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Abstract

Few-shot learning (FSL) is essential in many practical ap-
plications. However, the limited training examples make the
models more vulnerable to label noise, which can lead to poor
generalization capability. To address this critical challenge,
we propose a curriculum meta-learning model that employs a
novel dual-level class-example sampling strategy to create a
robust curriculum for adaptive task distribution formulation
and robust model training. The dual-level framework proposes
a heuristic class sampling criterion that measures pairwise
class boundary complexity to form a class curriculum; it uses
effective example sampling through an under-trained proxy
model to form an example curriculum. By utilizing both class-
level and example-level information, our approach is more
robust to handle limited training data and noisy labels that
commonly occur in few-shot learning tasks. The model has
efficient convergence behavior, which is verified through rig-
orous convergence analysis. Additionally, we establish a novel
error bound through a hierarchical PAC-Bayesian analysis for
curriculum meta-learning under noise. We conduct extensive
experiments that demonstrate the effectiveness of our frame-
work in outperforming existing noisy few-shot learning meth-
ods under various few-shot classification benchmarks. Our
code is available at https://github.com/ritmininglab/DCML.

Introduction
Meta-learning is a technique that involves training a model on
multiple tasks to generalize to new, unseen tasks using only
a few training examples (Finn, Abbeel, and Levine 2017).
While few-shot learning (FSL) methods have achieved suc-
cess on benchmark tasks, it has been shown that these meth-
ods are highly susceptible to label noise, and even a single
noisy data point can significantly impact the model’s overall
accuracy (Liang et al. 2022; Lu et al. 2020; Mazumder, Singh,
and Namboodiri 2021). Traditional techniques for incorpo-
rating noise in supervised learning involving large amounts
of training data (Ren et al. 2018; Shu et al. 2019; Han et al.
2018; Yu et al. 2019) may not be applicable in FSL settings
due to two main reasons. First, FSL only has access to limited
labeled data, which is insufficient to support traditional tech-
niques that require large amounts of training data. Second,
FSL methods typically rely on learning from the differences
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between tasks, instead of directly learning from individual
data points. As a result, techniques that depend on individual
data points may not be as effective in FSL settings.
Prior works on noisy few-shot learning (NFSL) at-

tempt to address this issue using techniques such as
feature aggregation (Liang et al. 2022), data augmenta-
tion (Mazumder, Singh, and Namboodiri 2021), and example
re-weighting (Killamsetty et al. 2020). They have achieved
moderate performance in noisy few-shot learning, but are
fundamentally limited from two key aspects. (i) Granularity:
these approaches only consider the example-level granularity,
where the model learns to distinguish between individual
examples within a few-shot task. However, episodic meta-
learning methods learn to generalize at both the class-level
and example-level, which can lead to more robust and accu-
rate few-shot learning. (ii) Scope: these approaches either
assume that the meta-training data to be clean and only con-
sider noisy labels in the support set during meta-testing, or
the other way around, which is a limited and less realistic
scenario. In practice, both can significantly affect the few-
shot learning performance. Therefore, robust FSL methods
should consider the prevalence of noisy labels in both the
meta-training and meta-test datasets.
To overcome these limitations, we propose a novel dual-

level curriculum meta learning (i.e., DCML) model that can
generalize at both the class-level and example-level, while
also considering noisy labels in both the meta-training and
meta-test datasets. It performs dual-level sampling to dy-
namically form a task curriculum: (i) Class-level sampling
continuously samples a subset of classes that are suitable for
meta-training at the current stage and the selected classes
forms a subject in the overall curriculum; (ii) Example-level
sampling further chooses a subset of clean examples from cur-
rently chosen classes to construct the support and query sets.
A central ingredient to formulate a robust curriculum is the
criteria to accurately determine the easiness of a class/exam-
ple over the course of meta-learning. However, directly using
the average loss of examples may not be accurate (Kumar,
Packer, and Koller 2010; Bengio et al. 2009). This is because
the network’s behavior changes over time, with the network
initially being under-fitted and later potentially overfitting
to noisy or hard examples (Huang et al. 2019; Toneva et al.
2019). Additionally, collecting historical statistics for each
task in a meta-learning context is infeasible, making methods
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that rely on running averages of loss nontrivial (Zhou, Wang,
and Bilmes 2020b). To address this issue, we develop novel
strategies for class-level curriculum learning (i.e., C-CL) and
example-level curriculum learning (i.e., E-CL), respectively.
At C-CL, we propose novel Class Pair (CP)-metrics based on
the complexity of the decision boundary for class selection.
Specifically, the CP-metrics measure the pairwise class simi-
larity in terms of the incorrect class prediction probability. We
use the CP-metrics to separate noisy class pairs (NCPs), sim-
ilar class pairs (SCPs) and easy class pairs (ECPs) and build
a meaningful class curriculum that helps to construct more
diverse and informative tasks. At E-CL, we perform clean
example selection by re-weighting each sample according to
its loss information. To prevent the model from overfitting to
the noisy labels and losing its power of identifying clean sam-
ples, we propose to use a proxy model, which is intentionally
under-trained to select clean examples.
Using our innovative hierarchical PAC-Bayesian analysis

