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Abstract

Internal regret is a measure of performance of an online learn-
ing algorithm, which measures the change in performance by
substituting every occurrence of a given action i by an al-
ternative action j. Algorithms for minimizing internal regret
are known for the finite experts setting, including a general
reduction to the problem of minimizing external regret for
this case. The reduction however crucially depends on the
finiteness of the action space. In this work we approach the
problem of minimizing internal regret for a continuous ac-
tion space. For the full information setting, we show how
to obtain Õ(

√
T ) internal regret for the class of Lipschitz

functions, as well as non-Lipschitz dispersed functions, i.e.
the non-Lipschitzness may not concentrate in a small region
of the action space. We also consider extensions to partial
feedback settings, and again obtain sublinear internal regret.
Finally we discuss applications of internal regret minimiza-
tion over continuous spaces to correlated equilibria in pricing
problems and auction design, as well as to data-driven hyper-
parameter tuning.

Introduction
We consider the problem of repeatedly making decisions in
an uncertain environment, using the standard online learn-
ing framework. The algorithm or learner has a continuous
space C of actions, and the following game is played for T
rounds. At each round or time step t, the learner chooses an
action (possibly probabilistically), the environment makes
its “move” by choosing a loss function over the space of
actions, and the learner then incurs the loss for its action
chosen. The most popular metric for measuring the perfor-
mance of the algorithm is computing its (external, as it is un-
related to learner’s choices) ‘regret’ with respect to the best
fixed action from C played across all rounds, in hindsight.
However, this may not be useful in common cases where no
single fixed action works well over the entire course of the
algorithm’s interaction with its environment

One alternative approach to determine if the learner per-
formed well in choosing the actions is to compute the ‘re-
gret’ of substituting the chosen actions with alternative ac-
tions. This gives rise to the notions of internal regret or swap
regret (Cesa-Bianchi and Lugosi 2003; Stoltz 2005; Blum
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and Mansour 2007). While the external regret has been stud-
ied in a wide variety of general settings owing to its popu-
larity, the study of internal and swap regret has largely been
limited to the case of finite action space, also known as fi-
nite experts setting. In this work, we consider the problem
of minimizing internal regret in the presence of continu-
ously many infinite experts, and non-convex loss functions,
in both full information (i.e., learner observes loss for all ex-
perts) and partial feedback (learner only observes their in-
curred loss) settings. We will particularly focus on the case
of Lipschitz losses and piecewise-constant losses motivated
by known applications. Internal regret is closely connected
to correlated equilibria in multi-player repeated games (Fos-
ter and Vohra 1999; Blum and Mansour 2011).

Related Work
Internal regret. The notion of internal regret was first in-
troduced by (Foster and Vohra 1998) in the context of cal-
ibrated forecasting. Several low internal regret algorithms
have been developed, from initial algorithms with con-
vergence guarantees without regret upper bounds (Foster
and Vohra 1999; Hart and Mas-Colell 2000), to general
potential-based algorithms with low regret bounds (Cesa-
Bianchi and Lugosi 2003), as well as algorithms based on
reduction to external regret (Blum and Mansour 2007; Stoltz
and Lugosi 2005, 2007). Note that the algorithms, as well as
reductions due to (Stoltz 2005; Blum and Mansour 2007) to
external regret, were obtained for the finite experts setting. A
lower bound of Ω(

√
NT ) on a related notion called swap re-

gret for any randomized algorithm was given by (Blum and
Mansour 2007) and further improved in the recent work of
(Ito 2020) to Ω(

√
NT logN).

Bandit setting. For the bandit setting (Stoltz 2005) gave
an algorithm with O(N

√
T logN) regret which runs in ex-

ponential time. (Blum and Mansour 2007) obtained a poly-
nomial time algorithm with slightly worse regret bound of
O(N

√
NT logN) via a reduction argument. Recent work

of (Ito 2020) modifies their approach to give a polynomial
time algorithm with O(N

√
T ) regret bound, resulting in a

more efficient reduction to external regret without needing
first-order bounds.

Other related notions of regret. (Mohri and Yang 2014)
consider a generalization of swap regret called conditional
swap regret, which considers all possible modifications of
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a learner’s action sequence that depend on some fixed
bounded history. They further generalize it to a notion of
transductive regret in (Mohri and Yang 2017), which is
a generalization of (1) external regret; (2) internal regret;
(3) swap regret; and (4) conditional swap regret. Sleeping
experts is another popular setting introduced by (Freund
et al. 1997) where the set of actions that are available to
the decision algorithm varies over time. Algorithms with
low regret are known for this problem (Blum and Mansour
2007; Kleinberg, Niculescu-Mizil, and Sharma 2010) and
have applications to calendar tracking (Blum 1997), text-
categorisation (Cohen and Singer 1999), formulating web-
search engine queries (Cohen and Singer 1996) and sub-
group fairness (Blum and Lykouris 2020). A related notion
is wide-range regret (Lehrer 2003; Blum and Mansour 2007;
Mohri and Yang 2017).

