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Abstract

Deep Metric Learning (DML) plays an important role in mod-
ern computer vision research, where we learn a distance met-
ric for a set of image representations. Recent DML techniques
utilize the proxy to interact with the corresponding image
samples in the embedding space. However, existing proxy-
based DML methods focus on learning individual proxy-to-
sample distance, while the overall distribution of samples
and proxies lacks attention. In this paper, we present a novel
proxy-based DML framework that focuses on aligning the
sample and proxy distributions to improve the efficiency of
proxy-based DML losses. Specifically, we propose the Data-
Augmented Domain Adaptation (DADA) method to adapt the
domain gap between the group of samples and proxies. To
the best of our knowledge, we are the first to leverage domain
adaptation to boost the performance of proxy-based DML.
We show that our method can be easily plugged into existing
proxy-based DML losses. Our experiments on benchmarks,
including the popular CUB-200-2011, CARS196, Stanford
Online Products, and In-Shop Clothes Retrieval, show that
our learning algorithm significantly improves the existing
proxy losses and achieves superior results compared to the
existing methods. The code and Appendix are available at:
https://github.com/Noahsark/DADA

Introduction
The fundamental task of Deep Metric Learning (DML) fo-
cuses on learning deep representation with a known sim-
ilarity metric. DML is a crucial topic in computer vision
since it has a wide range of applications, including image re-
trieval (Lee, Jin, and Jain 2008; Yang et al. 2018; Ren et al.
2021), person re-identification (Yi et al. 2014; Wojke and
Bewley 2018; Dai et al. 2019), and image localization (Lu
et al. 2015; Ge et al. 2020). Modern DML techniques uti-
lize deep neural networks (DNN) to project image samples
into a hidden space where similar data points are grouped
within short distances while the dissimilar points are sepa-
rated. The majority of DML approaches focus on optimizing
the similarities between pairwise samples with various loss
functions, ranging from contrastive losses (Hadsell, Chopra,
and LeCun 2006), triplet losses (Schroff, Kalenichenko, and
Philbin 2015) to cross-entropy losses (Boudiaf et al. 2020).
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Figure 1: The intuition of our Data-Augmented Domain
Adaptation (DADA). The classes are labeled with unique
colors. The initial distribution gap between the data sam-
ples and corresponding proxies causes ambiguity for proxy-
based deep metric learning. Our proposed method solves this
problem by aligning the data samples and proxies, assuming
they are from different data domains. We further augment
the data to a dense manifold with mixed features to support
this alignment.

With the increasing number of samples in the deep learn-
ing tasks, the basic pair or triplet losses face the difficulty
of high computational complexity. Some approaches select
informative samples by mining the hard or semi-hard sam-
ples (Wu et al. 2017; Katharopoulos and Fleuret 2018) while
another group is devoted to comparing the sample clusters
(Oh Song et al. 2017) or the statistics of the samples (Rippel
et al. 2016).

Unlike the pair-based DML methods, the proxy-based ap-
proaches try to learn a group of trainable vectors, named
proxy, instead of sweeping all sample pairs within the mini-
batch or cluster (Movshovitz-Attias et al. 2017; Kim et al.
2020). Thus, the proxies capture the semantic information
about the classes and optimize the uninformative sample-
sample comparison with the proxy-sample relations. Based
on the efficient proxy-sample distance metrics, later works
further select the most informative proxy (Zhu et al. 2020)
or assign each class with multiple proxies (Qian et al. 2019)
to capture the intra-class structures. However, those existing
proxy-based approaches simply guide the proxies by mea-
suring their similarity with data samples where the learn-
ing process still faces a fundamental problem: the colossal
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distribution gap between the proxies and the data samples,
since the proxies are initially sampled from a normal dis-
tribution that does not contain any semantic information.
The distribution gap would slow the convergence speed and
cause ambiguity and bias in the learning process. Initial-
izing the proxy with representations of the data sample is
one straightforward solution to this problem. However, the
distribution of proxies still differs dramatically between the
early and late training stages due to the poor quality of sam-
ple representations at the early stage. Additionally, it takes
a significant amount of extra time and space to calculate the
representations for every class in each iteration.

In this paper, we introduce a novel framework to solve
these problems by aligning the distributions of the proxies
and the data samples (as illustrated in Figure 1). Specifically,
we utilize Adversarial Domain Adaptation (Wang and Deng
2018) techniques to minimize their distribution gap. To align
those distributions, we propose a domain-level discrimina-
tor, which is a classifier to separate their domain properties.
Note that the single domain discriminator would cause mode
collapse (Goodfellow et al. 2020; Che et al. 2017) where
the majority of data points are constrained to a local area
so that their discriminative information is lost. To endorse
their discriminative information, we leverage one additional
category-level discriminator to evaluate the consistency of
their class properties. We show that with these discrimina-
tors, the adversarial training signal can efficiently align the
distributions of the data samples and the proxies.

