yang
et al. 2023), we use the average precision (AP) with the IoU
threshold=0.5 as a performance metric and report the mean
average precision (mAP), i.e. the mean AP of all learned ses-
sions. At each session t, after training on Xt, the obtained
model Θt will be evaluated on the combined test sets Z1∼t.
The evaluation results reflect the ability of the model to re-
sist catastrophic forgetting.
Implementation Details. We adopt ViTDet (Li et al. 2022)
with 12 transformer blocks and 768 channel dimensions as
the backbone. The model is pre-trained by ImageNet-1K and
MAE (He et al. 2022). We train the model for 20 epochs
(5 warm up epochs) using AdamW (Loshchilov and Hutter
2018) optimizer with a weight decay of 0.1. The learning
rate is set to 2e-4, training batch size is set to 2, and input size
is set to 1,024. More implementation details are provided in
the Appendix.

Methods Buffer Size Session 2 Session 3 Session 4

Upper-bound - 72.6 69.4 67.6

TP-DIOD-B 150/domain 65.8 62.1 57.5

FT-seq

0/domain

57.5 52.6 49.5 (↓ 7.3)
FT-FC 59.1 54.4 44.2 (↓ 12.6)
MCC 47.6 34.4 23.7 (↓ 33.1)
IRG 51.5 43.7 33.2 (↓ 23.6)
LwF 60.4 53.6 53.2 (↓ 3.6)
PASS 61.7 51.4 49.8 (↓ 7.0)
L2P 59.9 55.2 45.5 (↓ 11.3)
S-Prompt 59.4 54.3 45.0 (↓ 11.8)
CIFRCN 65.3 57.7 53.5 (↓ 3.3)
ERD 58.9 50.7 48.7 (↓ 8.1)

LDB(Ours) 0/domain 68.1 64.2 56.8 (↓ 0.0)

Table 1: Experimental results (mAP) on Pascal VOC series.

Methods VOC Clipart Watercolor Comic mAP Param

L2P 78.2 32.5 43.3 27.8 45.5 0.33%
S-Prompt 80.8 33.9 45.2 20.1 45.0 0.24%

LDB(Ours) 82.4 50.1 57.5 37.0 56.8 0.19%

Table 2: Comparison of our LDB with prompt-based meth-
ods at session 4 on Pascal VOC series.

Comparison Methods
For comparison with the proposed LDB, we select several
non-exemplar incremental learning methods, including: the
CIL methods LwF (Li and Hoiem 2017) and PASS (Zhu
et al. 2021), the DIL methods L2P (Wang et al. 2022c)
and S-Prompt (Wang, Huang, and Hong 2022), the CIOD
methods CIFRCN (Hao et al. 2019) and ERD (Feng, Wang,
and Yuan 2022), where PASS, S-Prompt and ERD are best-
performing methods in their fields. We also choose the
exemplar-based DIOD method TP-DIOD (Ding et al. 2023)
for comparison. Moreover, we implement the classic SFDA
method MCC (Jin et al. 2020) and the state-of-the-art SFDA
method IRG (VS, Oza, and Patel 2023) in the DIOD prob-
lem. We add labels to these SFDA methods in the new do-
mains for a fair comparison. In addition, to prove the rel-
ative effectiveness of all methods, FT-seq (fine-tuning se-
quence training), FT-FC (fine-tuning predictors) and Upper-
bound (fully supervised training) are conducted. In the abla-
tion experiments, we compare our NMC-based domain se-
lector with the K-means and K-NN (K&K in short) selector
adopted in S-Prompt, where k = 5. All these methods use
the same ViTDet as the backbone, and the specific imple-
mentation details are introduced in the Appendix.

Comparison Results
Results on Pascal VOC Series. Table 1 reports the detailed
comparison results on Pascal VOC series, which are learned
in the order of Pascal VOC 2007 → Clipart → Watercolor
→ Comic. This series of datasets includes 4 different styles
of images, so we can evaluate the anti-forgetting ability of
the model for different domains. Figure 3(a) shows the com-
parison curves of the 12 non-exemplar-based methods. It is
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Methods Buffer Size Session 2 Session 3
Upper-bound - 57.0 58.5

TP-DIOD-B 200/domain 53.4 51.5

FT-seq

0/domain

51.6 43.6 (↓ 7.5)
FT-FC 51.3 48.0 (↓ 3.1)
MCC 44.3 36.1 (↓ 15.0)
IRG 49.3 38.7 (↓ 12.4)
LwF 52.1 44.1 (↓ 7.0)
PASS 51.7 43.3 (↓ 7.8)
L2P 51.5 47.7 (↓ 3.4)
S-Prompt 51.6 49.4 (↓ 1.7)
CIFRCN 51.8 48.9 (↓ 2.2)
ERD 51.1 48.1 (↓ 3.0)

LDB(Ours) 0/domain 52.3 51.1 (↓ 0.0)

Table 3: Experimental results (mAP) on BDD100K series.