for curriculum meta-learning, we have successfully derived
an error bound for the proposed model that remains assured
even when confronted with noisy conditions. The hierarchical
analysis decomposes the entire problem into three tiers: task,
subject, and curriculum, which allows us to construct the over-
all curriculum bound by combining the bounds from lower
tiers. In addition, our theoretical contribution also makes two
novel extensions to existing PAC-Bayes literature (Amit and
Meir 2018; Rothfuss et al. 2021; Ding et al. 2021), includ-
ing (i) deriving a bound on noisy meta-learning tasks and
(ii) tackling the non i.i.d. task dependencies across different
subjects. Our main contributions are summarized as follows:
• We propose a curriculum meta-learning model with a novel
dual-level class-example sampling strategy that formulates
a robust curriculum to adaptively adjust the task distribu-
tion for robust model training.

• We propose a heuristic class sampling criterion using novel
CP-metrics and an effective example sampling strategy
through an under-trained proxy model.

• We provide novel theoretical contributions that include a
theoretical proof on the model convergence and hierarchi-
cal PAC-Bayesian analysis of error bounds for curriculum
meta-learning under noise.

Experiments conducted over multiple synthetic and real-
world datasets demonstrate the superior performance on few-
shot learning from noisy data.

Related Work
Noisy few-shot learning (NFSL). Currently, only sparse
effort has been indulged in NFSL. RNNP (Mazumder, Singh,
and Namboodiri 2021) refines the prototypes using k-means
clustering, which make the model learn to better distinguish
between the different classes, even when the support set
contains noisy or mislabeled data. RapNets (Lu et al. 2020)
addresses representation or label noise by incorporating a
BiLSTM-based attentive module. This module helps the
model focus on the most informative features and exam-
ples in the support set while ignoring the noisy or irrelevant
ones. TraNSF (Liang et al. 2022) refines the class prototypes
used by ProtoNet by aggregating the features of the support
examples, and uses a Transformer-based model that employs

an attention mechanism to weigh the relevance of support
samples based on their correctness. This allows the model
to better filter out noisy or mislabeled data during training.
Other works, such RW-MAML (Killamsetty et al. 2020),
AQ (Goldblum, Fowl, and Goldstein 2020), and DFSL (Li
et al. 2022) tackle the out-of-distribution tasks or adversarial
attacks in few-shot learning.

Curriculum meta-learning (CML). The combination of
meta-learning and curriculum learning has received increas-
ing attentions (Zhang et al. 2021; Liu and Fu 2021; Shevchuk
2019; Cioba et al. 2022). For example, (Zhang et al. 2022a)
uses self-paced learning to decide the hardness of tasks in a
given batch adaptively according to the learned model. The
task batch is first randomly sampled from the base classes
then ordered by the model, therefore, the hardness of each
task is not global and may not be optimal. (Agrawal, Squire
et al. 2021) defines the curriculum schedule for meta-learning
by increasing the support size for each task at the beginning
then reducing it to the pre-defined shot-size. CML has also
been applied to different domains such as recommender sys-
tems (Chen et al. 2021), NLP (Wu et al. 2021; Zhan et al.
2021), medical data analysis (Li and Lovell 2022; Zhang
et al. 2022b), long-tailed recognition (Sinha and Ohashi 2023)
and reinforcement learning (Mehta et al. 2020; Portelas et al.
2020), to name a few. Specifically, (Chen et al. 2021) con-
siders the hardness for both cities and users and samples the
hard ones to update the meta-learner for better convergence.
Our proposed model is designed specifically for tackling a
noisy task environment with a unique dual-level sampling
strategy. It also offers a rigorous analysis on both model
convergence and error bound, which are missing from most
existing works.

Preliminaries
Meta-learning. Given the data distribution D over X ⇥ Y ,
the meta-model ✓ is learned using batches of episodes (i.e.,
tasks) T sampled from D in an episodic way. The episodic
sampling process of a N -way K-shot classification task Ti

includes two steps: first randomly samples N classes from
the base class set CB; then for each class randomly sampleK
images as the support set Ssup

i = {(xj
i , y

j
i )}

NK
j=1 , and another

Q images as the query set Sque
i = {(xj

i , y
j
i )}

NQ
j=1.