Correlated equilibrium. There is a tight connection be-
tween swap regret and correlated equilibrium (Aumann
1974). For a general-sum game with any finite number of
players, if every player has zero internal regret playing a dis-
tribution Q over the joint action space then it is a correlated
equilibrium. In a repeated game setting, if each player uses
an action selection algorithm whose swap regret of this form
is sublinear in T , then the empirical distribution of the play-
ers actions converges to a correlated equilibrium (Hart and
Mas-Colell 2000), and in fact, the benefit of a deviation from
a correlated equilibrium is bounded exactly by R/T , where
R is the largest swap regret of any of the players.

Data-driven algorithm design. (Gupta and Roughgarden
2016) define a formal learning framework for selecting al-
gorithms from a family of heuristics or setting hyperpa-
rameters. It has been successfully applied to parameter tun-
ing several combinatorial problems like integer program-
ming, clustering and low-rank approximation(Balcan, Dick,
and Vitercik 2018; Bartlett, Indyk, and Wagner 2022). Prior
work on online data-driven parameter selection has focused
on external regret against a fixed or dynamic choice of ac-
tions (Balcan, Dick, and Vitercik 2018; Sharma, Balcan, and
Dick 2020). Our work obtains first internal regret bounds of
online parameter configuration.

Summary of Results
We define internal regret on a continuum as a limit. We ob-
tain no internal regret algorithms in the presence of non-
convex loss functions. Specifically,

• In the full information setting, for the case of L-Lipschitz
loss functions, we obtain an algorithm which achieves re-
gret O(

√
dT logRLT ), where d is the dimension of the

Euclidean action space and R is the diameter of action
space. Further, for the case of one-dimensional piece-
wise constant functions, we obtain an algorithm which
achieves regret O(

√
T logKT ) under a mild smoothness

assumption, where K is a bound on the number of pieces
in each loss function. We show that our bounds are near-
optimal by providing a Ω(

√
T ) lower bound on the inter-

nal regret for our loss functions.
• We extend our results to partial feedback setting, and

again obtain sublinear regret Õ(T
d+1
d+2 ), where the soft-O

notation suppresses factors other than T as well as loga-
rithmic terms in T .

• We provide applications of our results to designing
strategies for achieving correlated equilibrium in multi-
player repeated games, and to data-driven hyperparame-
ter tuning via concrete instantiation for a combinatorial
parameter selection problem.

Notation and Terminology
We assume an adversarial online learning model with a con-
tinuum of available actions given by a closed and compact
set C. At each time step t, an online learner (or algorithm)
A selects a distribution pt over the action space C. After
that, the environment (or adversary) selects a loss function
lt : C → [0, 1], where t lt(a) is the loss of the action a ∈ C at
time t. In the full information setting, the online algorithm
receives the complete loss function lt and experiences a loss
lAt =

∫
C lt(a)pt(a)da. In the partial information (or bandit)

setting, the online algorithm receives loss lt(at), where at is
distributed according to pt. The loss of the action a during
the first T time steps is LT (a) =

∑T
t=1 lt(a), and the loss

of learner A is LA
T =

∑T
t=1 l

A
t . The goal for the external

regret setting is to design an online algorithm that will be
close to performance of the best fixed action, that is, to have
a loss close to L∗

T = mina∈C LT (a). Formally, one wants to
minimize external regret given by RT = LA

T − L∗
T .

We define the internal regret on continuous action spaces
as follows. We assume the action space C defines a metric
space over some norm ||.||. For ϵ > 0 and actions a, b ∈ C,
let p(a,b,ϵ)t be the distribution on C formed by removing the
probability mass in some ball B(a, ϵ) and adding it uni-
formly to points in B(b, ϵ), i.e.

p
(a,b,ϵ)
t (x)=


0 ifx ∈B(a, ϵ), a /∈B(b, ϵ),

pt(x)+pa→b
t (x) if x∈B(b, ϵ), a /∈B(b, ϵ),

pt(x) otherwise,

where pa→b
t (x) :=

∫
B(a,ϵ)

pt(y)dy

vol(B(b,ϵ)) and vol(B(b, ϵ)) =∫
B(b,ϵ)

dy. For technical simplicity, we define p
(a,b,ϵ)
t (x) =

pt(x) for all x ∈ C if a ∈ B(b, ϵ) (i.e. swapping with
‘almost’ the same action does not change the distribution).
Then the internal regret is defined as

Ri
T = max

a,b∈C
lim
ϵ→0

∑T
t=1

∫
C(pt(x)− p

(a,b,ϵ)
t (x))lt(x)dx

ϵ
,

where lt : C → [0, 1] is the loss function at time t. We
illustrate this definition with an example.
Lemma 1. If pt is a discrete distribution over a finite subset
C′ ⊂ C for all t ∈ [T ], then