Methods BDD100K Cityscape Rainy mAP Param

L2P 49.7 48.8 44.8 47.7 0.30%
S-Prompt 51.6 52.0 44.7 49.4 0.16%

LDB(Ours) 50.3 52.7 50.2 51.1 0.13%

Table 4: Comparison of our LDB with prompt-based meth-
ods at session 3 on BDD100K series.

observed from the table and figure that our LDB outper-
forms all other state-of-the-art non-exemplar-based methods
at each encountered session, and even surpasses exemplar-
based method TP-DIOD-B at session 2 and 3. Concretely,
LDB achieves 68.1%, 64.2% and 56.8% mAP at session
2, 3, and 4, exceeding the second best non-exemplar-based
method CIFRCN by 2.8%, 6.5% and 3.3%, respectively.

Table 1 also compares the LDB and SFDA methods.
We observe that the SFDA methods perform poorly on the
DIOD task even with labels of new domains. Our LDB out-
performs both MCC and IRG by a large margin.

Table 2 illustrates the comparison of LDB with recent
prompt-based methods L2P and S-Prompt at session 4. Ac-
curacies tested on Clipart, Watercolor, and Comic reflect
the ability of these methods to adapt the base model to
new domains. Compared to the second best method L2P,
LDB improves the accuracy by 4.2% (78.2%→82.4%),
17.6% (32.5%→50.1%), 14.2% (43.3%→57.5%) and
9.2% (27.8%→37.0%) in the four domains, respectively.
Furthermore, our method uses minimal extra parameters
(0.19%). This proves that compared to the prompts, fine-
tuning domain bias effectively changes the feature space of
the model to adapt to the data distribution of new domains.
Results on BDD100K series. Table 3 summarizes the com-
parison results of 13 methods on the BDD100K series,
which are learned in the order of BDD100K → Cityscape
→ Rainy Cityscape. These three datasets contain different
autonomous driving scenarios, which can verify the anti-
forgetting ability of our method for the actual environ-
ment. From this table, we observe similar conclusions as
the Pascal VOC series. LDB surpasses the second best non-
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Figure 3: Performance curves of the 12 non-exemplar-based
methods with respect to session 1 ∼ T . (a) Pascal VOC
series; (b) BDD100K series.

exemplar method S-Prompt by 0.7% (51.6%→52.3%) and
1.7% (49.4% →51.1%) at session 2 and 3, respectively.

Table 4 presents the comparison results of LDB with L2P
and S-Prompt at the last session of BDD100K series. Similar
to Table 2, our LDB has the highest accuracies of 52.7%
and 50.2% on Cityscape and Rainy Cityscape, respectively.
Using the least extra parameters (0.13%), it is 0.7% and
5.5% higher than S-Prompt, respectively.

Figure 3(b) shows the comparison curves of 12 non-
exemplar-based methods on the BDD100K series. As incre-
mental learning proceeds, the superiority of LDB becomes
more pronounced, demonstrating the anti-forgetting ability
of old domain knowledge.

Ablation Study
The Effect of Each Component. As shown in Table 5, to
demonstrate the impact of each proposed component, we
conduct the ablation studies by building the following five
models on Pascal VOC series: (1) Using the FT-FC model
and NMC domain selector as a baseline, in which only the
predictors are trainable; (2) Adding the MLP bias to the
baseline model; (3) Adding the MHA bias to the baseline
model; (4) Adding both the MLP bias and MHA bias to FT-
FC model and adopting K&K to select domain ID (Wang,
Huang, and Hong 2022); (5) Adding both the MLP bias and
MHA bias to the baseline model, which is equivalent to the
proposed LDB method.

As expected, in row 1, the baseline model produces the
lowest mAP of 37.6% at session 4. In rows 2 and 3, adding
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(a) Model Θ1, SVHN (c) Model Θ1 with 0 bias, MNIST(b) Model Θ1, MNIST (d) Model Θ2, MNIST

Acc: 42.03%

Acc: 87.22%Acc: 39.07%Acc: 82.13%

Figure 4: Validation of domain bias using ViT on SVHN and MNIST dataset.

