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Abstract

The learning dynamics of deep neural networks are not well un-
derstood. The information bottleneck (IB) theory proclaimed
separate fitting and compression phases. But they have since
been heavily debated. We comprehensively analyze the learn-
ing dynamics by investigating a layer’s reconstruction ability
of the input and prediction performance based on the evolution
of parameters during training. We empirically show the exis-
tence of three phases using common datasets and architectures
such as ResNet and VGG: (i) near constant reconstruction loss,
(ii) decrease, and (iii) increase. We also derive an empirically
grounded data model and prove the existence of phases for
single-layer networks. Technically, our approach leverages
classical complexity analysis. It differs from IB by relying on
measuring reconstruction loss rather than information theo-
retic measures to relate information of intermediate layers and
inputs. Our work implies a new best practice for transfer learn-
ing: We show empirically that the pre-training of a classifier
should stop well before its performance is optimal.

Introduction
Deep neural networks are arguably the key driver of the
current boom in artificial intelligence(AI) in academia and in-
dustry. They achieve superior performance in a variety of do-
mains. Still, they suffer from poor understanding, leading to
an entire branch of research, i.e., explainability(XAI) (Meske
et al. 2022), and to widespread debates on trust in AI within
society. Thus, enhancing our understanding of how deep neu-
ral networks work is arguably one of key problems in ongo-
ing machine learning research (Poggio, Banburski, and Liao
2020). Unfortunately, the relatively few theoretical findings
and reasonings are often subject to rich controversy.

One debate surrounds the core of machine learning: learn-
ing behavior. Shwartz-Ziv and Tishby (2017) leveraged
the information bottleneck(IB) framework to investigate the
learning dynamics of neural networks. IB relies on measuring
mutual information between activations of a hidden layer and
the input as well as the output. A key qualitative, experimental
finding was the existence of a fitting and compression phase
during the training process. Compression is conjectured a
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reason for good generalization performance. It is frequently
discussed in the literature (Geiger 2021; Jakubovitz, Giryes,
and Rodrigues 2019). Such a finding can be considered a
breakthrough in understanding deep neural networks. How-
ever, its validity has been disputed, i.e., Saxe et al. (2019)
claimed that statements by Shwartz-Ziv and Tishby (2017)
do not generalize to common activation functions. Today, the
debate is still ongoing (Lorenzen, Igel, and Nielsen 2021). A
key challenge is approximating the IB. This, makes a rigorous
mathematical treatment very hard – even empirical analysis
is non-trivial.

Figure 1: Normalized accuracy and reconstruction loss for a
linear classifier and the FashionMNIST dataset

In this work, we study the learning behavior with a simi-
lar focus, i.e., classification and reconstruction capability of
layers. We propose a different lens for investigation rooted in
classical complexity analysis that leads to more precise state-
ments. We perform a rigorous analysis of a linear classifier
and a data model built on empirical evidence. First, to the
best of our knowledge prior work relies on general statements
that lack mathematical proof. Instead, we show bounds on the
duration of phases, also highlighting interplays among data
characteristics, e.g., between the number of samples, the num-
ber of classes and the number of input attributes. Second, we
utilize different measures from IB. IB measures information
of a layer with respect to input and output (Shwartz-Ziv and
Tishby 2017). We measure (i) accuracy, e.g., how well the
network classifies samples, and (ii) the reconstruction error
of the input given the layer by utilizing a decoder.Third, we
provide a data model and prove for single-layer networks, i.e.,
linear networks, that it can cause the three learning phases,
i.e., the reconstruction error is likely to decrease early in
training after a phase of near constant behavior and increases
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later during training.
As practical implication, we show that pre-training of clas-

sifiers that are later fine-tuned should stop well before the
performance is optimal for the pre-training task. That is, we
argue and show that it is decisive how much information on
the original dataset is kept.

The paper begins with an empirical analysis showing that
the alleged phases can be observed for multiple classifiers,
datasets and layers followed by a theoretical analysis drawing
on our empirical findings to model the problem and rigor-
ously analyze a linear multi-class model. Finally, we elabo-
rate on transfer learning, state related work, discuss our work,
and conclude.

Empirical Analysis
For a model 𝑀 = (𝐿0, 𝐿1, ...) consisting of a sequence of
layers 𝐿𝑖 , we investigate the reconstruction loss of inputs of
a decoder 𝐷𝐸 (𝑡) trained for each iteration 𝑡. The decoder is
trained to output a reconstruction 𝑥 from a layer activation
𝐿𝑖 (𝑥), i.e., �̂� = 𝐷𝐸 (𝐿𝑖 (𝑥)). The reconstruction error 𝑅𝑒𝑐 (𝑡)
is | |𝑥 − 𝑥 | |2. We compare this error against the model’s accu-
racy 𝐴𝑐𝑐 (𝑡) . (In the full version, we also discuss accuracy of
a linear classifier 𝐶𝐿 trained on layer activations 𝐿𝑖 .)