However, there are still two difficulties in learning the dis-
tribution of the proxy space: (1) the limited number and di-
versity of the proxies and (2) the large initial gap between the
proxies and the data samples. The limited number of proxies
causes difficulties for discriminators in capturing the inter-
class manifold structure, and the large domain gap further
hinders their learning efficiency. To overcome these chal-
lenges, we propose a novel data-augmented domain as a
bridge where the data samples and the proxies are evenly
mixed to conduct an intermediate domain. This domain con-
tains rich mixing samples holding information and statistics
from both sides. We also propose to create mixture sam-
ples within the same categories to increase the density of the
manifold. We demonstrate the mechanisms of our method in
Figure 2. Our experiments show that the proposed method
can easily plug into existing proxy-based losses to boost
their performance dramatically. Our main contributions are
three-fold:
• We propose a novel adversarial learning framework to

optimize the existing proxy-based DML by aligning the
overall distributions of the data samples and the proxies
at both domain and category levels.

• We propose an additional data-augmented domain that
contains mixup representations from both sides to further
bridge the distribution gap. We show that our combined
discriminators efficiently guide the proxies and the data
samples to a hidden space under the same distribution,
in which the proxy-based loss significantly increases its
learning efficiency.

• Our experiments demonstrate the effectiveness of our ad-
versarial adaptation method on the image data samples

and the proxies. We show that our approach increases the
performance of existing proxy-based DML loss by a large
margin, and our best result outperforms the state-of-the-
art methods on four popular benchmarks.

Related Work
Pair-based DML. Metric Learning in the computer vision
area aims to learn a metric that measures the distance be-
tween a pair of image samples. Initially, the image samples
inside a class and out of a class are regarded as positive and
negative samples; and they are learned and projected to a
low dimensional space (Hadsell, Chopra, and LeCun 2006;
Oh Song et al. 2016). The samples in different classes are
paired and measured with the contrastive loss (Chopra, Had-
sell, and LeCun 2005; Hadsell, Chopra, and LeCun 2006).
To further compare the ranking relation between pairs of
samples, an additional sample is selected as an anchor to
compare with both positive and negative samples with the
triplet loss (Weinberger and Saul 2009; Wang et al. 2014;
Cheng et al. 2016; Hermans, Beyer, and Leibe 2017) where
the positive sample is ensured to be closer than the negative
samples. Based on the triple loss, Sohn et al.(2016) propose
SoftMax cross-entropy to compare the group of pairs to im-
prove pair sampling.

The computational cost of these pair-based works is al-
ways high due to the workload of comparing each sample
with all other samples within a given batch. Additionally,
these methods reveal sensitivity to the size of the batch,
where their performance may significantly drop if the size
is too small.

Proxy-based DML. To further accelerate the sampling
and clustering process, Movshovitz et al. (2017) leverage the
proxy, a group of learnable representations, to compare data
samples via the Neighbourhood component analysis (NCA)
loss (Roweis, Hinton, and Salakhutdinov 2004). The moti-
vation is to set image samples as anchors to compare with
proxies of different classes instead of corresponding sam-
ples to reduce sampling times. Teh et al. (2020) further im-
prove the ProxyNCA by scaling the gradient of proxies. Zhu
et al. (2020) propose to sample the most informative nega-
tive proxies to improve the performance, while Kim et al.
(2020) set the proxies as anchors instead of the samples to
learn the inter-class structure. Yang et al. (2022) develop
hierarchical-based proxy loss to boost learning efficiency.
Roth et al. (2022) regular the distribution of samples around
the proxies following a non-isotropic distribution. In con-
trast to these methods that compare the single sample-proxy
pair, our method further refines the manifold structure by
aligning the whole distributions between proxies and image
samples via a novel adversarial domain adaptation frame-
work.