MLP bias MHA bias K&K NMC Session
2 3 4

× × ×
√

59.1 54.4 44.2 (↑ 0.0)√
× ×

√
67.3 62.9 55.3 (↑ 11.1)

×
√

×
√

67.6 63.2 55.6 (↑ 11.4)√ √ √
× 67.4 62.9 55.9 (↑ 11.7)√ √

×
√

68.1 64.2 56.8 (↑ 12.6)

Table 5: Ablation study of the contribution of each compo-
nent on Pascal VOC series.

Blocks VOC Clipart Watercolor Comic mAP

10 ∼ 12 84.7 42.6 51.1 27.3 51.4 (↑ 0.0)
7 ∼ 12 83.6 50.2 54.0 32.8 55.2 (↑ 3.8)
4 ∼ 12 82.4 51.4 56.3 36.2 56.6 (↑ 5.2)
1 ∼ 12 82.4 50.1 57.5 37.0 56.8 (↑ 5.4)

Table 6: Comparison results of adding domain bias to differ-
ent transformer blocks at session 4 on Pascal VOC series.

MLP bias and MHA bias to the baseline contributes 11.1%
and 11.4% relative improvement, respectively. In row 5, it
can be observed that adding two biases leads to the high-
est relative improvement of 12.6%. In addition, comparing
row 4 and row 5, we find that under the same model, our
NMC-based domain selector achieves a relative improve-
ment of 0.9% compared with the K&K used in S-Prompt.
These experimental results strongly demonstrate that MLP
bias, MHA bias, and NMC-based domain selector are both
very effective for improving the performance of LDB.
The Effect of Adding Domain Bias to Different Blocks.
In order to explore the optimal domain bias addition method,
we gradually increase the number of transformer blocks with
domain bias, changing from the last three blocks (10∼12) to
all blocks. The performance of session 4 on Pascal VOC se-
ries is reported in Table 6. As expected, adding domain bias
for blocks 10∼12 yields the lowest mAP (51.4%). When
adding domain bias to the last six and nine blocks, the
performance is improved by 3.8% and 5.2%, respectively.
Adding domain bias to all blocks leads to the best perfor-
mance (56.8%). This proves that more domain biases can
better help the base model adapt to the data distribution of
the new domain, achieving better performance.
Validation of Domain Bias. To verify the role of domain
bias, we use ViT to conduct domain incremental classi-

fication experiments and visualize the output features by
TSNE (Van der Maaten and Hinton 2008). First, as shown
in Figure 4(a), we train a base model Θ1 on the SVHN (Net-
zer et al. 2011) dataset with an accuracy of 82.13%. Then,
we test the model Θ1 on the MNIST dataset, only getting
39.07% accuracy. Figure 4(b) shows that samples of the
same class are still clustered, but some clusters are mixed
together, leading to a drop in accuracy. Next, we set the bias
of Θ1 to 0 and test it on the MNIST, getting an accuracy
of 42.03%. Figure 4(c) proves that clustering of samples
can be achieved only by weights regardless of domains, i.e.
weights are robust to domain changes. Finally, we only fine-
tune the bias of the model Θ1 on the MNIST dataset, getting
the model Θ2 which achieves an accuracy of 87.22% on
MNIST (Figure 4(d)), an improvement of more than 45%
(39.07%/42.03% → 87.22%). The above visualization re-
sults demonstrate that the weights of ViT can cluster the ob-
jects independent of the domains, while the biases can sep-
arate different clusters and are sensitive to domain changes.
Therefore, we can only fine-tune the bias to adapt the model
to the data distribution of new domains.

Conclusion
This paper focuses on an important yet challenging prob-
lem termed domain incremental object detection (DIOD),
where the categories of objects remain constant but the in-
volved domains vary greatly in order. To alleviate catas-
trophic forgetting in DIOD, we propose a non-exemplar
method namely learning domain bias (LDB). A ViTDet
model is first trained normally at session 1. Since the sec-
ond session, we train individual domain bias for each new
domain, adapting the base model to the distribution of these
domains. At test time, we propose an NMC-based domain
selector to choose the most appropriate domain bias for a test
image. Extensive experimental results on PASCAL VOC se-
ries and BDD100K series datasets show that our LDB sig-
nificantly outperforms existing state-of-the-art methods.
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