Ri
T = max

b∈C
R̂i

T (C′ ∪ {b}),

where R̂i
T (A) denotes the standard notion of internal regret

over the finite experts in A (Blum and Mansour 2011).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14920



Proof. Since C′ is finite, we have ϵ0 = 1
2 mina ̸=b;a,b∈C′ ||a−

b|| > 0. Clearly, for any a ∈ C′ and 0 < ϵ < ϵ0, the
ball B(a, ϵ) does not contain b ∈ C′ for b ̸= a. Thus,∫
B(a,ϵ)

pt(y)dy = pt(a) if a ∈ C′.
As above, let 0 < ϵ < ϵ0. For a, b ∈ C, if a ∈ B(b, ϵ)

we have Ri
T = 0 by definition. We assume a /∈ B(b, ϵ). If

B(a, ϵ) ∩ C′ = {}, it is easy to see that p(a,b,ϵ)t (x) = pt(x)
for all x ∈ C and again Ri

T = 0 (since pt is assumed to
have no mass outside of C′). But this will hold for suffi-
ciently small ϵ unless a ∈ C′. In this case, intuitively, the
probability mass on a is uniformly redistributed to points in
B(b, ϵ) with the mass effectively concentrating at b as ϵ → 0.
Specifically, the limit corresponds to a discrete distribution
over C′∪{b} and the result follows from the definitions.

We use [n] to denote the set {1, . . . , n}. I[·] will be used to
denote the 0-1 valued indicator function.

A Potential Function Analysis
In this section, we will describe the potential function based
approach due to Cesa-Bianchi and Lugosi (2003) for finite
experts. The problem is parametrized by a decision space X ,
by an outcome space Y , and by a convex and twice differ-
entiable potential function ϕ : RN → R+. At each step
t = 1, 2, . . . , the current state is represented by a point
Rt−1 ∈ RN , where R0 = 0N . The decision maker observes
a vector-valued drift function rt : X ×Y → RN and selects
an element xt from the decision space X . In return, an out-
come yt ∈ Y is received, and the new state of the problem
is the “drifted point” Rt = Rt−1 + rt(xt, yt). The goal of
the decision maker is to minimize the potential ϕ(Rt) for a
given t (which might be known or unknown to the decision
maker).

To illustrate the above abstraction, we consider the stan-
dard online learning with external regret and express it in
the above framework. Here, the decision maker is a learner
whose goal is to forecast a hidden sequence y1, y2, . . . of el-
ements in the outcome space Y . At each time t, the learner
computes its guess xt ∈ X for the next outcome yt. This
guess is based on the advice f1,t, . . . , fN,t ∈ X of N ex-
perts from a fixed pool. The guesses of the learner and the
experts are then individually scored using a loss function
l : X × Y → R. The learner’s goal is to keep as small
as possible the cumulative regret with respect to each ex-
pert, which can be easily modeled within the above abstract
decision problem by associating a coordinate to each expert
and by defining the components ri,t of the drift function rt
by ri,t(xt, yt) = l(xt, yt) − l(fi,t, yt) for i = 1, ..., N . The
role of the potential function in this framework is to provide
a generalized way to measure the size (or distance from the
origin) of the cumulative regret which is measured by the
state Rt. To obtain the general results, two assumptions are
needed on the potential function

Assumption 1. (Generalized Blackwell’s condition). At
each time t, a decision xt ∈ X exists such that

sup
yt∈Y

∇(Rt−1) · rt(xt, yt) ≤ 0

Strategies satisfying the above condition tend to keep the
point Rt as close as possible to the minimum of the potential
by forcing the drift vector to point away from the gradient of
the current potential. This gradient descent approach to se-
quential decision problems is not new, and the prominent
eponymous example of a decision strategy of this type is the
one used by Blackwell to prove his celebrated approachabil-
ity theorem (Blackwell 1956), generalizing von Neumann’s
celebrated minimax theorem to vector-valued payoffs. We
also need a second assumption about additivity of the poten-
tial function.

Assumption 2. The potential ϕ can be written as ϕ(u) =∑
i ϕi(ui) for all u = (u1, ..., uN ) ∈ RN , where ϕi : R →

R+ is a nonnegative function of one variable. Typically, ϕi

will be monotonically increasing and convex on R.

Under these assumptions, the following general theorem is
given by (Cesa-Bianchi and Lugosi 2003).

Theorem 2. Let ϕ be a twice differentiable additive po-
tential function and let r1, r2, ..., rN ∈ RN be such that
∇ϕ(Rt−1) · rt ≤ 0 for all t ≥ 1, where Rt = r1 + · · ·+ rt.
Let f : R+ → R+ be an increasing, concave, and twice dif-
ferentiable auxiliary function such that, for all t = 1, 2, ...,

sup
u∈RN

f(ϕ(u))

N∑
i=1

ϕ′′
i (ui)r

2
i,t ≤ C(rt)

for some non-negative function C : RN → R+. Then, for
all t = 1, 2, ...,

f(ϕ(Rt)) ≤ f(ϕ(0)) +
1

2

t∑
s=1

C(rs).