Datasets, Networks and Setup
As networks 𝑀 we used VGG-11 (Simonyan and Zisserman
2014), Resnet-10 (He et al. 2016) and a fully connected
network, i.e., we employed networks 𝐹0, which equals the
theoretical setup, i.e., one dense layer followed by a softmax
activation. After each hidden layer we applied the ReLU
activation and batch-normalization. We used a fixed learning
rate of 0.002 and stochastic gradient descent with batches of
size 128 training for 256 epochs.

We computed evaluation metrics 𝐴𝑐𝑐 (𝑡) and 𝑅𝑒𝑐 (𝑡) at it-
erations 2𝑖 . For the decoder 𝐷𝐸 we used the same decoder
architecture as in (Schneider and Vlachos 2021), where a
decoder from a (standard) auto-encoder was used. For each
computation of the metrics, we trained the decoder for 30
epochs using the Adam optimizer with a learning rate of
0.0003.We reconstructed from the network outputs, i.e., the
last dense layer (index -1), the second last layer (index -2),
i.e., the one prior to the (last) dense layer and layer with in-
dex -3, which indicates using outputs of the second last conv
layer for VGG and the second last block for ResNet.1 We
used CIFAR-10/100 (Krizhevsky and Hinton 2009), Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), and MNIST (Deng
2012), all scaled to 32x32, available under the MIT (first 3
datasets) and GNU 3.0 license. We trained each model 𝑀
five times. All figures show standard deviations. We report
normalized metrics to better compare 𝐴𝑐𝑐 (𝑡) and 𝑅𝑒𝑐 (𝑡) .

Observations
Figure 1 shows results for FashionMNIST using a linear
classifier 𝐹0. Figure 2 shows the outputs for a ResNet for
multiple layers for the MNIST and FashionMNIST datasets.

1We don’t show reconstructions from softmax outputs as they
follow the pattern even more strongly.

Additional datasets and classifiers are in the full version. The
behavior of all three classifiers across datasets is qualita-
tively identical. As expected, accuracy increases throughout
training. The reconstruction loss remains stable for the first
few iterations before decreasing and increasing towards the
end, highlighting the existence of multiple phases. For lay-
ers closer to the input, phases become less pronounced and
reconstruction loss overall is less. That is, the phases are well-
observable when normalizing each line (left panel in 2, but
less so for lower layers as seen in the right panel, where lines
are not normalized separately. Put differently, the closer to
the output, the more easily the phases are observable. For lay-
ers close to the input they are not noticeable. This is aligned
with existing knowledge that lower layers in classifiers con-
verge faster and are more generic(Zeiler and Fergus 2014),
i.e., fit less to input data (especially, its labels). Thus, empiri-
cally, we have observed the existence of the phases, which
we investigate more profoundly in our theoretical analysis.

Theoretical Analysis
We analyze the reconstruction loss over time of a linear de-
coder taking outputs of a simple classifier as input. We follow
standard complexity analysis from computer science using
𝑂-notation deriving bounds regarding the number of samples
𝑛, dimension 𝑑 of the inputs, and number of classes 𝑙. As
common, we assume the quantities in the bounds such as 𝑛,
𝑑, and 𝑙 are large, allowing us to discard lower order terms in
𝑛, 𝑑, and 𝑙 and constants.

Definitions and Assumptions
Data: We consider a labeled dataset 𝐷 = {(𝑥, 𝑦)} consisting
of pairs (𝑥, 𝑦) with 𝑑-dimensional input 𝑥 = (𝑥0, 𝑥1, .., 𝑥𝑑−1)
and label 𝑦 ∈ [0, 𝑙 − 1], i.e., we have 𝑙 classes and each input
has 𝑑 attributes. We denote 𝑛 = |𝐷 | as the number of samples.
The set 𝐶𝑦 = {

(
𝑥 | (𝑥, 𝑦′) ∈ 𝐷

)
∧
(
𝑦′ = 𝑦

)
} comprises of all

inputs of class 𝑦. We assume balanced classes, i.e., |𝐶𝑖 | =
|𝐶 𝑗 | = 𝑛/𝑙. We denote the set of indexes for all 𝑑 input
attributes as 𝐴 := (0, 1, ..., 𝑑 − 1). For a sample (𝑥, 𝑦) ∈ 𝐷

of a class 𝑦, only the subset of attributes 𝐴𝑦 := [𝑦 · 𝑑/𝑙, (𝑦 +
1) · 𝑑/𝑙] ⊂ 𝐴 are non-zero. This builds on the assumption
that features are only present for at most a few classes.