Curriculum learning. In curriculum (or self-paced) learn-
ing, a weight vector v is introduced and jointly optimized
with the model parameterw in an alternative way. The objec-
tive is formulated as follows:

min
w,v2[0,1]n

nX

i=1

viL(yi, fw(xi))� �R(v), (1)

whereL(yi, fw(xi)) is the training loss between the predicted
label fw(xi) and the ground truth yi and R(v) is a regular-
izer to achieve the desired curriculum design. Intuitively, vi
indicates the easiness of sample xi for the current model and
the goal is to gradually train the model by following easy
to difficult examples (to mimic how humans learn). There
are different forms of the regularizer. For hard weighting, it
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leverages a negative l1-norm: R(v) =
Pn

i=1 |vi|. For soft
weighting, linear, logarithmic, and mixture forms are popu-
lar choices (Jiang et al. 2014a). The hyperparameter � is a
general threshold for selecting examples.

Methodology
Overview. DCML contains two levels: C-CL and E-CL.
In C-CL, a class curriculum is progressively built with a
series of subjects ⌧1, ..., ⌧C using the CP-metrics µ and �.
Based on the easy-to-complex curriculum learning intuition,
ECPs are first fed into the target model using a small initial
µ0
th. Then the values of µth,�th are gradually increased so

that the similar but difficult SCPs are included to provide
fine-grained classification tasks for training. The NCPs are
put in the end of the curriculum and trained insufficiently
to avoid overfitting. Some are removed depending on the
corruption level. In E-CL, a proxy is used to filter out noise
in the example-level by sampling small loss examples of
each task. This is achieved by assigning proper weights to
examples sampled within each task. The detailed training
process is summarized in Algorithm 1 of the Appendix (Que
and Yu 2024).

Proxy models. Training proxy models is widely utilized in
active learning and core-set selection (Coleman et al. 2019).
Usually, the proxies are designed similar to the target model
but with fewer hidden layers and trained with fewer epochs
for efficiency consideration, which may lead to inevitable per-
formance compromise. In our framework, instead of training
extra proxies, we repeatedly use the model itself trained in
different time steps as proxies for class selection (i.e., C-CL)
and use the model trained in the early period as the proxy
for example selection (i.e., E-CL). It has the following mer-
its: (i) the proxies are kept fixed during training so only a
small amount memory is required for storage and there is
no dynamic memory concern; (ii) the proxies are exactly
the same as the target model so the performance won’t be
compromised; (iii) the proxies for sample selection is trained
with fewer epochs to be under-fitted for identifying the clean
samples from the noise.

CP-metrics for Class-Level Sampling
Given an image x, the embedding network f✓t with a classi-
fier head gt at time step t outputs the the pre-softmax logit
pt(x) = gt(f✓t(x)), which is a N ⇥ 1 vector: pt(x) =
[p

cpj1

t (x)), ..., p
cpjN

t (x))], where N is the number of classes,
and the element pcpjk

t (x) indicates the probability of assign-
ing the example x with label k to class j. In aN -wayK-shot
classification task, k ranges from 1 to N . We eliminate the
matched class logit pcpjj

t , and collect the mismatched class
logits where j 6= k and called them the incorrect prediction
probabilities of example x at time step t.
According to the inter-class variance, it’s reasonable to

assume that NCPs and SCPs will in expectation have a larger
incorrect prediction probability than clean and easily classi-
fied ones. In addition, NCPs should not consistently recur
due to their randomness nature while inherently SCPs may
lead to more consistent incorrect predictions by DNNs. Intu-
itively, the variance of the CP-statistics should be higher for

Figure 1: Illustration of the class pairs separated by CP-
metrics. The points denoting different pairs are scattered
in the figure with different colors. Averaged values of the
class pairs in different groups are shown in lines with differ-
ent colors. Left: CP-mean separates ECPs from NCPs and
SCPs; Right: CP-var separates SCPs from NCPs.

the NCPs than the similar but useful ones. Our later quanti-
tative and qualitative results confirm this assumption. Based
on this intuition, we incorporate the historical statistics to
formulate the metrics CP-mean µcpjk and CP-var �cpjk to
separate easy, similar and noisy class pair cpjk, which are
defined as follows:

µcpjk(x) =
1

TNj

TX

t=1

NjX

i

p
cpjk
t (xi), (2)

�cpjk(x) =
1

T

TX

t=1

"PNj

i (p
cpjk
t (xi)� µcpjk(x))2

Nj

# 1
2

, (3)

where T is the total number of current model checkpoints
that keeps increasing as the training proceeds and Nj is the
total number of sampled instances that belong to class j.
The value of µcp measures the misclassified probability of a
class pair, which is used to separate the ECPs from the SCPs
and NCPs. On the other hand, �cp measures the variation of
a class being misclassified into another class that can help
to discriminate SCPs from NCPs. Through the predefined
thresholds: µth,�th, we can separate the class pairs into easy,
similar and noisy groups given below,

Ceasy = {cpjk : µcpjk(x) < µth}, (4)
Csimilar = {cpjk : µcpjk(x) > µth & �cpjk(x) < �th},

Cnoisy = {cpjk : µcpjk(x) > µth) & �cpjk(x) > �th}.