Domain Adaptation and Adversarial Learning. Do-
main Adaptation initially aims to solve the lack of labeled
data where the learned feature is domain-invariant so that
classifiers can be easily shifted to the new data distribu-
tion. The basic idea is to match the feature distributions
to decrease their domain shift between the source and tar-
get datasets (Quiñonero-Candela et al. 2008; Torralba and
Efros 2011). One important branch of domain adaptation
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Figure 2: Demonstrate the mechanisms of our adversarial learning. Each class is labeled with a unique color. Left: Illustrate the
Initial Space. Mid: Illustrate the training mechanisms and progress of our proposed method. Right: Illustrate the Adapted Space
after training. The surface boundaries of the classifiers are trained to discriminate the domains with Domain-level Discrimina-
tors, and sample classes with Category-level Discriminators in the discriminator training phase. In the generator training phase,
the samples and proxies are pushed to fool the Domain-level Discriminators from the adversarial learning signals while the
class predictions from Category-level Discriminators are maintained.

is Adversarial Learning (Goodfellow et al. 2020; Hassan-
Pour Zonoozi and Seydi 2022), where two or more models
take part in the min-max game to generate domain-invariant
features.

Ganin et al. (2015) first generate domain invariant fea-
tures with adversarial training on neural networks. Tzeng et
al. (2017) improve the discriminator that does not share the
weight with the feature generator. Pei et al. (2018) utilize
multiple discriminators assigned for each class to improve
performance. Saito et al. (2018) minimize the prediction dis-
crepancy of two discriminators on the target domain, while
Lee et al. (2019) improve the method to compare their sliced
Wasserstein distance instead. The primary application of ad-
versarial learning is to produce synthetic textual or image
data (Kingma and Welling 2013; Radford, Metz, and Chin-
tala 2015; Isola et al. 2017). Ren et al. (2018; 2019) also
applied this technique to enhance the quality of image cap-
tioning.

Recent studies have investigated the application of do-
main adaptation in image or textual retrieval tasks (Laradji
and Babanezhad 2020; Pinheiro 2018). Wang et al. (2017)
employ domain adaptation to align image and textural data
using a single discriminator, whereas Ren et al. (2021) uti-
lize multiple discriminators to get improved performance. In
contrast to previous efforts, we propose aligning the distri-
butions of data representations and proxies within the same
image modality.

Proposed Method
We propose a new framework to close the gap between
the distributions of the data samples and the proxies for
proxy-based DML losses that are already in place. We uti-
lize the adversarial domain adaptation technique to trans-
fer data samples and proxies to domain invariant feature

space. To overcome the limitation of the number of prox-
ies, we also conduct a novel strategy to augment data as
a bridge between the samples and proxies, which demon-
strates a smooth learning process.

Preliminary
Deep Metric Learning (DML) Consider a set of data sam-
ples S = {Ii, yi}Ni=1 with raw images Ii and its correspond-
ing class label yi ∈ {1, . . . , C}; we learn a projection func-

tion fG : S f→ X , which project the input data samples to
a hidden embedding space (or metric space) X . We define
the projected features set asX = {xi ∈ Rd}Ni=1. The primal
goal of Deep Metric Learning (DML) is to refine the projec-
tor function fG(·), which is usually constructed with con-
volutional deep neural networks (CNN) as the backbone, to
generate the projected features that can be easily measured
with defined distance metric d(xi, xj) based on the semantic
similarity between sample Ii and Ij . Here we adopt the dis-
tance metric d(·) as the cosine similarity. Before delivering
features to any loss, we use L2 normalization to eliminate
the effect of differing magnitudes.

Proxy-based DML To boost the learning efficiency, a
group of DML methods pre-define a set of learnable rep-
resentations P = {pi ∈ Rd}Ci=1, named proxy, to repre-
sent subsets or categories of data samples. Typically there
is one proxy for each class so that the number of proxies is
the same as the number of classes C. The proxies are also
optimized with other network parameters. The first proxy-
based method, Proxy-NCA (Movshovitz-Attias et al. 2017),
or its improved version Proxy-NCA++ (Teh, DeVries, and
Taylor 2020), utilizes the Neighborhood Component Anal-
ysis (NCA) (Goldberger et al. 2004) loss to conduct this
optimization. The later loss Proxy-Anchor (PA) (Kim et al.
2020) inversely sets the proxy as the anchor and measures
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all proxies for each minibatch of samples. The PA loss
Lproxy(X,P ) can be presented as

Lproxy(X,P ) =
1

|P+|
∑
p∈P+

log

1 +
∑
x∈X+

p

e−τd(x,p)+δ


+

1

|P |
∑
p∈P

log

1 +
∑
x∈X−

p

eτd(x,p)+δ

 (1)

where X+
p denotes the set of positive samples for a proxy

p; X−p is its complement set; τ is the scale factor; and δ is
the margin. Since the PA updates all proxies for each mini-
batch, the model has higher learning efficiency in capturing
the structure of samples beyond the mini-batches. We pro-
pose these two fundamental proxy-based losses (PNCA++
and PA) that achieve competitive results as our baselines.