Our data builds on the natural assumption that some sam-
ples are easier and others are more difficult to recognize,
i.e., input features have different strengths. That is, some
samples might appear like prototypical samples with well-
notable characteristics of that class, i.e., strong features and
others might appear more ambiguous, i.e., have weak fea-
tures. Rather than using a continuous distribution for feature
strengths, we employ a discrete approximation, where a fea-
ture strength is either 0, 1 (weak) or 𝑘 (strong). That is,
feature strengths differ by a factor 𝑘 . We assume 𝑘 ≥ 2.2 We
treat it as a constant. That is, although we do not subsume it
in our asymptotic analysis, it should be seen as a constant,
i.e., Θ(𝑘) = Θ(1). We say that samples 𝐶𝑦 of class 𝑦 can be
split into two equal-sized disjoint subsets, i.e., weak samples

2𝑘 > 1 suffices with a more complex analysis.
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(a) ResNet-10 (each line normalized separately) (b) ResNet-10

Figure 2: Accuracy and reconstruction loss for a ResNet for the FashionMNIST and the MNIST dataset. (Negative) layer indices
indicate skipped layers from the output as described in text. Other datasets and classifiers are in the extended version.

Figure 3: Illustration of network with all to all connections
and inputs

with only weak features 𝐶𝑦

1 , and strong samples with only
strong features 𝐶𝑦

𝑘
.3

The data samples (𝑥, 𝑦) are defined as:

𝑥 :=


𝑥𝑖∈𝐴𝑦

= 1, if 𝑥 ∈ 𝐶
𝑦

1 (weak features for weak samples)
𝑥𝑖∈𝐴𝑦

= 𝑘, if 𝑥 ∈ 𝐶
𝑦

𝑘
(strong features for strong samples)

𝑥𝑖 = 0 otherwise (non-present features for both)
(1)

The data are illustrated in Figure 3. In our data model, the
value of an attribute (or feature) is zero for most samples. It is
non-zero, i.e., either 1 or 𝑘 , for samples of a single class. Also,
the input attributes do not change their values throughout
training. Real data, i.e., inputs to the last layer throughout
training, is shown for comparison in Figure 4. For real data,
the input distribution of one layer evolves during training as
weights of lower layers change. For VGG-16, inputs stem
from a ReLU layer and, thus, the majority of outputs is 0
as proclaimed in our model. For Resnet-10, the inputs stem

3Samples having a mix of both do not change outcomes, but add
to notational complexity

from a 4x4 average pooling, which averages outcomes of a
ReLU layer. Thus, there is no strong peak at 0, but rather
inputs are small positive values. Despite the averaging after a
few iterations, well-noticeable, class-dependent differences
between attributes emerge. Thus, the essence of our model is
also captured for Resnet: Most input attributes of (samples of)
a class are small. An input attribute is only large for samples
of one or a few classes.
Network: The network is illustrated in Figure 3. All parame-
ters (and parameter-dependent entities such as outputs) are
time-dependent, i.e., with the superscript (𝑡) . For readabil-
ity, we omit the superscript in expressions, where all entities
share the same time 𝑡.

The network output stems from a single dense layer fol-
lowed by a softmax activation.

Definition 1 (Linear Layer Output). The output for a sam-
ple 𝑥 is 𝑜(𝑥) = (𝑜0 (𝑥), 𝑜1 (𝑥), ..., 𝑜𝑙−1 (𝑥)). The scalar 𝑜𝑦 is
the output for class 𝑦 defined as 𝑜𝑦 := 𝑜𝑦 (𝑥) := 𝑤𝑦 · 𝑥 =∑

𝑖<𝑑 𝑤𝑦,𝑖 · 𝑥𝑖 .
The softmax function to compute the class probability for

a class 𝑦 given the output 𝑜(𝑥) for a sample (𝑥, 𝑦′′) is:

𝑞(𝑦 |𝑥) = 𝑒𝑜𝑦∑
𝑦′<𝑙 𝑒

𝑜𝑦′
(2)

If all elements 𝑥 in a set 𝐶 are identical we write as an
abbreviation:

𝑞(𝑦 |𝐶) := 𝑞(𝑦 |𝑥 ∈ 𝐶) (3)
𝑜(𝐶) := 𝑜(𝑥 ∈ 𝐶) (4)

Assumption 2 (Weight Initialization). 𝑤
(0)
𝑦, 𝑗

∼ 𝑁 (0, 1/𝑑)
(random), 𝑤 (0)

𝑦, 𝑗
= 1/𝑑 (deterministic)

For random initialization, initial noise becomes much
smaller in magnitude relative to the changes in weights during
training. This diminishes its impact over time. Thus, we first
assume deterministic initialization for simplicity and analyze
random initialization in the extended version. The random
initialization follows common initialization schemes (He et al.
2015; Schneider 2022).
Cross-entropy Loss and Optimization: We employ the
cross-entropy loss for a sample (𝑥, 𝑦) defined as 𝐿 (𝑥, 𝑦) =∑

𝑦′<𝑙 −𝟙𝑦=𝑦′ · log(𝑞(𝑦′ |𝑥)). The indicator variable 𝟙𝑐𝑜𝑛𝑑
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(a) Data model (b) Real data: ResNet-10 on Fashion-
MNIST.