In order to apply the above theorem, one must choose a po-
tential function ϕi and functions f and C. For minimizing
the internal regret, one choice is to have the exponential po-
tential function ϕi(u) = eηu, by choosing f(x) = 1

η lnx

and setting C(rt) = ηmaxi r
2
i,t. (Cesa-Bianchi and Lu-

gosi 2003) (Theorem 3) show the existence of a randomized
learner which satisfies the Blackwell condition and, by set-
ting the step size parameter η =

√
4 lnN/T they conclude

that the internal regret Ri
T satisfies Ri

T ≤ 2
√
T lnN.

No Internal Regret on a Continuum
We first discuss challenges in extending known approaches
for finite experts, i.e. if action space C = {1, 2, . . . , N} in-
stead of a closed compact set. The key idea of the reduc-
tion based approach of (Blum and Mansour 2007) is to de-
sign a meta-algorithm which runs N ‘base’ external regret
algorithms and has a meta-distribution p over the distribu-
tions over actions Q output by the base algorithms, such that
p can be computed as the stationary distribution of a finite
Markov chain corresponding to matrix Q. While approaches
are known to approximate the stationary distribution of a
countably infinite Markov chain (Seneta 1980), it is not clear
if this approach could be extended to the uncountably infi-
nite setting that we consider.
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Moreover the regret bounds obtained in (Blum and Man-
sour 2007) correspond to the stronger notion of swap regret,
but obtain a weaker regret bound which is polynomial in
N . This is reasonable for small N , but handling the case of
large N efficiently is noted as an open problem in (Blum and
Mansour 2011). The above approach of (Cesa-Bianchi and
Lugosi 2003) provides an computationally inefficient alter-
native, and bounds the weaker notion of internal regret.

Lipschitz-continuous Loss Functions
We first consider the case when the loss function lt : C →
[0, 1] is a L-Lipschitz continuous function. We will assume
that the action space C ⊂ Rd is closed compact and Eu-
clidean. The key idea is to discretize the action space, i.e.
obtain a cover for it using sufficiently many experts such
that any point in the action space is ϵ-close to some point
in the cover. We then apply the results of (Cesa-Bianchi and
Lugosi 2003) to obtain algorithms with low internal regret
over this large but finite cover. To formalize things, we will
use the following well-known discretization lemma.

Lemma 3. Let C ⊆ Rd be contained in a ball of radius
R. Then the greedy procedure of adding points until there
is no longer a point more than ϵ away from all points in
the collection obtains an ϵ-cover Cϵ ⊂ C such that |Cϵ| ≤
(3R/ϵ)d and for every a ∈ C there exists a′ ∈ Cϵ such that
||a− a′||2 ≤ ϵ.

Proof. The greedy procedure terminates after adding at
most (3R/ϵ)d points by a standard covering argument.

Now our main strategy is to apply the algorithm of (Cesa-
Bianchi and Lugosi 2003) over an ϵ-cover Cϵ ⊂ C for the
action space C. Crucially the logarithmic dependence on the
regret bound allows us to choose sufficiently small ϵ (even
as small as 1/T ) so as to not incur significant approximation
regret for the Lipschitz function. The algorithm, called Dis-
cretized Exponential Potential Minimizer (DEPoM) is for-
mally as Algorithm 1.

Our main result in this section is the following theorem
about the performance of Algorithm 1.

Theorem 4. Consider an online learner over action space
C ⊂ Rd such that C is compact, closed and contained in a
ball of radius R. If the learner is faced with a sequence of
L-Lipschitz losses l1, . . . , lT : C → [0, 1] and the learner

uses Algorithm 1 with η =
√

4d
T ln 3RLT , ϕ(x) = eηx and

with ϵ = 1
LT , then the expected internal regret of the learner

is O
(√

dT ln(RLT )
)
.

Proof. By Lemma 3, the greedy procedure of Algorithm 1
uses a ϵ-cover Cϵ with |Cϵ| ≤ (3R/ϵ)d. Now by Corollary
8 of (Cesa-Bianchi and Lugosi 2003), the internal regret of
Algorithm 1 when substituting the actions over the ϵ-cover is
at most 2

√
T lnN . Substituting N ≤ (3R/ϵ)d, we get that

the internal regret w.r.t. to Cϵ is at most

2
√
T ln ((3R/ϵ)d) = O

(√
dT ln

R

ϵ

)
.