Domain Data Augmentation
To reduce the distribution gap between the data samples and
the proxies, we transform the proxy-based DML into a do-
main adaptation problem. We regard the data samples as data
points in the source domain, while the initialed proxies are
data points in the target domain. We noticed that the number
of proxies in the target domain is especially limited com-
pared to the data samples because the basic proxy method
only assigns a single proxy for each class. The unbalanced
samples and proxies would cause learning biases in model-
ing the distributions. Also, the proxies are initialized from
a normal distribution and do not contain any related seman-
tic information, which also causes difficulty in aligning their
distribution to the data sample domain.

To overcome these difficulties, we propose a novel data
augmentation strategy to create an intermediate domain to
balance the amount of data points for domain adaptation.
Specifically, we interpolate the space with mixed features
from data set X and proxy set P . For each data sample xi
and its corresponding proxy pi, we create a data feature d̂:

d̂i = {λxi + (1− λ)pi}, (2)

where λ ∼ Beta(α, β) is the linear interpolation coeffi-
cient that sampled from beta distribution with α > 0 and
β > 0 that decide its probability density function. The new
data contains semantic information between the data sample
and proxies and shares their distribution statistics. Therefore
pushing d̂ is equal to pushing both samples x and proxies
p, and their distribution is closer to the data sample domain
than the original proxies.

In addition, we further propose extending the number
of training instances by augmenting the data-proxy pairs
within the same class. For each pair of samples (xi, xj) and
their corresponding augmented data (d̂i, d̂j) inside the mini-
batch, we propose the following mixing:

x̃i = {µ1xi + (1− µ1)xj}
d̃i = {µ2d̂i + (1− µ2)d̂j},

(3)

where µ1, µ2 are also sampled fromBeta distribution. Then
we mix the new samples x̃i and d̃i inside the mini-batch to

ensure the number of data samples with the same label n ≥
2. Combined with the original mini-batch, the augmented
data sample set and the augmented proxy set are noted as
X̃ = X∪{x̃1, x̃2 · · · } and D̃ = {d̂1, d̂2 · · · }∪{d̃1, d̃2 · · · },
and the size of mini-batch is also extended accordingly. We
then normalize the composed features in X̃ and D̃ with L2
normalization to constrain them on a unit hypersphere em-
bedding space where the magnitude is fixed to 1.

Domain-level Discriminator
Based on the augmented data, our goal is to refine the set X̃ ,
D̃ and the original proxy set P to domain invariant repre-
sentations that share the same distribution to help the proxy-
based losses. We follow the principle idea of adversarial do-
main adaptation (Ganin et al. 2016) to estimate the domain
divergence by learning a domain-level discriminator. Specif-
ically, we learn a classifier fD(·) that minimizes the risk
of domain prediction (to predict if the data comes from a
unique domain) between the set X̃ , D̃ and P .

Generally, we would label the data from a specific do-
main with the one-hot label as the prediction target. Since
we have three different domains including the augmented
data domain and our labeling space is symmetric, we would
simply assume the features x̃ ∈ X̃ are labeled as y0 = 001
while d̃ ∈ D̃ are labeled as y1 = 010, and the initial proxies
P are labeled as y2 = 100 for convenience. Specifically, we
estimate the domain classifier fD(·) as an MLP with a single
hidden layer and a ReLU function. The hidden layer is then
projected to a 3-dimensional head as the logits prediction of
the domains. To optimize the fD(·) with a low prediction
risk on the labeling space, we conduct the cross-entropy ob-
jective Ladv as follows

Ladv(X̃, D̃, P ) =
Ñ∑
i

Lce(fD(x̃i), y0)

+
Ñ∑
i

Lce(fD(d̃i), y1) +
C∑
i

Lce(fD(pi), y2)

(4)

whereLce is the cross entropy loss and Ñ is the total num-
ber of samples after the data augmentation. The parameters
of the classifier fD(·) are optimized to minimize the adver-
sarial loss Ladv in training. Recall that the feature x is gen-
erated from the projection function fG(·). Thus, the param-
eters of generator fG(·) are optimized to fool the discrimi-
nator fD(·) in the opposite direction. Since D̃ in the target
domain contains features that mixed from X and proxies P ,
optimizing the D̃ equals optimizing the generator fG(·) in
the source domain while updating the original proxies P .
Thus, the adversarial learning signal of Ladv would help
both generator fG(·) and the original proxies P to maintain
the domain invariant representations to fool the classifier.