(c) Real data: VGG-16 on CIFAR-10

Figure 4: Class-dependent distribution of an input attribute fed into the last dense layer. Rows show features, columns iterations.
Initially, inputs are equally distributed for all classes, but already after a few iterations samples of one or a few classes have
larger values. ResNet is less concentrated due to 4x4 average pooling.

evaluates to 1 if the condition 𝑐𝑜𝑛𝑑 holds and otherwise
to 0. We perform gradient descent. The update of weight
𝑤

(𝑡)
𝑦, 𝑗

at iteration 𝑡 is

𝑤
(𝑡+1)
𝑦, 𝑗

= 𝑤
(𝑡)
𝑦, 𝑗

− 𝜆

|𝐷 |
∑︁

(𝑥,𝑦′) ∈𝐷
∇𝑤𝑦, 𝑗

𝐿 (𝑥, 𝑦′) (5)

A linear classifier can perfectly classify the data (Def. 1):
Weights 𝑤𝑦,𝑖 for 𝑖 ∈ 𝐴𝑦 should be very large since the loss
tends to 0 as these weights tend towards ∞. All other weights
should be very small since the loss tends to 0 as these weights
tend towards -∞.

Reconstruction: A linear reconstruction (or decoding) func-
tion 𝑔 𝑗 is defined for each input attribute 𝑗 .
Definition 3 (Reconstruction Function). The reconstruction
function 𝑔 𝑗 takes as input the output vector 𝑜(𝑥) for a sample
(𝑥, 𝑦) and learnable parameters are a bias 𝑏 and a slope 𝑠𝑦′

for each class 𝑦′, i.e., each scalar 𝑜𝑦′ in vector 𝑜(𝑥):

𝑔 𝑗 (𝑜(𝑥)) := 𝑏 𝑗 +
∑︁
𝑦′<𝑙

𝑠𝑦′, 𝑗 · 𝑜𝑦′ (6)

Note, like the parameters 𝑤 (𝑡) of the classifier, the parame-
ters 𝑏 (𝑡) and 𝑠 (𝑡) of the reconstruction function are not fixed
throughout training. They are fit for each iteration 𝑡. That is,
𝑔
(𝑡)
𝑗

also depends on time. The reconstruction loss for an at-
tribute 𝑥 𝑗 of a sample (𝑥, 𝑦) is the squared difference between
𝑥 and the reconstructed inputs 𝑔 𝑗 . The total reconstruction
loss 𝑅 (𝑡) is just the average of the individual losses.

𝑅 (𝑡) :=
∑︁

(𝑥,𝑦) ∈𝐷

(𝑥 𝑗 − 𝑔
(𝑡)
𝑗

(𝑜(𝑥)))2

|𝐷 | (7)

Analysis Outline
Full details are given in the extended version. Here we only
provide an outline. We formally show the existence of two

phases, i.e., that the reconstruction loss decreases and then
increases again. To this end, we split the analysis into three
stages based on sums of weights 𝑓 , which are linked to iter-
ations 𝑡. We show that the error decreases in Stage 1, starts
to increase again in Stage 2 and stabilizes in Stage 3. Due
to symmetry, it suffices to focus on one class 𝑦 and aim
to fit four (weighted) points as shown in Figure 5. In fact,
we use an approximate reconstruction function and show
that it is not far from the optimal. Our approach relies on
heavy calculus, in particular (Taylor) series expansions, and
classical O-notation to keep the complexity of the analysis
manageable.

To get a flavor, we derive an expression for the change of
weights in each iteration, which is further expanded during
the analysis. To this end, we leverage symmetries arising
from the data definition and the deterministic initialization.
We compute derivatives for weights 𝑤𝑦, 𝑗 for a sample (𝑥, 𝑦′)
separately for the class 𝑦 = 𝑦′ and 𝑦 ≠ 𝑦′, and for samples
of different strengths, i.e., (𝑥, 𝑦′) ∈ 𝐶

𝑦
𝑣 with 𝑣 ∈ {1, 𝑘}.

The derivative 𝜕𝐿 (𝑥,𝑦)
𝜕𝑤𝑦′, 𝑗

of the loss with respect to network
parameters is non-zero if inputs are non-zero, i.e., 𝑥 𝑗 ≠ 0,
which only holds for 𝑗 ∈ 𝐴𝑦 (Def. 1 and Figure 3). For
derivative of loss with a softmax holds (see Section 5.10
in (Jurafsky and Martin 2021)):

𝜕𝐿 (𝑥, 𝑦)
𝜕𝑤𝑦′, 𝑗

=
𝜕𝐿 (𝑥, 𝑦)
𝜕𝑜𝑦′

·
𝜕𝑜𝑦′

𝜕𝑤𝑦′, 𝑗
= (𝑞𝑦′ |𝑥 − 𝟙𝑦′=𝑦) · 𝑥 𝑗 (8)

=

{
𝑣(𝑞(𝑦′ |𝑥) − 𝟙𝑦=𝑦′) if 𝑗 ∈ 𝐴𝑦 , 𝑥 ∈ 𝐶

𝑦
𝑣

0 otherwise
(9)