The choice of these thresholds follows some intuitive
guidelines to ensure good performance without a costly grid
search. Like other curriculum learning models (Bengio et al.
2009; Kumar, Packer, and Koller 2010), the setting of thresh-
olds usually depends on the noise ratio, which can be de-
termined by collecting a subset of i.i.d. samples, verifying
their labels, and identifying the wrong ones. After the noise
ratio is estimated, we can directly set the thresholds that aim
to eliminate the same percentage of noisy labels. In Fig.1,
we show that different class pairs are clearly separated using
CP-metrics with examples from Omniglot. In the left plot,
the average of CP-mean µcp of ECPs are smaller than the
NCPs and SCPs by a large margin; in the right plot, the SCPs
and NCPs are further discriminated by the separation of their
CP-var �cp. We observe more black dots in the figure since
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the number of easy-pairs are way more than the noisy and
similar ones in practice.

Example-Level Curriculum Learning
Given a meta-model f✓ parameterized by ✓, for a new task
Tj , the meta-model is adapted to the task-specific model ✓j
using one gradient update with support set Dsup

j :

✓j = ✓ � ↵r✓v
sup
j LTj (✓,D

sup
j ), (5)

where vsup
j is the support set weight vector for task Tj , with

its k-th element vsupj,k computed as:

vsupj,k = 1(`(f✓p(xj,k), yj,k) < �), (6)

where 1(·) is an indicator function, ` is cross-entropy loss,
✓p is the proxy model parameter, � is a predefinded hyperpa-
rameter, vsup

j LTj (✓,D
sup
j ) = 1

B

P
k v

sup
j,k`(f✓(x

k
j ), y

k
j ) with

B denoting the number of non-zero weights for the support
set images, and (xk

j , y
k
j ) is a image-label pair in support set

D
sup
j (i.e., Sj). As in (Finn, Abbeel, and Levine 2017), the

optimization of the meta-model across tasks is performed
via stochastic gradient descent (SGD), such that the model
parameters ✓ are updated as follows:

✓  ✓ � �r✓

X

Tj⇠⌧i

vque
j LTj (✓j ,D

que
j ), (7)

where vque
j is the query set weight vectors designed similar

to that of the support set except that they use a task-specific
model to compute the loss: vquej,k = 1(`(f✓j (xj,k), yj,k) < �),
where ⌧i is the current subjects that the classes are sampled
from and ↵,� are the corresponding step sizes.

Hierarchical PAC-Bayesian Analysis
In the context of meta-learning, PAC-Bayesian theory is ex-
tensively studied to provide guarantees for generalization
errors (Ding et al. 2021; Farid and Majumdar 2021; Liu et al.
2021).

PAC-Bayesian for supervised tasks. Let Z : X ⇥ Y and
H denote an input-output space and a hypothesis space, re-
spectively. For a supervised task, a hypothesis h is sampled
from H to make predictions on input z ⇠ Z , whose perfor-
mance is measured by a loss function `(h, z) : H⇥ Z ! R.
Given a set ofm observations S = {z}mi=1 ⇠ D

m, where D
is a data distribution over Z . The superscript m is used to
denote that m examples are sampled i.i.d. from D. The goal
is to minimize the expected error er(h,D) = Ez⇠D`(h, z).
Since D is usually unknown, the empirical error êr(h, S) =
1
m

Pm
i=1 `(h, zi) is utilized in practice. PAC-Bayesian setting

assumes that there exists a prior distribution of the hypothesis
space in the form of P (h) ⇠ M(H), whereM(H) is the set
of all possible probability measures inH. Upon observing the
training dataset S, the base learnerQ(S, P ) updates the prior
into a posteriorQ(h). The base learnerQ(S, P ) is a mapping:
Q : Zm

⇥ M ! M. Formally, for any probability distri-
bution Q over the hypothesis set, the corresponding Gibbs
predictor for every point z 2 Z randomly samples h ⇠ Q

and returns h(z). The expected loss of such Gibbs predic-
tor on a task corresponding to a data distribution D is given
by: er(Q,D) = Eh⇠Qer(h,D). It’s empirical counterpart is
defined as êr(Q,S) = Eh⇠Qêr(h, S).

PAC-Bayesian for meta-learning. During meta-training,
a series of tasks are sampled from the task distribution
⌧ . Upon observing datasets S1, ..., Sn from the tasks, the
meta-learner presumes a hyper-prior P(P ) ⇠ M(M(H))
as a distribution over priors P , and updates it to a hyper-
posterior Q(P ). The performance of the hyper-posterior
is measured by the so-called transfer error er(Q, ⌧) =
EP⇠QED⇠⌧ES⇠Der(Q,D). Its empirical counterpart is de-
fined as êr(Q, S1, ..., Sn) = EP⇠Q

1
n

Pn
i=1 êr(Q,Si).