Algorithm 1: DEPOM(η, ϵ)

1: Input: step size η ∈ [0, 1], discretization parameter ϵ.
2: Discretize the parameter space C to get Cϵ with |Cϵ| ≤

(3R/ϵ)d as follows.
3: Select any point c ∈ C and add to Cϵ.
4: while There is a point c′ ∈ C s.t. minc∈Cϵ ||c − c′|| > ϵ

do
5: Add c′ to c
6: for t = 1, . . . , T do
7: Set pt as the solution of the linear system (in N =

|Cϵ| variables)

pk,t
∑
(i,j)

I[j = k]∇(i,j)ϕ(R(i,j),t−1) =∑
l

pl,t
∑
(i,j)

I[i = k]I[j = l]∇(i,j)ϕ(R(i,j),t−1)

where indices (i, j) ∈ Cϵ × Cϵ.
8: Play according to pt and suffer loss lt(·).
9: Compute drift r(i,j),t = pj,t(lt(j)− lt(i)).

10: Update R(i,j),t = R(i,j),t−1 + r(i,j),t.

By L-Lipschitzness of the loss function, if the substitution
is made using some point c∗ in C instead of points in Cϵ, the
learner may incur an additional regret of ϵL w.r.t. the point
in Cϵ at most ϵ away from c∗ (in any round t). Summing up
over all rounds, we get that the internal regret of Algorithm
1 w.r.t. points in C is at most

Ri
T ≤ O

(√
dT ln

R

ϵ

)
+ LTϵ.

Plugging in ϵ = 1
LT completes the proof.

Remark 1. Note that for the above discretization teach-
nique to yield good regret it was crucial to use an algo-
rithm on finite experts with regret sub-logarithmic in N ,
the number of experts. For if the regret was only say

√
N ,

or polynomial in N , (e.g. for the swap regret bound in
(Blum and Mansour 2007)), substituting ϵ = 1

LT no longer
works. For an appropriate choice of ϵ their approach yields
O(T

d+1
d+2 poly(d, log T )) regret, which has much slower con-

vergence for any d.

Dispersed Non-Lipschitz Loss Functions
We will now go beyond the case of Lipschitz-continuous
functions. If we make no further assumption on the loss
function, then linear swap regret is unavoidable. This fol-
lows from a well known ‘halving’ adversary which implies
a Ω(T ) lower bound on the external regret using piecewise
constant functions. The conclusion follows by recalling that
swap regret is always at least as large as the external re-
gret. An interesting question is whether the lower bound
also extends to internal regret (i.e. when only one action
is swapped/rewired by the modification rules). In fact, for
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swap regret a general lower bound of Ω(
√
NT logN) for fi-

nite experts was recently developed by (Ito 2020). More spe-
cialized lower bounds for internal regret (which is a weaker
version of swap regret) remains an open question even for
the finite experts regime.

To circumvent the typical ‘halving adversaries’ in lower
bounds, (Balcan, Dick, and Vitercik 2018) present a neces-
sary and sufficient condition called dispersion for learning
piecewise-Lipschitz functions. Roughly speaking, this cor-
responds to the assumptions that too many discontinuities
(or violations of L-Lipschitzness) of the non-Lipschitz loss
functions are not allowed to concentrate in any region of the
action domain. Formally, this is given as

Definition 1. Dispersion (Balcan, Dick, and Vitercik 2018).
The sequence of random loss functions l1, . . . , lT is β-
dispersed for the Lipschitz constant L if, for all T and for all
ϵ ≥ T−β , we have that, in expectation, at most Õ(ϵT ) func-
tions (the soft-O notation suppresses dependence on quanti-
ties beside ϵ, T and β, as well as logarithmic terms) are not
L-Lipschitz for any pair of points at distance ϵ in the domain
C. That is, for all T and for all ϵ ≥ T−β ,

E

 max
ρ,ρ′∈C

||ρ−ρ′||2≤ϵ

∣∣{t ∈ [T ] | lt(ρ)− lt(ρ
′) > L||ρ− ρ′||2}

∣∣


≤ Õ(ϵT ).

For simplicity we will focus on piecewise constant functions
in one dimension with a bounded number of discontinuities
in any round. Suppose there are at most K discontinuities
in any piecewise constant lt(·), and the probability that a
dicontinuity is located in any interval of width ϵ, pϵ ≤ κϵ
for some κ > 0 and for any ϵ ≥ 0 then the above defini-
tion may be readily verified. Indeed, in any interval of width
ϵ ≥ T−β ≥ 0, the expected number of discontinuities is
O(κϵ) in any round, or O(κϵT ) across T rounds by linear-
ity of expectation. Now by a VC-dimension based argument
(see e.g. Lemma 1 of (Balcan, Dick, and Vitercik 2018)),
the maximum number of discontinuities in an ϵ-interval is
at most O(κϵT ) + O(

√
T log 1

δ ) with probability at least
1 − δ. Or the expected maximum number of discontinuities

is O
(
κϵT +

√
T log 1

δ + δT
)

. Choose δ = 1
T to conclude

that Definition 1 is satisfied for β = 1
2 . We formalize this as

the following lemma.

Lemma 5. Let l1, . . . , lT : C → [0, 1] be a sequence of
piecewise constant functions with C ⊂ R and the disconti-
nuities of the loss functions have a κ-bounded distribution1.
Then the sequence of loss functions is 1/2-dispersed in the
sense of Definition 1.