Next, we rephrase the reconstruction loss (Eq. 7), which
sums the error across all samples. Due to symmetry, it suf-
fices to focus on one attribute 𝑥 𝑗 with 𝑗 ∈ 𝐴𝑦 for some 𝑦.
There are also only four different reconstruction errors due
to symmetry:
1. 𝑅1 states the error for reconstructing 𝑥 𝑗 = 1 with 𝑗 ∈ 𝐴𝑦

given the output for a sample 𝑥 ∈ 𝐶
𝑦

1

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14889



2. 𝑅𝑘 for 𝑥 𝑗 = 𝑘 with 𝑥 ∈ 𝐶
𝑦

𝑘

3. 𝑅
(𝑡)
0,𝐶𝑦′

1

for 𝑥 𝑗 = 0 with 𝑥 ∈ 𝐶
𝑦≠𝑦′

1

4. 𝑅
(𝑡)
0,𝐶𝑦′

𝑘

for 𝑥 𝑗 = 0 with 𝑥 ∈ 𝐶
𝑦≠𝑦′

𝑘

Formally, these errors and the total error 𝑅 are given by:

𝑅
(𝑡)
𝑣,𝐶

:=
∑︁

𝑥∈𝐶,𝑥 𝑗=𝑣

(𝑥 𝑗 − 𝑔
(𝑡)
𝑗

(𝑜(𝑥)))2

|𝐶 | (10)

𝑅
(𝑡)
1 := 𝑅

(𝑡)
1,𝐶𝑦

1
𝑅
(𝑡)
𝑘

:= 𝑅
(𝑡)
𝑘,𝐶

𝑦

𝑘

(Abbreviation) (11)

𝑅
(𝑡)
0,𝐶𝑦′

1

:= 𝑅
(𝑡)
1,𝐶𝑦′≠𝑦

1

𝑅
(𝑡)
0,𝐶𝑦′

𝑘

:= 𝑅
(𝑡)
𝑘,𝐶

𝑦′≠𝑦
𝑘

(Abbreviation)

(12)

𝑅 (𝑡) =
(
(1 − 1

2𝑙
) · (𝑅 (𝑡)

0,𝐶𝑦′
1

+ 𝑅
(𝑡)
0,𝐶𝑦′

𝑘

) + 1
𝑙
· (𝑅 (𝑡)

1 + 𝑅
(𝑡)
𝑘

)
)

(13)

That is, the total reconstruction error of an attribute 𝑗 ∈ 𝐴𝑦

is the weighted sum of errors for 𝑥 𝑗 = 0, which are most
prevalent with a weight of 1 − 1

2𝑙 , and the reconstruction
errors for 𝑥 𝑗 = 1 and 𝑥 𝑗 = 𝑘 , which are less common, i.e.,
only a fraction 1

𝑙
of samples has 𝑥 𝑗 = 1 or 𝑥 𝑗 = 𝑘 for 𝑗 ∈ 𝐴𝑦 .

We aim to reconstruct input attributes 𝑥 𝑗 ∈ {0, 1, 𝑘} from
output probabilities 𝑞 (𝑡) (𝑦′ |𝑥) optimally for each time 𝑡. We
choose non-optimal but simpler reconstruction functions de-
pending on 𝑡 and bound the error due to the approximation.
We show that these functions approximate the true recon-
struction error asymptotically optimally. As approximation,
we fit the reconstruction function 𝑔 𝑗 using two of the four
output values 𝑞, i.e., the outputs for 𝑥 𝑗 = 𝑘 with 𝑗 ∈ 𝐴𝑦

for 𝑥 ∈ 𝐶
𝑦

𝑘
and for 𝑥 𝑗 = 0 for 𝑥 ∈ 𝐶

𝑦′≠𝑦
𝑘

(see Figure 5 and
the four errors listed in Def. 13). These two points are fitted
optimally, i.e., without error, while the other two can have
larger errors than the optimal reconstruction function 𝑔

𝑜𝑝𝑡

𝑗
.

The motivation for the selection of the two specific points
is as follows. We use 𝑥 𝑗 = 0 since most attributes 𝑥 𝑗 are
0, i.e., out of 𝑑 attributes only a fraction 2/𝑙 are non-zero.
Therefore, as 𝑑 is assumed to be large, even small errors in
reconstructing attributes 𝑥 𝑗 = 0 can yield large overall errors.
The choice of 𝑥 𝑗 = 𝑘 rather than 𝑥 𝑗 = 1 is to have a larger
spread between points used to fit the reconstruction function.