Hierarchical PAC-Bayesian analysis for DCML. We pro-
pose to conduct PAC-Bayesian analysis for curriculum meta-
learning under noise through a three-tier hierarchy: task, sub-
ject and curriculum. Specifically, a curriculum is divided into
C subjects, the task distribution of each subject is denoted as
⌧i, where a batch of tasks Si are sampled.

PAC-Bayesian bound for a singe task in meta-learning.
For each task T

i
j in the i-th subject, the base learner Qi

j is
updated with a prior P i

j , which is sampled from a hyper-
posterior Q(P (h)) (i.e., the meta-model), and dataset Si

j =
{z}mk=1 sampled i.i.d. from the task distribution ⌧i with data
distribution Di. The expected and empirical errors are de-
fined as er(Q,Di) = Eh⇠QEz⇠D`(h, z), êr(Q,Si

j) =

Eh⇠Q
1
m

Pm
k=1 `(h, zk). We have the following theorem:

Theorem 1 (Noisy meta-learning task bound). Let Q be a

base learner and P be some pre-defined hyper-prior distri-

bution over prior P . Then for any � 2 (0, 1], the following
inequality holds uniformly for all hyper-posterior distribution

Q with probability at least 1� �,

EP⇠Qer(Q,D)  EP⇠Qêr(Q,S) (8)

+

s
D(Q||P) + EP⇠QD(Q(S, P )||P ) + log m(1�r̂)

�

2(m(1� r̂)� 1)
,

where r̂ is the empirical noise rate.

Proof Sketch. The proof consists of three main steps: 1)
we apply the change of measure of KL divergence between
measurement spaces to distributions; 2) we apply Theorem 6
(as shown in the Appendix) to bound the expected task error
with empirical task error; 3) we reduce the number of training
samples in each task according to the noise ratio to finalize
the proof.
According to Eqn. (6), the expected and empirical risks

becomes er(Q,Di
j) = Eh⇠QEz⇠Dvz`(h, z), êr(Q,Si

j) =

Eh⇠Q
1
m

Pm
k=1 vzk`(h, zk), where vzk 2 {0, 1} is the weight

index of the k-th example in task T
i
j . Assuming the true

noise ratio of each task is r, we can rewrite the loss term as
LT i

j
(✓ij ,D

que
i ) = (1� r)

P
(xi

j,k,y
i
j,k)2Dque

i,j
`(✓ij , (x

i
j,k, y

i
j,k)).

We then havem(1� r̂) clean examples remained in each task
empirically and the proof of the theorem can follow.

Theorem 1 shows that the PAC-Bayesian bound is compro-
mised due to the existence of the noisy labels. In practice, the
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Figure 2: Example of unstable performance under noise. Left:
Training and testing accuracy; Right: Training and testing
loss.

noise ratio r usually remains unknown. Existing data cleans-
ing techniques usually end up with accidentally removing
some clean but difficult examples, which results in a larger
r̂ and hence enlarges the bound. Our dual-level design aims
to separate the similar from the noisy ones and eliminate the
least useful examples to keep the empirical noise ratio r̂ close
to the true one. This effectively leads to a tighter bound under
a noisy data distribution.

PAC-Bayesian bound within a subject. The dual-level
curriculum meta-learning forms a series of subjects dynam-
ically. For a batch of tasks sampled from a fixed subject
with task environment ⌧i, the expected error of a fixed prior
Pi and its empirical counterpart are defined as eri(P, ⌧i) =
EDm⇠⌧iES⇠DmEh⇠QEz⇠D`(h, z), êri(P, S1, . . . , Sni) =

Eh⇠Q
1
ni

Pni

j=1
1
m

Pm
k=1 `(h, z

j
k), where ni is the number

of tasks sampled from the i-th subject. We derive the PAC-
Bayesian bound for a batch of tasks sampled from a subject:
Theorem 2 (Curriculum meta-learning subject bound). Let
Q be a base learner and P be some pre-defined hyper-prior

distribution over prior P . Then for any � 2 (0, 1], the fol-
lowing inequality holds uniformly for all hyper-posterior

distribution Q with probability at least 1� �,

EP⇠Qeri(P, ⌧i) 
1

ni

niX

j=1

EP⇠Qêri(P, S1, . . . , Sni)

+

s
1

2(ni � 1)
(D(Q||P) + log

2ni

�
) (9)

+
1

ni

niX

j=1

s
D(Q||P) + EP⇠QD(Q(Si, P )||P ) + log 

�

2(m(1� r̂)� 1)
.

where  = 2nim(1� r̂).

