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Abstract

While modern biotechnologies allow synthesizing new pro-
teins and function measurements at scale, efficiently exploring
a protein sequence space and engineering it remains a daunt-
ing task due to the vast sequence space of any given protein.
Protein engineering is typically conducted through an iterative
process of adding mutations to the wild-type or lead sequences,
recombination of mutations, and running new rounds of screen-
ing. To enhance the efficiency of such a process, we propose
a tree search-based bandit learning method, which expands a
tree starting from the initial sequence with the guidance of a
bandit machine learning model. Under simplified assumptions
and a Gaussian Process prior, we provide theoretical analysis
and a Bayesian regret bound, demonstrating that the method
can efficiently discover a near-optimal design. The full algo-
rithm is compatible with a suite of randomized tree search
heuristics, machine learning models, pre-trained embeddings,
and bandit techniques. We test various instances of the al-
gorithm across benchmark protein datasets using simulated
screens. Experiment results demonstrate that the algorithm is
both sample-efficient, diversity-promoting, and able to find
top designs using reasonably small mutation counts.

1 Introduction
Advances in biotechnology have demonstrated human’s un-
precedented capabilities to engineer proteins. They make it
possible to directly design the amino acid sequences that
encode proteins for desired functions, towards improving
biochemical or enzymatic properties such as stability, bind-
ing affinity, or catalytic activity. Directed evolution (DE),
for example, is a method for exploring new protein designs
with properties of interest and maximal utility, by mimicking
the natural evolution process. The development of DE was
honored in 2018 with the awarding of the Nobel Prize in
Chemistry to Frances Arnold for the directed evolution of en-
zymes, and George Smith and Gregory Winter for the devel-
opment of phage display (Arnold 1998; Smith and Petrenko
1997; Winter et al. 1994). Traditional DE strategies are inher-
ently screening (greedy search) strategies with limited ability
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to generate high-quality data for probing the full sequence-
function relationships. Recent advances in synthetic DNA
generation and recombinant protein production make the
measurement of protein sequence-function relationships rea-
sonably scalable and high-throughput (Packer and Liu 2015;
Yang, Wu, and Arnold 2019).

Due to the bottleneck of wet-lab experimentation and the
complex landscape of protein functions, identifying novel
protein designs for maximal fitness remains one of the most
difficult but high-value problems in modern medicine and
biology. This has motivated scientists to apply machine learn-
ing approaches, beginning with Fox et al. (2003) and fol-
lowed by many, with increasing amounts of efforts utilizing
in silico exploration and machine learning beyond experi-
mental approaches (Yang, Wu, and Arnold 2019; Fannjiang
and Listgarten 2020; Doppa 2021; Shin et al. 2021; Fres-
chlin, Fahlberg, and Romero 2022; Wang et al. 2022; Sinai
et al. 2020). More recent advances in large language mod-
els open up new opportunities for modeling and predicting
protein functions and generalizing knowledge across protein
domains (Rives et al. 2021; Shuai, Ruffolo, and Gray 2022;
Nijkamp et al. 2022; Hsu et al. 2022; Elnaggar et al. 2020).

The key research challenge with designing the iterative
protein screening strategy is exploration, i.e., how to effec-
tively explore in a large combinatorial space and learn the
sequence-to-function landscape towards finding the optimal.
While many attempts have been proved successful in simula-
tion and sometimes in real experiments (Bryant et al. 2021;
Shin et al. 2021), they often are limited by practical con-
straints and their performance is very sensitive to domain/dis-
tribution shifts. Even with the best and largest pre-trained
protein language models such as ESM-1b (Rives et al. 2019)
and ProGen2 (Nijkamp et al. 2022), one often needs to ex-
plore an almost unknown domain and learn a new function
map in order to discover new drugs. This is especially true
with antibody engineering. Antibodies have highly diverse
complementarity-determining region (CDR) sequences that
can be altered, resulting in a huge sequence space to explore
for optimal properties. The binding of antibodies to their tar-
gets are extrinsic properties of antibodies and it is difficult to
accurately model the sequence-binding relationships solely
from the sequences alone. Further, most of the exploration
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Figure 1: A Tree visualization of AAV screen dataset (Bryant et al. 2021), generated by starting from the wild-type and building
the tree via downsampling children with an editing distance of 1 from the parent. The wet-lab screen initiates with a wild-type
design sequence (root node), and in each round new sequences are generated by adding randomization and keeping those with
high fitness scores as parents. It was believed that nodes with high fitness are more likely to generate high-fitness children.

strategies used in practice lack theoretical guarantees.

Practical considerations in protein screens and a tree
search view Protein engineering is typically done through
trial-and-error approaches in altering the primary sequence
by mutations or changing the length of certain regions. More
high-throughput approaches (e.g. in vitro display systems)
involve randomizing the amino acids for the positions-of-
interest or region-of-interest. To obtain the optimal properties
for a protein, the directed evolution approach is typically
used by exploring a limited sequence space in each round
of engineering, and starting the next round of engineering
from the best one or the best few sequences in the previous
round, in an iterative manner (Wu et al. 2019). A typical
protein engineering workflow by producing purified proteins
is limited to up to a few hundred sequences due to throughput
limitations. In vitro display systems, on the other hand, can
be used to screen millions of sequences, although the data
generation (labeled data of sequence-function relationships)
throughput is much smaller.