Now the key insight is that for the one-dimensional
piecewise-constant case with at most K discontinuities in
any function lt, we can effectively reduce the problem to

1A distribution is said to be κ-bounded if the corresponding
probability density f(x) satisfies, supx f(x) ≤ κ. For example,
the standard normal distribution N (µ, σ) is 1√

2πσ
-bounded.

Algorithm 2: CEPOM(η)

1: Input: step size η ∈ [0, 1], experts schedule Ct ⊂ 2C .
2: Initialize p1 as the uniform distribution over C1.
3: Play a1 according to p1.
4: for t = 2, . . . , T do
5: Set pt as the solution of the linear system (in N =

O(KT ) variables)

pk,t
∑
(i,j)

I[j = k]∇(i,j)ϕ(R(i,j),t−1) =∑
l

pl,t
∑
(i,j)

I[i = k]I[j = l]∇(i,j)ϕ(R(i,j),t−1)

where indices (i, j) ∈ Ct × Ct.
6: Play according to pt and suffer loss lt(·).
7: Set r(i,j),t = pj,t(lt(j)/wt(j) − lt(i)/wt(j)), where

wt(k) is the width of the piece k in lT .
8: Update R(i,j),t = R(i,j),t−1 + r(i,j),t.

one with N = O(KT ) experts, one corresponding to each
piece in the (also piecewise-constant) total loss function
lT =

∑T
t=1 lt. The main modification needed in Algorithm

1 is in step 10, the losses used in the drift function need to
scaled by the width of the constant-loss ‘piece’ correspond-
ing to each expert.
Our main theorem in this section gives an upper bound on
the internal regret of Continuous Exponential Potential Min-
imizer (CEPoM, Algorithm 2).

Theorem 6. Consider an online learner over action space
C ⊂ R such that C is compact and closed. If the learner is
faced with a sequence of L-Lipschitz losses l1, . . . , lT : C →
[0, 1] which are all piecewise-constant with at most K pieces
and the discontinuities are κ-bounded, and the learner uses
Algorithm 2 with η =

√
4
T lnKT and ϕ(x) = eηx, then

there exists an experts schedule Ct for which the expected
internal regret of the learner is O

(√
T ln(KT )

)
.

Remark 2. A computationally efficient implementation in
per iteration time O(K log(KT )) for sampling can be
achieved using the interval-tree based algorithm of (Cohen-
Addad and Kanade 2017).

Remark 3. Extension beyond the one-dimensional piece-
wise constant case is possible by using techniques from (Bal-
can, Dick, and Vitercik 2018). Piecewise constant case is the
simplest w.r.t. analysis as well as computationally efficient
implementation.

Finally, we provide a lower bound that shows our results are
tight up to logarithmic factors.

Theorem 7. Consider an online learner over compact and
closed action space C ⊂ R. There exists a sequence of ran-
dom piecewise-constant losses l1, . . . , lT : C → [0, 1] such
that any online internal regret of the learner has expected
internal regret at least Ω

(√
T
)

on the sequence.
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Bandit Feedback
For a continuous action space C, the loss function over the
entire space may be difficult to even represent, let alone
compute (or observe) as a learner. Therefore it is more realis-
tic to assume that the learner only observes partial feedback,
for example only the loss value lt(at) corresponding to the
played action at ∈ C instead of the entire function lt(·).

The typical approach to minimize external regret in the
presence of partial feedback is to estimate the losses, form a
probability distribution over the experts based on these esti-
mates, and add some uniform exploration to this distribution
(in order to ensure reasonable loss estimates for different ex-
perts). Our approach to minimize the internal regret uses the
same basic ingredients, but additionally adjusts its probabil-
ity distribution to satisfy a fixed point constraint (similar to
the linear system in the full information algorithm above).

In more detail, at each round t, the learner computes a
probability distribution pt over some subsets of the domain,
given by a schedule Ct. We use unbiased loss estimates

l̂t(a) =
lt(a)I[a ∈ ct]

pt(ct)

where ct ⊆ C corresponds to the set from experts schedule
Ct at round t, which was sampled according to pt. Moreover,
for each ci, cj ∈ Ct define the cumulative loss estimate

L
(i,j)
t =

t∑
s=1

∑
c∈Cs

p(i,j)s (c)

∫
a∈c

l̂s(a)da

where p
(i,j)
s (c) is the same as ps(c) except p

(i,j)
s (ci) =

0, p
(i,j)
s (cj) = ps(ci) + ps(cj). For any ct,k ∈ Ct, we define

ω(ct,k) as the probability mass of the uniform distribution
on C over ct,k (as before). The full algorithm is presented
as Algorithm 3. As before, we instantiate our algorithm for
the continuous Lipschitz setting and the dispersed piecewise
constant setting, and obtain respective regret bounds.
Theorem 8. Consider an online learner over action space
C ⊂ Rd such that C is compact, closed and contained in a
ball of radius R. Given a sequence of losses l1, . . . , lT : C →
[0, 1] with bandit feedback, Algorithm 3 with Ct = Cϵ, ϵ =(

(3R)d

L2T

) 1
d+2

, ηt =
√

2d
3t (

ϵ
3R )d ln(3R/ϵ) and γt = ( 3Rϵ )dηt,

Algorithm 3: INTERNAL EXP3(ηt, γt)

1: Input: step-size schedule ηt ∈ [0, 1], exploration sched-
ule γt ∈ [0, 1], experts schedule Ct ⊂ 2C .