PAC-Bayesian bound for curriculum meta-learning.
While tasks sampled from the same subjects can still be
considered as i.i.d., it is no longer the case when the entire
curriculum is considered. This is because classes are orga-
nized into different subjects based on their difficulty levels
and tasks from the adjacent subjects have similar difficulty
levels (and hence correlated). Non i.i.d. tasks have been in-
vestigated under the life-long learning setting (Pentina and
Lampert 2015) and a bound can be derived with the key
assumption that the model should perform stable across dif-
ferent tasks. However, no concrete strategies have been de-
veloped to make sure the assumption holds. However, under

the noisy label setting, this assumption might collapse. Fig. 2
shows the training and testing processes using both accuracy
and loss of a meta-learning model trained with a noisy Om-
niglot dataset (the solid lines). We can see that the model
presents a significant oscillating performance under the in-
fluence of noisy labels, making the stability assumption not
hold anymore. However, by gradually exposing the model
to the noisy environment in an easy-to-complex order (e.g.,
through our design), the performance is much more stable
(the dash lines). Therefore, we are assured that the expected
performance of the meta-learner does not change over sub-
jects as the task distributions gradually switch from easy to
complex. More formally, for each subject ⌧i, the quality of
prior P measured by the expected loss when using it to learn
new tasks, as defined by eri(P, ⌧i) won’t change over time:
EE1,...,EC [eri(P, ⌧i)] = er(P, ⌧), where Ei = (tij , ⌧i, S

i
j).

For any hypothesis sampled from the adapted pos-
terior Q: h ⇠ Q(S, P ), we have the empirical loss
êri(Q(Si, P ), Si) = Eh⇠Q(Si,P )

1
m

Pm
j=1 `(h, zj) over the

observed training data Si. The expected multi-task er-
ror ẽri(Q(Si, P ),Di) = Eh⇠Q(S,P )Ez⇠Di`(h, z) is eval-
uated on the corresponding unknown task distribution
Di, where the training data are sampled from Si ⇠

Di. The performance of the hyper-posterior Q is mea-
sured by expected loss of learning new tasks using pri-
ors drawn from Q, which is defined as er(Q, ⌧) =

EP⇠Q
PC

i=1 eri(Pi, ⌧i) and its empirical counterpart
êr(Q, S1, ..., SC) = EP⇠Q

1
C

PC
i=1 êri(Q(Si, P ), Si). Be-

low, we present the bound for curriculum meta-learning with
an easy-to-complex order.
Theorem 3 (Curriculum meta-leaning PAC-Bayes bound).
Let Q be a base learner and P be some pre-defined hyper-

prior distribution over prior P . Then for any � 2 (0, 1], the
following inequality holds uniformly for all hyper-posterior

distribution Q with probability at least 1� �,

er(Q)  êr(Q) +
1

p
C
(D(Q||P) +

1

2
� log

�

2
)

+
1

C

CX

i=1

s
1

2(ni � 1)
(D(Q||P) + log

4Cni

�
) +

1

C

CX

i=1

1

ni

niX

j=1

s
D(Q||P) + EP⇠QD(Q(Si, P )||P ) + log n̂

�

2(m(1� r̂)� 1)
,

where n̂ = 4Cnim(1� r̂).

Proof Sketch. The proof consists of three main steps: 1)
we apply the Donsker-Varadhan’s variational formula (Seldin
et al. 2012) to bound the expected risk of multiple subsets
with their empirical counterparts; 2) we utilize the result of
subset bound to obtain intermediate result of the curriculum
meta-learning; 3) we use the union bound argument (Amit
and Meir 2018) to finalize the proof.

Experiments
In this section, datasets, the types of synthetic label noise,
training process, and hyperparameter settings are first ex-
plained. Then the comparison results on different datasets

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14744



and various ablation studies are designed evaluate the effec-
tiveness of DCML.

Datasets. We evaluate the effectiveness of the proposed
dual-level curriculum meta-learning framework (i.e., DCML)
using three benchmark datasets: miniImageNet (Ravi and
Larochelle 2017), FC100 (Oreshkin, López, and Lacoste
2018), Omniglot (Lake et al. 2011) for few-shot learning
along with three real-world noisy datasets: miniWV (Li et al.
2017), Food101 (Bossard, Guillaumin, and Van Gool 2014)
and CIFAR-100N (Wei et al. 2022). The details of the datasets
are given in the Appendix.

Baselines. We compare our method with following meth-
ods: we improve MAML (Finn, Abbeel, and Levine
2017) with existing robust deep learning methods that
achieve competitive performance on noisy data, includ-
ing MAML+spld (Jiang et al. 2014b), MAML+focal (Lin
et al. 2017), MAML+dih (Zhou, Wang, and Bilmes 2020b),
curriculum meta-learning method for few-shot classifica-
tion, Curriculum MAML (CMAML) (Agrawal, Squire et al.
2021), state of the art meta-learning method CT (Luo,
Xu, and Xu 2022), and robust few-shot learning methods
RNNP (Mazumder, Singh, and Namboodiri 2021), Rap-
Nets (Lu et al. 2020) TraNFS (Liang et al. 2022) and
IDEAL (An et al. 2023). We discuss the details in the Ap-
pendix. All experiments are conducted on an NVIDIA A100
GPU with three runs (RIT Research Computing 2019).