Category-level Discriminator
One drawback of the domain-level discriminator described
above is that the discriminate information, especially the
inter-class correlation, is ignored in the optimization pro-
cess. Losing the discriminative information will cause all
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data points to be concentrated on a local area or a surface,
which would cause inter-class ambiguity and confuse the
metric learning losses. To solve this problem, we further pro-
pose a category-level discriminator that learns to predict the
class of data samples and compare the discrepancy of pre-
dictions between the data samples and mixture proxies.

Specifically, we optimize a classifier fC(·) with the fea-
ture generator fG(·) to predict the category label Y =

{y0, y1, . . . } from mixture data samples X̃ with the clas-
sification loss Lcls(X̃, Y ) as

Lcls(X̃, Y ) =
1

Ñ

Ñ∑
i

Lce(fC(x̃i), yi). (5)

The cross-entropy loss Lce would provide a supervised
learning signal to fG(·) to maintain the discriminative in-
formation during the DML training process.

We note that the data samples that share the distributions
would also share the labeling space with the target proxy do-
main. To further align the distributions, we propose to con-
strain the samples from the source domain and augmented
data from the target domain to have a low discrepancy of
predictions from our category classifier fC(·). Thus, one ad-
ditional goal of fC(·) is to learn the maximized discrepancy
of the category prediction between the data samples X̃ and
mixture proxies D̃ while the D̃ are later optimized to mini-
mize this discrepancy.

To measure the discrepancy of the category probabilities,
we empirically adopt the discrepancy introduced in (Chen
et al. 2022) that utilizes the Nuclear-norm Wasserstein Dis-
tance (NWD). The NWD is demonstrated to be the upper
bound of the Frobenius-norm, which estimates the correla-
tions of the predictions (Cui et al. 2020). Thus, we compare
the NWD between the logistic predictions of fC(·) from
the augmented samples X̃ and data D̃. The loss Ld(X̃, D̃),
which measures the NWD can be described as,

Ld(X̃, D̃) =
1

Ñ
(
Ñ∑
i

||fC(X̃)||? −
N∑
i

||fC(D̃)||?), (6)

where ||x||? =
∑
σ(x) denotes the nuclear-norm of x,

which is defined as the sum of its singular values.

The Combined Loss and Training Progress
We adopt the paradigm of adversarial learning to alterna-
tively update the gradient of our feature generator fG(·) and
the discriminators fD(·) and fC(·) discussed above. To this
end, we train our combined loss by playing the min-max
game as follows,

min
fG,fC

{η(Lcls + max
fC
Ld)}+ (1− η) min

fD
max
fG
Ladv, (7)

where η is the pre-defined hyperparameter that balances the
contribution between the domain-level and category-level
discriminators. Empirically, we do not set another weight
between classification lossLcls and discrepancy lossLd. We
also need the original proxy-based loss Lproxy in Eq. 1 to
do the basic DML of the sample-proxy pair in training. Note

that the augmented data set D̃ is only for domain adaptation
progress; the original Lproxy only operates X̃ and original
proxies P . Thus, our combined training progress can be de-
scribed as the following two sub-processes:

(θfD , θfC ) = arg min
fD,fC

{η(Lcls − Ld) + (1− η)Ladv}, (8)

(θfG , P ) = arg min
fG,P,D̃

{η(Lcls + Ld)− (1− η)Ladv + γLproxy},

(9)

where parameters θfD and θfC are updated in first phase
and θfG and the proxies P are updated with D̃ in the sec-
ond phase. Even if gradient reversal layers are accepted
for achieving adversarial training in earlier domain adapta-
tion works, we empirically conclude that a separate training
phase would be more feasible for us in our search for sta-
ble training parameters. The full training progress can be
referred to in Algorithm 1.

Algorithm 1: Data-Augmented Domain Adaptation (DADA)
for Proxy-based Deep Metric Learning

1: Input: Training Set S = {Ii, yi}Ni=1
2: Initialization: θfG , θfC , θfD , and proxies P
3: while stop criteria is not satisfied do
4: Obtain a batch {Ii, yi}ni=1 from S
5: Select proxies P = {pi}ni=1 according the labels Y
6: Embedding features X = {xi}ni=1 ← fG(I)
7: /* Prepare the mixture data domain */
8: Sample λ, µ1, µ2 ∼ Beta distribution
9: Compose P̂ ← {λX + (1− λ)P}

10: Compose X̃ ← X ∪ {µ1xi + (1− µ1)xj}
11: Compose P̃ ← P̂ ∪ {µ2p̂i + (1− µ2)p̂j}
12: /* Discriminator Training Phase begin */
13: Cal ∆θfD ,∆θfC ← η ∂(Lcls(X̃,Y )−Ld(X̃,P̃ ))