For 𝑡 > 0, we use:

𝑔 𝑗 (𝑜) =
𝑘

𝑞(𝑦 |𝐶𝑦

𝑘
) − 𝑞(𝑦 |𝐶𝑦′≠𝑦

𝑘
)
· (𝑜 𝑗 − 𝑞(𝑦 |𝐶𝑦′≠𝑦

𝑘
)) (14)

Put differently, geometrically, we fit a line 𝑔 𝑗 without error
through two points given as tuple (output 𝑞,value 𝑥 𝑗 to recon-
struct), i.e., (𝑞(𝑦 |𝐶𝑦′≠𝑦

𝑘
), 0) and (𝑞(𝑦 |𝐶𝑦

𝑘
), 𝑘) as illustrated

in Figure 5. Thus, it follows from the construction of 𝑔 𝑗 that
the reconstruction errors 𝑅𝑘 (i.e., for 𝑥 𝑗 = 𝑘 and 𝑥 ∈ 𝐶

𝑦

𝑘
) and

𝑅0,𝐶𝑦′
𝑘

(i.e., for 𝑥 𝑗 = 0 and 𝑥 ∈ 𝐶
𝑦′≠𝑦
𝑘

) are both zero.
For 𝑡 = 0, where outputs 𝑞 are identical for all inputs,

we use a constant reconstruction function being a weighted
average:

𝑔
(𝑡)
𝑗

(𝑜) =
𝑛
𝑙
+ 𝑛

𝑙
𝑘 + 𝑛(1 − 1

2𝑙 ) · 0
𝑛

=
1 + 𝑘

𝑙
(15)

Reconstruction Error: Next, we bound the error of the re-
construction function. We use different stages suitable for
analysis. We first express them not using time 𝑡 but in terms
of sums of weights. Figure 5 illustrates the stages: Initially, all
probabilities 𝑞 are equal and the reconstruction error is large.
During the first stage 𝑞(𝑦 |𝐶𝑦

𝑘
) increases rapidly for (strong)

samples with strong features, reducing the initial reconstruc-
tion error. In the second phase, 𝑞(𝑦 |𝐶𝑦

𝑘
) (for strong samples)

changes much less, while 𝑞(𝑦 |𝐶𝑦

1 ) for (weak) samples grows
fast and catches up. Within this stage the reconstruction error
increases again. In the third stage both 𝑞(𝑦 |𝐶𝑦

1 ) and 𝑞(𝑦 |𝐶𝑦

𝑘
)

have roughly the same magnitude and converge towards 1.
The reconstruction error still slowly increases but also con-
verges. The fact that differences between the two diminish,
worsens the reconstruction as shown in the rightmost panel
in Figure 5, since the best reconstruction is in the middle of
both well-separated points rather than being close to each of
them.

We formally derive each reconstruction error for each stage
separately. The derivation for each error and stage follows
the same schema. We simplify the reconstruction errors 𝑅1
and 𝑅0,𝐶𝑦′≠𝑦

1
using series expansions. We do not derive a

single expression for a reconstruction error for all iterations 𝑡
but rather split the analysis by looking at intervals of weight
values, i.e., their sums 𝑓 . These are then linked to iterations 𝑡.
Considering intervals constraining the sum of weights allows
to further simplify expressions. Still, a significant amount of
calculus is required to obtain closed-form expressions. We
obtain bounds for each individual reconstruction error (see
Eq. 13), combining all individual reconstruction errors yield-
ing the total error based on our approximate reconstruction
function 𝑔 𝑗 :

Corollary 4. The reconstruction error for 𝑔 𝑗 decreases from
𝑅 (0) = Ω(𝑘2/𝑙) to 𝑅 (𝑡) = 𝑂 (𝑘2/𝑙2) with 𝑡 ∈ [1,Θ( 2𝑙 (𝑐 𝑓 −1)

𝜆𝑑 (𝑘+1) )]
for an arbitrary constant 𝑐 𝑓 > 1 and increases to 𝑅 (𝑡→∞) =
Ω(𝑘2/𝑙).

But our proclaimed reconstruction function 𝑔 𝑗 is not op-
timal. Thus, finally, we need to bound the deviation of our
reconstruction error based on 𝑔 𝑗 from the optimal recon-
struction error. This can be best understood based on our
illustration Figure 5, where the optimal reconstruction 𝑔𝑜𝑝𝑡

line might not go through two points exactly as 𝑔 𝑗 does, but
rather be more in the “middle” of all points.

Theorem 5. For the approximation error of the recon-
struction function 𝑔 𝑗 of the optimal function 𝑔𝑜𝑝𝑡 holds
| |𝑔 𝑗 − 𝑔

𝑜𝑝𝑡

𝑗
| | < 2 .

As proof strategy, we consider the individual terms 𝑅𝑖 that
sum to the total reconstruction error 𝑅. Each 𝑅𝑖 represents
the error of one set of points to reconstruct. We show that
changing the points for reconstruction allows reducing the
most dominant error 𝑅𝑖 only up to a constant factor before
another error 𝑅 𝑗 becomes dominant. Thus, asymptotically
our approximation is optimal.
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Figure 5: Stages distinguished for analysis. Stages are separated based on sums of weights ( 𝑓 ), which are linked to iterations 𝑡.
Each panel shows network outputs 𝑞 (blue points) versus attributes 𝑥𝑖 for samples (𝑥, 𝑦) ∈ 𝐷 and the (approximate) reconstruction
function of 𝑥𝑖 from 𝑞 (red line) over time 𝑡. The reconstruction approximates the optimal reconstruction. Vertical bars indicate
error bars. Grey horizontal arrows shows how outputs 𝑞 change compared to the panel on the left.