Synthetic label noise. We study four settings of synthetic
label noises: (i) Symmetric: it is also known as Uniform-
Flip (Ren et al. 2018), where all label classes can uniformly
flip to any other label classes; (ii) Asymmetric: the label
classes can only flip to other similar label classes; (iii) Back-
groundFlip (Ren et al. 2018): all label classes can flip to a
single background class; (iv) Mixture: it includes symmetric,
asymmetric and BackgroundFlip label noise, by mimicking
the real-world noise. For detailed noise and training hyperpa-
rameter settings, please refer to the Appendix.

Performance Comparison
Tab. 1 and Tab. 3 present 5-way 1-shot test accuracy with
synthetic label noises and real-world label noises, respec-
tively. The corresponding standard deviations are provided in
Tab. 6 and Tab. 8 in the Appendix. In the Appendix, we also
present the results of mixture noise (i.e., Tab. 11), and results
of 5-way 5-shot tasks (i.e., Tab. 13 and Tab. 14). All results
are the average of 3 runs. Regardless of the various strong
baselines, our method ranks at the top for both synthetic label
noises and real-world label noises, showing that our method
is less affected by different noise types. For different types
of noises, we have applied our CP-metrics to arrange task
distributions differently. For symmetric noise, the noise la-
bels are randomly flipped to different classes. Therefore, we
propose to use CP-metrics to classify the noisy class pairs
and the similar class pairs. During training, the noisy ones
are discarded and the similar ones are included during the
later stage of training as difficult tasks. For asymmetric ones,
the similar class pairs are the ones containing higher ratios of
label noise, therefore, they are discretely eliminated during

Figure 3: Left: Test accuracy with different ratios of symmet-
ric label noise. Right: Test accuracy with different DCML
components.

early training and insufficiently trained during the later train-
ing stage so that the model won’t overfit the noisy labels. For
the background noise, the threshold of the eliminated class
is fixed as one during the entire training so that the model
won’t be affected by the background noise. For the mixture
noise, combined strategies are used to divide the training
into different stages: during the early training stage, the easy
classes are utilized; during the later training stage, the similar
classes are incorporated and trained insufficiently; lastly, a
portion of noisy classes such as background noisy classes
are completely banned during entire training. Considering
the fact that the mixture noise is created by mimicking the
real-world noise, the same strategy dealing with the mix-
ture is applied the training of the real-world noisy datasets.
By using different strategies, we make sure the data is suffi-
ciently utilized and the impact of noise is minimized. From
the above results, we observe that our method ranks the top
across different datasets with different noisy types, thanks to
the flexible training strategies design.

Ablation Study
In this section, we study the noisy few-shot task evaluation
setting, and investigate the impacts of different components
via ablation studies, including noise ratio, C-CL, E-CL. More
ablations are presented in the Appendix.

Noisy few-shot tasks evaluation. To verify the effective-
ness of the label noise to each few-shot task, we manually
add 40% of synthetic symmetric label noise to the support
set of each task during evaluation. In Tab. 2 and Tab. 4, we
observe that the performance drops drastically up to 10%
(compared to Tab. 1 and Tab. 3) when the symmetric noise is
applied to each task during evaluation, indicating that FSL
is extraordinary vulnerable to noise. Our method manages
to rank the top even in such crucial situation, showing its
superior robustness. The corresponding standard deviation
and results of 5-way 5-shot cases are shown in the Appendix.

Impact of noise ratio. In this study, we conduct experi-
ments on miniImageNet with 10%, 20%, 30%, 40%, 50%
symmetric label noise, and 30%, 50% mixture of symmetric
and asymmetric label noise. As shown in Fig. 3 (left), with
the increase of noise ratio, the performance of different base-
lines drop rapidly while our method drops the least. Specif-
ically, with 10% of label noise, our method only slightly
outperforms other baselines. However, the performance mar-
gin of our method and the others increase as the noise ratio
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Method miniImageNet FC100 Omniglot miniImageNet FC100 Omniglot miniImageNet FC100 Omniglot
Noise Type Asymetric Symmetric Background
MAML 0.4612 0.3636 0.9408 0.3754 0.3428 0.9166 0.4676 0.3433 0.9585
MAML+spld 0.4605 0.3563 0.9379 0.3602 0.3236 0.9037 0.4478 0.3503 0.9571
MAML+focal 0.4512 0.3502 0.9409 0.3852 0.3422 0.9041 0.4562 0.3545 0.9592
MAML+dih 0.4617 0.3577 0.9381 0.3749 0.3418 0.9046 0.4594 0.3477 0.9556
CMAML 0.4533 0.3573 0.9206 0.4134 0.3389 0.8994 0.4618 0.3463 0.9402
RNNP 0.4622 0.3973 0.9506 0.4511 0.3889 0.9394 0.4650 0.3963 0.9602
TraNFS 0.5100 0.4152 0.9643 0.4080 0.4119 0.9347 0.5100 0.4129 0.9787
CT 0.4642 0.3589 0.9429 0.3711 0.3418 0.9140 0.4650 0.3437 0.9571
IDEAL 0.5201 0.4410 0.9566 0.4440 0.4606 0.9200 0.4800 0.4278 0.9766
DCML 0.5315 0.4671 0.9677 0.4627 0.4822 0.9543 0.5193 0.4448 0.9843