∆θfD ,∆θfC

14: Cal ∆θfD ,∆θfC ← (1− η)∂Ladv(X̃,P̃ ,P )
∆θfD ,∆θfC

15: Update θfD , θfC ← Adam{∆θfD ,∆θfC}
16: /* Generator Training Phase begin */
17: Cal ∆θfG ,∆P ← η ∂(Lcls(X̃,Y )+Ld(X̃,P̃ ))

∆θfG ,∆P

18: Cal ∆θfG ,∆P ← −(1− η)∂Ladv(X̃,P̃ ,P )
∆θfG ,∆P

19: Cal ∆θfG ,∆P ← γ
∂Lproxy(X̃,P )

∆θfG ,∆P

20: Update θfG , P ← Adam{∆θfG ,∆P}

Experiments
We present our performance study and discuss the experi-
mental results in this section.

Datasets and Metrics
We use the standard benchmarks CUB-200-2011 (CUB200)
(Wah et al. 2011) with 11,788 bird images and 200 classes,
and CARS196 (Krause et al. 2013) that contains 16,185 car
images and 196 classes. We also evaluate our method on
larger Stanford Online Products (SOP) (Oh Song et al. 2016)
benchmark that includes 120,053 images with 22,634 prod-
uct classes, and In-shop Clothes Retrieval (In-Shop) (Liu

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14815



Method Reference Settings CUB-200 CARS-196 SOP
Arch R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100

PNCA (2017) CVPR17’ BN 49.2 61.9 67.9 73.2 82.4 86.4 73.7 – –
DiVA(2020) ECCV20’ R50 69.2 79.3 – 87.6 92.9 – 79.6 91.2 –
S2SD(2021) ICML21’ R50 70.1 79.7 71.6 89.5 93.9 72.9 80.0 91.4 –

DCML-Proxy†(2021a) CVPR21’ R50 65.2 76.4 84.8 81.2 89.8 94.6 – – –
DRML(2021b) ICCV21’ BN 68.7 78.6 86.3 86.9 92.1 95.2 71.5 85.2 93.0

PA+AVSL†(2022) CVPR22’ R50 71.9 81.7 88.1 91.5 95.0 97.0 79.6 91.4 96.4
PA+NIR†(2022) CVPR22’ R50 69.1 79.6 – 87.7 92.5 – 80.7 91.5 –

HIST(2022) CVPR22’ R50 71.4 81.1 88.1 89.6 93.9 96.4 81.4 92.0 96.7
DAS(2022) ECCV22’ R50 69.2 79.3 87.0 87.8 93.2 96.0 80.6 91.8 96.7

MS+CRT(2022) NeurIPS22’ R50 64.2 75.5 84.1 83.3 89.8 93.9 79.0 91.1 96.5
BPNCA++(2020) ECCV20’ R50 69.0 79.8 87.3 86.5 92.5 95.7 80.7 92.0 96.7

PNCA+DADA(R50) Ours R50 71.4 81.1 87.6 90.5 93.4 96.8 81.2 91.8 96.5
BPA(2020) CVPR20’ BN 68.4 79.2 86.8 86.1 91.7 95.0 79.1 90.8 96.2

PA+DADA(BN) Ours BN 69.8 80.4 87.1 89.4 92.1 96.2 79.6 91.0 96.3
BPA (R50) ∗ (2020) CVPR20’ R50 69.7 80.0 87.0 87.7 92.9 95.8 80.0 91.7 96.6

PA+DADA(R50) Ours R50 72.9 81.9 88.3 92.1 95.2 97.1 81.0 92.1 96.2

Table 1: Comparison with the state-of-the-art litterateurs on CUB200-2011 (2011), CARS196 (2013), Stanford Online Products
(SOP) (2016). The works are sorted by their published date. The second column shows the same architecture of the backbone we
selected to compare with our proposed method. R50 represents the ResNet50 and BN for InceptionBN and GN for GoogleNet
backbones. † denotes the methods based on proxy-based DML, and B labels the works on which our method is based. We adopt
the experimental results of PA(R50) from the third papers (2022). The Bold represents the best score.

et al. 2016) dataset with 25,882 images and 7982 classes.
We follow the data split that is consistent with the stan-
dard settings of existing DML works (Teh, DeVries, and
Taylor 2020; Kim et al. 2020; Venkataramanan et al. 2022;
Zheng et al. 2021b; Roth, Vinyals, and Akata 2022; Lim
et al. 2022; Zhang et al. 2022). We adopt the Recall@K
(K=1,2,4 in CUB200 and CARS196, K=1,10,100 in SOP,
and K=1,10,20,30 in In-Shop) proposed in existing works to
evaluate the accuracy of ranking. We also evaluate it with
Mean Average Precision at R (MAP@R) that based on the
ideas of MAP and R-precision, which is a more informative
DML metric (Musgrave, Belongie, and Lim 2020).