Improved Transfer Learning
Our work shows that while the discriminative performance
of networks increases, their ability to accurately describe the
data (as measured by reconstruction ability) decreases. Thus,
if a classifier is used for fine-tuning on a dataset 𝐷 ′ or as
feature extractor that should describe the data well, it might
be better to stop training of the classifier 𝐶 on the (original,
large) dataset 𝐷 before the cross-entropy loss is minimal, i.e.,
before the classifier performance is maximized on 𝐷. When
exactly to stop depends on the similarity of the datasets 𝐷

and 𝐷 ′, i.e., it might not be necessarily when the reconstruc-
tion loss is minimal.
To assess this hypothesis, we proceed analogously as for re-
construction (see Section for details). We train a classifier
𝐶, i.e., VGG or Resnet, on a dataset 𝐷. We then freeze the
classifier 𝐶 and train a linear classifier on a dataset 𝐷 ′ tak-
ing as input the output of a layer (last (-1), second last(-2),
etc.) of the classifier 𝐶. More precisely, for dataset 𝐷 being
FashionMNIST, we use 𝐷 ′ being MNIST and for 𝐷 being
CIFAR-10 we use CIFAR-100 as 𝐷 ′. We also assess the sce-
narios with 𝐷 and 𝐷 ′ switched. Furthermore, we also assess
to predict, which color channel, i.e., ‘red’,‘green’,‘blue’, has
largest average value used across all pixels. Figures 6 and 7
show two exemplary outputs. It can be seen that accuracy on
the downstream have a clear maximum, which tends to be
roughly after the same iterations when the reconstruction loss
is minimal. Thus, we see that some maintaining more “in-
formation” on the original dataset (as observed due to lower
reconstruction loss) is helpful for downstream task, since
these tasks might exactly rely on this information.

Figure 6: Transfer Learning of a Resnet from Cifar-100 to
Cifar-10. Lines are normalized.

Figure 7: Transfer Learning of VGG from predict Cifar-10
classes to predict the most dominant color channel. Lines are
normalized.

Figure 6 shows the normalized performance of the original
classifier, the reconstruction loss and the accuracy for the
fine-tuning task.

Discussion
We have shown empirically and analytically the existence
of different phases for the reconstruction error. Our analysis
is fairly different to prior works and, as such, interesting in
its own right. That is, we aim to focus on approximating the
governing optimization equations, which allows to capture
the reconstruction dynamics over time. An essential part of
our work are the underlying assumptions on which the the-
oretical analysis builds. While we verified our assumptions
with empirical analysis (Figure 4), any assumption is a limi-
tation. Furthermore, our analysis relies on shallow networks,
i.e., we essentially analyze the last dense layer and the soft-
max layer, which already requires multiple pages of calculus.
Approaches as described in (Maier et al. 2019) could help
in extending it to deeper networks, but it is unclear, whether
the analysis would reamin tractable. On the positive side, we
derive concise bounds including multiple network parame-
ters and covering also the number of iterations. This is often
foregone in other works that focus on learning dynamics,
e.g., they might require that width of layers tend to infinity
to approximate layers with distribution(Jacot, Gabriel, and
Hongler 2018; Huang and Yau 2020).

While we have shown empirically that the three phases
of the reconstruction loss can occur for multiple datasets,
networks, and layers, they are most notable for the last layers
of a network. Features in the last layers are the least shared
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among classes, since the softmax layer paired with the cross-
entropy loss of the classifier enforces discriminative features,
i.e., features that strongly correlate with one or few classes
only. That is, during training outputs of the last linear layer
become more and more discriminative, forgoing informa-
tion on the sample. The softmax also reduces the nuanced
differences between classes. Thus, information content on
the appearance is lost or difficult to retrieve in upper layers.
This effect has also been observed in (Saxe et al. 2019) using
mutual information through simulations rather than mathe-
matical proofs. This behavior can also be observed for other
loss functions like the hinge loss as shown empirically in the
extended version. We anticipate that these phases are also
prevalent in other architectures like RNNs and transform-
ers, since the key assumptions such as the existence of weak
samples (weak feature strenghts) and strong samples is not
architecture dependent.