2: Initialize p1 as the uniform distribution over C1.
3: Play a1 according to p1.
4: for t = 2, . . . , T do

5: Set q(i,j)t =
exp(−ηtL

(i,j)
t−1 )∑

k ̸=l exp(−ηtL
(k,l)
t−1 )

.

6: Set p̂t as the solution of the linear system (in |Ct| vari-
ables) p̂t,k =

∑
i̸=j q

(i,j)
t p̂

(i,j)
t,k , where (i, j, k) ∈ C3

t .
7: Set pt,k = (1− γt)p̂t,k + γt · ω(ct,k).
8: Play according to pt and suffer loss lt(·).

achieves an expected internal regret of

O
(
T

d+1
d+2 (

√
dRd + L)polylog(T )

)
.

Proof Sketch. We use discretization to cover the parameter
space. In this case, the regret has unavoidable polynomial
dependence on the number of experts. Therefore, we need to
choose a coarser cover with ϵ ∼ T

−1
d+2 instead of ϵ ∼ T−1

in order to get a sublinear regret bound. □

For the one-dimensional piecewise-constant loss setting
with at most K pieces in any lt, we use a fixed sched-
ule Ct unlike the full information setting and obtain
O(T 2/3poly(K, lnT )) expected regret. The key difference
is that we do not observe the actual intervals where the loss is
constant. We use uniform intervals of carefully tuned width
to ensure that discontinuities of the losses do not fall within
our intervals with high probability, without blowing up the
estimated losses l̂t (which vary inversely with probability
mass inside the interval).
Theorem 9. Consider an online learner over action space
C ⊂ R such that C is compact and closed. Given a sequence
of losses l1, . . . , lT : C → [0, 1] which are all piecewise-
constant with at most K pieces, there exists a parameter set-
ting ηt, γt, Ct for Algorithm 3 such that the expected internal
regret of the learner is O

(
T 2/3poly(K, lnT )

)
.

We conclude this section with a couple remarks.
Remark 4. Our results can be adapted to obtain high prob-
ability bounds on the internal regret, using martingale in-
equalities along the lines of (Auer et al. 2002).
Remark 5. We have worked with the d-dimensional Eu-
clidean space and our loss sequence may be adversarial (up
to dispersion constraints). In contrast, (Kleinberg, Slivkins,
and Upfal 2008) consider (external) regret bounds for a gen-
eral metric space but for stochastic losses and obtain asymp-
totically tight results that depend on the so-called zooming
dimension of the problem.

Applications
We discuss below two main applications of our results.

Correlated Equilibria
The relationship between correlated equilibria and internal
regretis well known for games with finite action spaces (Fos-
ter and Vohra 1999; Blum and Mansour 2011). Here we will
define and establish the connection in the more general con-
tinuous action space setting.
Definition 2. A game G = ⟨M, (Ai), (si)⟩ has a finite set
M of m players. Player i has a continuous set Ai ⊆ Ci of
actions and a loss function si : Ai× (×j ̸=iAj) → [0, 1] that
maps the action of player i for any combination of actions
of the other players to a bounded real number.
The goal of each player is to minimize its loss. A correlated
equilibrium is a distribution Q over the joint action space
A1 × · · · × AM with the following property. If a vector of
actions ā is drawn from the distribution Q, player i is given
action ai from ā (but no information regarding other players’
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actions). The probability distribution Q is a correlated equi-
librium if, for each player i, it is their best response to play
the suggested action provided that the other players do not
deviate. We now formally define an ϵ-correlated equilibrium.

Definition 3. A joint probability distribution Q over joint
action space ×Ai is an ϵ-correlated equilibrium w.r.t. de-
viations (Fk)k∈[M ] if for every player i and for any func-
tion F : Ai → Ai, F ∈ Fi, we have Ea∼Q[si(ai, a−i)] ≤
Ea∼Q[si(F (ai), a−i)] + ϵ, where a−i denotes the joint ac-
tions of the other players besides player i.

In other words, P is an ϵ-correlated equilibrium if the ex-
pected incentive to deviate is at most ϵ for every player. By
choosing the class Fk to one that allows swaps of single
actions in Ak, we obtain a direct connection with internal
regret. The following theorem relates the empirical distri-
bution of the actions performed by each player, their swap
regret, and the distance from a correlated equilibrium (gen-
eralizes finite action space version of Foster and Vohra 1998;
Hart and Mas-Colell 2000).