Implementation Details
We train our model in a machine that contains a single
RTX3090 GPU with 24GB memory. The Implementation is
based on the existing RDML (Roth et al. 2020)

Backbones and Preprocessing. In this paper, we propose
two basic backbones to evaluate our learning algorithm: the
ResNet50(He et al. 2016) and the InceptionBN (Ioffe and
Szegedy 2015). They are pre-trained on ImageNet1K(Deng
et al. 2009) and are widely used in DML works for perfor-
mance evaluation, where we resize the image to 224× 224,
do random resized cropping, and random horizontal flipping.
In the test phase, the images are first resized to 256 × 256,
then cropped back to 224 × 224. A linear head embeds the
feature from the second last layer of the backbones to a
512-dimension hidden space. We follow the standard pre-
processing introduced in other deep metric learning works
(Venkataramanan et al. 2022; Zheng et al. 2021b; Roth,
Vinyals, and Akata 2022; Lim et al. 2022; Zhang et al.
2022). We also adopt global max and average pooling with
layer normalization on CNN backbones suggested by Teh et

In-Shop Clothes Retrieval (In-Shop)
Methods Arch R@1 R@10 R@20

MS (2019) BN 89.7 97.9 98.5
SHM (2019) BN 90.7 97.8 98.5
SCT (2020) R50 90.0 97.5 98.1
XBM (2020) BN 89.9 97.6 98.4
IBC (2021) R50 92.8 98.5 99.1
PA† (2020) BN 90.4 98.1 98.8

PA+Mix† (2022) R50 91.9 98.2 98.8
PNCA++†(2020) R50 90.4 98.1 98.8

PNCA + DADA (ours) R50 91.7 98.2 98.6
PA + DADA (ours) R50 93.0 98.5 98.9

Table 2: Compare with the existing state-of-the-art DML
works on the In-Shop (2016) dataset. The Bold represents
the best score.

al. (Teh, DeVries, and Taylor 2020) to further improve the
generalization of features.

Training Details. Our optimization is done using Adam
(β1 = 0.5, β2 = 0.999) (Kingma and Ba 2015) with a de-
cay of 1 · 10−3. We set the learning rate at 1.2 · 10−4 for
the feature generator fG(·) and 5 · 10−4 for our discrim-
inators. We adopt the learning rate 4 · 10−2 for the prox-
ies as suggested in (Roth, Vinyals, and Akata 2022). For
most of the experiments, we fixed the batch size to 90 as
a default setting, which is consistent with (Kim et al. 2020).
Empirically we apply batch normalization on the domain-
level discriminator to reduce its correlation variance within
the batch. For all experiments, the first layer of fC(·) is set
to 512. For the second layer, we assigned 128 dimensions
to the CUB200 and CARS196 datasets, 8192 dimensions
to the SOP datasets, and 4096 dimensions to the In-Shop
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ProxyAnchor ProxyNCA++
Settings R@1 MAP@R R@1 MAP@R

Baseline 69.1 26.5 68.4 25.8
+Aug 69.3 26.5 68.5 25.9
+Ladv 70.2 27.3 69.2 26.4
+Ladv+Aug 70.9 27.8 69.8 26.8
+Lcls 69.3 27.0 68.9 26.2
+Lcls + Ld 69.9 27.4 69.5 26.6
+Lcls + Ld+Aug 70.4 27.8 69.4 26.7
+Ladv + Lcls 71.4 28.2 69.3 27.1
+Ladv + Lcls + L1 71.6 28.2 69.4 27.0
+Ladv + Lcls + Ld 72.0 28.9 69.9 27.7
+Ladv + Lcls + Ld

+ Aug (ours) 72.9 29.9 70.2 28.0

Table 3: Study the contribution of each component of our
method and loss function on CUB200. We reproduce the re-
sult of ProxyAnchor, which has a batch size of 90, and Prox-
yNCA++, which has a batch size of 32, as the baseline of our
method. Aug represents the alignment of the augmented data
and samples we introduced in Sec . We denote the difference
in percentage point (pp) compared with our baseline in the
bracket.

datasets. We set {η = 0.005, γ = 0.0075} for CUB200,
and {η = 0.01, γ = 0.0075} for CARS196. We select
{η = 0.01, γ = 0.005} for both SOP and In-Shop datasets.