Table 1: 5-way 1-shot on different types of noises

Method miniImageNet FC100 Omniglot miniImageNet FC100 Omniglot miniImageNet FC100 Omniglot
Noise Type Asymetric Symmetric Background
MAML 0.3176 0.3045 0.6712 0.3174 0.2980 0.6557 0.3530 0.2883 0.6660
MAML+spld 0.3462 0.2967 0.6685 0.2929 0.2776 0.6411 0.3414 0.2895 0.6864
MAML+focal 0.3493 0.3003 0.6710 0.3028 0.2861 0.6400 0.3524 0.2935 0.6834
MAML+dih 0.3530 0.2975 0.6681 0.3035 0.2863 0.6425 0.3451 0.2819 0.6810
CMAML 0.3427 0.2917 0.6580 0.3251 0.2917 0.6457 0.3451 0.2819 0.6810
RNNP 0.3487 0.2863 0.6780 0.3151 0.2969 0.6572 0.3631 0.2919 0.6805
TraNFS 0.3562 0.3011 0.6702 0.3103 0.2932 0.6651 0.3667 0.2906 0.6823
CT 0.3471 0.2963 0.6680 0.3005 0.2908 0.6431 0.3544 0.2844 0.6805
IDEAL 0.3488 0.3009 0.6822 0.3200 0.3028 0.6691 0.3500 0.3001 0.6650
DCML 0.3573 0.3144 0.6833 0.3332 0.3142 0.6740 0.3558 0.3149 0.6716

Table 2: 5-way 1-shot test accuracy on few-shot classification task with symmetric noise on support set during meta-test

Datasets CIFAR-100N Food101FS miniWV
MAML 0.5446 0.3927 0.3274
MAML+spld 0.5266 0.3947 0.3221
MAML+focal 0.5202 0.399 0.3198
MAML+dih 0.5377 0.3949 0.3282
CMAML 0.5528 0.4144 0.3382
RNNP 0.5928 0.4844 0.3815
TraNFS 0.5853 0.3957 0.3284
CT 0.5460 0.3957 0.3263
IDEAL 0.5890 0.4511 0.3726
DCML 0.6059 0.5165 0.3986

Table 3: 5-way 1-shot accuracy on real-world noisy datasets

Datasets CIFAR-100N Food101FS miniWV
MAML 0.3908 0.3233 0.2760
MAML+spld 0.3901 0.3160 0.2767
MAML+focal 0.3914 0.3144 0.2744
MAML+dih 0.3913 0.3127 0.2751
CMAML 0.3977 0.3116 0.2772
RNNP 0.3775 0.3267 0.2760
TraNFS 0.4146 0.3285 0.2800
CT 0.4015 0.3249 0.2848
IDEAL 0.4208 0.3188 0.2789
DCML 0.4239 0.3343 0.2942

Table 4: 5-way 1-shot few-shot classification test accuracy
with symmetric noise on support set during meta-test

increase. Similarly, as shown in Tab. 10, when the noise ratio
increases from 30% to 50%, the test accuracy of our method

only drops 0.04%, while some others drops nearly 10%.

Impact of C-CL and E-CL. The right plot of Fig. 3 shows
the 5-way 5-shot result of DCML with only one level of
curriculum applied (i.e., C-CL or E-CL), and no curriculum
applied (i.e., None) on the three real-world noisy datasets
CIFAR-100N, Food101 and miniWV, and compared to both
level of curriculum applied (i.e., DCML). We observe that
applying a singe level of curriculum learning (C-CL or E-CL)
performs inferior to the dual-level design but superior to none
curriculum learning applied, indicating the combination of
C-CL and E-CL benefits model training the most. Without E-
CL, C-CL is misled and a sub-optimal curriculum is formed
which deteriorates the performance due to the noise in each
task. When E-CL is applied, the noise in each task is removed
so that C-CL formulates an optimal curriculum using clean
tasks, hence DCML gives the highest performance.

Conclusion
In this paper, we develop a dual-level curriculum meta-
learning framework for robust few-shot learning. In the pro-
posed framework, class-level sampling formulates an easy-to-
complex curriculum by identifying difficult classes from the
noisy ones using our proposed CP-metrics whereas a proxy
model is leveraged at the example level to choose clean exam-
ples. We provide convergence analysis and a novel hierarchi-
cal PAC-Bayes analysis for the dual-level framework under
the noisy setting. The performance is validated on benchmark
and real-world datasets with diverse label noises.
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