Theorem 10. Let G = ⟨M, (Ai), (si)⟩ be a game and as-
sume that for T time steps each player follows a strategy
that has internal regret of at most RT . The empirical dis-
tribution Q̂ of the joint actions played by the players is an
(RT /T )-correlated equilibrium, and the loss of each player
equals its expected loss on Q̂.

The above theorem states that the payoff for each player is
their payoff in some approximate correlated equilibrium. In
addition, the theorem relates the internal regret to the dis-
tance from a correlated equilibrium. Note that if the average
internal regret vanishes then the game converges in the limit
to the set of correlated equilibria. Our internal regret algo-
rithms therefore give strategies to achieve correlated equi-
librium in a game with L-Lipschitz (Azrieli and Shmaya
2013; Deligkas, Fearnley, and Spirakis 2020) or piecewise-
constant losses (for example item-pricing and auction design
Morgenstern and Roughgarden 2016; Syrgkanis 2017; Bal-
can, Sandholm, and Vitercik 2018).

Data-driven Hyperparameter Tuning
Data-driven algorithm selection or parameter tuning is an
approach to tune continuous hyperparameters of an algo-
rithm, by learning over multiple input instances of the prob-
lem (Gupta and Roughgarden 2016). The approach has
found impactful application to several fundamental prob-
lems, including semi-supervised learning, clustering, linear
regression, adversarial robustness and simulated annealing
(Balcan and Sharma 2021; Balcan et al. 2017, 2022, 2023;
Balcan, Nguyen, and Sharma 2023; Blum, Dan, and Sed-
dighin 2021). The loss-functions (as a function of the param-
eter) for combinatorial optimization algorithms like cluster-
ing and greedy knapsack are typically piecewise constant
as algorithms make different (discrete) choices across the
breakpoints (Balcan 2020). Prior work has shown bounded
external and tracking regret for online hyperparameter tun-
ing for these algorithms, also assuming the dispersion con-
dition is satisfied (Balcan, Dick, and Vitercik 2018; Sharma,

Balcan, and Dick 2020). Our work achieves vanishing inter-
nal regret for this problem under the same assumptions.

Formally, for a given algorithmic problem (say cluster-
ing, or knapsack), let Π denote the set of problem instances
of interest. We also fix a (potentially infinite) family of algo-
rithms A, parameterized by a set P ⊆ Rd. Let Aρ denote the
algorithm in the family A parameterized by ρ ∈ P . The per-
formance of any algorithm on any problem instance is given
by a utility function u : Π × P → [0, H], i.e. u(x, ρ) mea-
sures the performance on problem instance x ∈ Π of algo-
rithm Aρ ∈ A. The utility of a fixed algorithm Aρ from the
family is given by uρ : Π → [0, H], with uρ(x) = u(x, ρ).
In our online learning setup, the learner receives the dual
class function ux : P → [0, H], with ux(ρ) = uρ(x), which
measure the performance of all algorithms of the family for
a fixed problem instance x ∈ Π (in particular, the dual func-
tion for problem instance xt in round t). In the bandit feed-
back setting, one only receives ux(ρt) for the parameter ρt
played by the learner. For many parameterized algorithms,
the dual class functions are piecewise constant (Balcan
2020). We instantiate our results for the knapsack problem.

Greedy Knapsack. Knapsack is a well-known NP-
complete problem. We are given a knapsack with capacity
cap and items i ∈ [m] with sizes wi and values vi. The
goal is to select a subset S of items to add to the knapsack
such that

∑
i∈S wi ≤ cap while maximizing the total value∑

i∈S vi of selected items. The greedy heuristic to add items
in decreasing order of vi/wi gives a 2-approximation. We
consider a generalization to use vi/w

ρ
i proposed by (Gupta

and Roughgarden 2016) for ρ ∈ [0, 10]. For example, for the
value-weight pairs {(0.99, 1), (0.99, 1), (1.01, 1.01)} and
capacity cap = 2 the classic heuristic ρ = 1 gives value
1.01 but using ρ = 3 gives the optimal value 1.98. We can
tune the parameter ρ with vanishing internal regret.
Theorem 11. Consider instances of the knapsack problem
given by bounded weights wt ∈ [1, C] and independent val-
ues vt ∈ [0, 1] drawn from some bounded-density distribu-
tion (which may change with t) for t ∈ [T ]. Then there is
an algorithm for learning the parameter ρ for the greedy
heuristic family above with expected internal regret Õ(

√
T ).

Conclusion
We provide a novel extension of the notion of internal regret
on continuous action spaces, and algorithms that achieve no
regret guarantees in full and bandit information settings. In-
ternal regret based strategies lead to correlated equilibria,
which we expect to be impactful in automated mechanism
design, and data-driven algorithm design more broadly. Our
research raises several interesting questions for future re-
search including extension to other notions of regret (e.g.
swap/transductive/dynamic regret), lower bounds in the ban-
dit setting and computational efficiency for large action
space dimension d.
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