Related Work
The information bottleneck (Tishby, Pereira, and Bialek
2000) was used for analysis of deep learning (Tishby and
Zaslavsky 2015; Shwartz-Ziv and Tishby 2017). It suggests
a principled way to “find a maximally compressed mapping
of the input variable that preserves as much as possible the
information on the output variable” (Shwartz-Ziv and Tishby
2017). To this end, layers ℎ𝑖 of a network are viewed as a
Markov chain for which holds given 𝑖 ≥ 𝑗 using the data pro-
cessing inequality: 𝐼 (𝑌 ; 𝑋) ≥ 𝐼 (𝑌 ; ℎ 𝑗 ) ≥ 𝐼 (𝑌 ; ℎ𝑖) ≥ 𝐼 (𝑌 ;𝑌 )
Learning is seen as the process that maximizes 𝐼 (𝑌 ; ℎ𝑖) while
minimizing 𝐼 (ℎ𝑖−1; ℎ𝑖), where the latter can be interpreted
as the minimal description length of the layer. In our view,
we agree on the former (at least on a qualitative level), but
we do not see minimizing the description length as a goal
of learning. In our perspective, it can be a consequence of
the first objective, i.e. to discriminate among classes, and
existing learning algorithms, i.e., gradient descent. From a
generalization perspective, it seems preferable to cling onto
even the smallest bit of information of the input 𝑋 , even
if it is highly redundant and, as long as it could be useful
for classification. This statement is also supported by (Saxe
et al. 2019) who show that compression is not necessary for
generalization behavior and that fitting and compression hap-
pen in parallel rather than sequentially. The review (Geiger
2021) also concludes that the absence of compression is
more likely to hold. In contrast to our work, their analysis
is within the IB framework. Still, it remedies an assumption
of Shwartz-Ziv and Tishby (2017). Namely, Saxe et al. (2019)
investigates different non-linearities, i.e., the more common
ReLU activations rather than sigmoid activations. Lorenzen,
Igel, and Nielsen (2021) argues that compression is only ob-
served consistently in the output layer. The IB framework
has also been used to show that neural networks must lose
information (Liu et al. 2020) irrespective of the data it is
trained on. From our perspective, the alleged information
loss measured in terms of the reconstruction capability is a
fact though it can be small. In particular, it is evident that
at least initially reconstruction is almost perfect for wide
networks following theory on random projections, i.e., the
Johnson-Lindenstrauss Lemma (Johnson and Lindenstrauss

1984) proved that random projections allow embedding 𝑛

points into an 𝑂 (log 𝑛/𝜖2) dimensional space while preserv-
ing distances within a factor of 1 ± 𝜖 . This bound is also
tight according to Larsen and Nelson (2017), and it can be
extended to cases where we apply non-linearities, i.e., 𝑅𝑒𝐿𝑈.
Wang et al. (2021) used an information measure based on
weights to show empirically that fitting and compression
phase exist. Achille, Rovere, and Soatto (2018) suggest two
phases based on empirical analysis. They call the second
phase “forgetting”.

Geiger (2021) also discussed the idea of geometric com-
pression based on prior works on IB analysis. However, the
literature was inconclusive according to Geiger (2021) on
whether compression occurs due to scaling or clustering. Our
analysis is inherently geometry (rather than information) fo-
cused.
Alain and Bengio (2017) used a single linear layer to analyze
networks empirically. However, their focus was to under-
stand the suitability of intermediate layers for classification
rather than learning dynamics. As the IB has also been ap-
plied to other types of tasks, i.e., autoencoding (Tapia and
Estévez 2020), we believe that our approach might also be
extended to such tasks. The idea to reconstruct inputs from
layer activations has been outlined in the context of explain-
ability (Schneider and Vlachos 2021, 2022). The idea is to
compare reconstructions using a decoder with original inputs
to assess what information (or concepts) are “maintained” in
a model. Our work also touches upon linear decoders that
have been studied extensively, e.g., (Kunin et al. 2019). It also
estimates reconstruction errors from noisy inputs 𝑥𝑖 + 𝜖 (Car-
roll, Delaigle, and Hall 2009).

Dynamics of learning have been studied using Neural Tan-
gent Kernel (NTK) (Jacot, Gabriel, and Hongler 2018; Huang
and Yau 2020). NTK focuses on infinite-width networks by
showing that they are equal to Gaussian processes. For ex-
ample, it has been shown that fully connected networks of
a particular size show linear rate convergence towards zero
training error (Corollary 2.5 in (Huang and Yau 2020)). How-
ever, they do not discuss the relationship between reconstruc-
tion and classification, which is the focus of our work.

The impact of loss functions on transfer learning was stud-
ied in (Kornblith et al. 2021). Aligned with our work it was
found that models performing better on the pre-training task
can perform worse on downstream tasks. Diversity of fea-
tures(Nayman et al. 2022) has also been shown to lead to
better downstream performance. This is also aligned with our
work, since more diversity is also likely meaning that more
information is captured, i.e., reconstructions are better. In
contrast to these works, we proclaim that it is essential how
much information on the input is maintained.

Conclusions
Theory of deep learning is limited. This work focused on a
very pressing problem, i.e., understanding the learning pro-
cess. To this end, it rigorously analyzed a simple dataset mod-
eling empirical observations of common datasets and classi-
fiers. Our results highlight the existence of multiple phases
for the reconstruction loss. This insight can be used to im-
prove transfer-learning using early stopping of pre-training.
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