Qualitative Results
Comparing with Proxy Baselines. We compare the perfor-
mance of our approach with the existing proxy-based met-
ric learning methods and the recent state-of-the-art met-
ric learning methods on the popular benchmarks introduced
above (refer to Table 1). We observe that our DADA frame-
works can significantly improve the performance of the orig-
inal proxy-based DML methods (marked with B) by a large
margin. Specifically, comparing with the original PA method
on ResNet50, our proposed PA+DADA outperforms 3.2pp
(4.6%) on the recall@1 of CUB200 and 4.4pp (5.0%) on
the recall@1 of CARS196. On the larger datasets (SOP and
In-Shop), our method is also better than the original PA and
PNCA++.

Comparing with state-of-the-art. We further compare
the performance of our method with the state-of-the-art
methods based on the CNN backbones as listed in Table
1 and 2. For the CARS196 dataset, our method reaches
92.1 on Recall@1, which has a 0.9pp improvement over
the previous state-of-the-art AVSL (Zhang et al. 2022) on
the ResNet50 backbone. For CUB200, our method out-
performs the previous state-of-the-art AVSL 0.6pp on Re-
call@1, 0.2pp on Recall@2, and 0.1pp on Recall@4. We
observe that our performance on SOP and In-Shop is lim-
ited but very close to the previous state-of-the-art IBC (Sei-
denschwarz, Elezi, and Leal-Taixé 2021), CRT (Kan et al.
2022), and HIST (Lim et al. 2022) on a few metrics. The
lesser improvement in the high-value recall of these two
datasets is mainly due to the large number of classes (11318
and 3997) and the limited number of samples in each class
(less than 10). This causes some difficulty for our category-

level discriminator to learn the discriminative information.
Nevertheless, our method still achieves good performance
comparable to those of the state-of-the-art methods in all
metrics and outperforms other proxy-related methods on
these two datasets. We will investigate techniques to over-
come this limitation in our future works.

Ablation Study
Contributions of the Objective Components. We analyze
the ablation study to evaluate the contribution of each objec-
tive component of our proposed framework based on both
ProxyAnchor (Kim et al. 2020) and ProxyNCA++ (Teh, De-
Vries, and Taylor 2020) on the CUB200 as listed in Table
3. We first notice that the data augmentation strategy (Aug)
does not improve our baseline significantly in the absence
of Ladv and Lcls. This is because, without those regular-
ization losses, Aug simply boosts some redundant positive
samples and the mixed features do not take part in training.
We conclude that the domain-level discriminator with Ladv
has higher efficiency when the category-level discriminator
with Lcls helps regularize the space and avoid the inter-class
ambiguity. It increases the improvement to +2.3pp on R@1
and +1.7pp on MAP@R from +1.1pp on R@1 and +0.8pp
on MAP@R in comparison with the single Ladv setting.
We also demonstrate that the efficiency of the category-level
classifier (+Lcls) can be further improved by comparing the
discrepancy of class prediction (+Ld) between the source
data and target proxies in adversarial learning. Comparing
the general discrepancy L1 distance (+L1), the proposed
NWD also show increasing performances on both R@1 and
MAP@R. A similar conclusion can also be driven by the re-
sults based on ProxyNCA. Therefore, we conclude that the
combination of the domain and the category-level discrim-
inator is more suitable for proxy-based DML than the set-
tings with any single discriminator. We also study the impact
of our hyperparameters and the combination of data groups
that apply domain adaptation in the Appendix.

Conclusion
In this paper, we present an adversarial domain adaptation
method with data augmentation to optimize the hidden space
of the data and the proxies. We overcome the initial distri-
bution gap between them to boost the learning efficiency
of deep metric learning. We propose to align the domains
of the data and the initial proxies by optimizing two clas-
sifiers at different levels, and training the embedding func-
tion and the proxies against them. To enhance the density
of the manifold, we propose a strategy to conduct a mixture
space by mixing the features from both domains. Our ex-
perimental results based on four popular deep metric learn-
ing benchmarks demonstrate that our learning method and
mixed space efficiently boost the learning efficiency of ex-
isting proxy-based methods. While our framework focuses
on solving the challenge of proxy-based DML methods, we
believe it can be easily extended to other related metric
learning methods, and it can also benefit zero-shot and self-
supervised learning works. These are interesting and chal-
lenging works for future study.
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