For practical reasons, especially for therapeutic proteins,
the choice of mutations is dependent on the know-how of the
protein engineer, and the number of mutations is kept low in
order to prevent unexpected issues associated with decreased
protein stability, compromised binding specificity, and im-
munogenicity. Adding too many mutations may also lead
to distribution-shift and reduce the robustness of machine-
learning models. Thus, practitioners are reluctant to make
large jumps in the screening/search process.

For example, (Bryant et al. 2021) studied the engineer-
ing of Adeno-associated virus 2 capsid protein (AAV) and
screened a total of 201,426 variants of the AAV2 wild-type
(WT) sequence. It screened all single mutations in the first
round, then generated variants with > 1 mutations via ran-
domization and selection of high-value ones in later rounds.
Such an iterative process mimics a tree search. To understand
this process, we visualize those sequences from the dataset of
(Bryant et al. 2021) after downsampling in Figure 1. We see
that the screen data map nicely to a tree, where the root node
corresponds to the wide-type AAV and mutations connect
parent and child nodes. These observations are consistent
with practical screening strategies that add mutation sequen-
tially and search for better alternatives. Note that the tree size

grows exponentially as mutations are added. For the example
of AAV, variants with up to 5 mutations form a tree with∑5

i=0

(
28
i

)
· 19i nodes. Thus even with a bounded number of

mutations, the problem is prohibitively difficult.

Our Approach In order to make the screening process
more efficient, we borrow ideas from both the protein en-
gineering practices and recent advances in bandit machine
learning, hoping to get the best from both worlds. We follow
two principles for algorithm design:

(1) We wish to largely follow a tree search process and iden-
tify optimal sequences with just a few mutations. As men-
tioned, practitioners are reluctant to make large jumps in
the screening/search process. Being a local search strat-
egy, tree search from lead sequences will keep total mu-
tation counts small, which means better reliability of the
found solution. Further, machine learning models for func-
tion prediction are more likely to generalize well to new
designs that do not change too much from training data.

(2) We employ bandit exploration techniques to guide the tree
branching process. Instead of searching greedily using a
learned prediction model, we hope to more aggressively
search designs with higher uncertainty. Two main tech-
niques in bandit learning are upper confidence bound
(UCB) and posterior sampling (also known as Thomp-
son Sampling, aka TS). We will incorporate these bandit
techniques, leveraging pre-trained protein sequence em-
bedding and neural networks, into tree search to enhance
exploration.

In this paper, we propose to combine tree search with
bandit machine learning. We begin by presenting a meta-
algorithm (Algorithm 1). It proceeds by mimicking the di-
rected evolution process, growing a tree from the root node,
and gradually expanding via mutation and recombination. It
uses a pre-trained embedding and a machine learning model
for predicting fitness, and during the search process, it adopts
a bandit strategy to update the predictor and actively explore
the tree. This meta-algorithm provides a versatile framework
for analyzing exploration in sequence space.

Results For theoretical analysis, we study a Bayesian set-
ting where the true function map has a Gaussian Process
prior distribution. We also assume Lipschitz continuity of
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the embedding map and local convexity of the fitness func-
tion. Under these simplified conditions, we show that the
meta-algorithm with GP bandit can provably identify the op-
timal sequence and achieves a regret O

(
γT
√
T
)

, where γT

is known as the maximal information gain. The theoretical
analysis may apply to a broader class of bandit algorithms
and be of independent interest.

Next, we fully develop the algorithm for numerical im-
plementation, and make it compatible with a suite of bandit
models including UCB and Thompson Sampling. We exper-
iment with instances of the algorithm and compare with a
variety of baselines, using simulation oracles trained from
real-life protein function datasets AAV (Bryant et al. 2021),
TEM (Gonzalez and Ostermeier 2019) and AAYL49 antibody
(Engelhart et al. 2022) datasets. Experiment results show that
tree-based methods achieve top performances across bench-
marks and can efficiently find near-optimal designs with
single-digit mutation counts.

2 Related Work
Protein engineering. The traditional DE works by artifi-
cially evolving a population of variants, via mutation and
recombination, while constantly selecting high-potential vari-
ants (Chen and Arnold 1991, 1993; Kuchner and Arnold
1997; Hibbert and Dalby 2005; Turner 2009; Packer and Liu
2015). Many variations of DE methods allow targeted ran-
domization of positions-of-interest or regions-of-interest. It is
also possible to synthesize specific variants and operate on the
combinatorial space likewise with high-throughput method,
at a cost, and this allows directly applying a Gaussian process
bandit algorithm (Romero, Krause, and Arnold 2013). A pre-
liminary version of this paper appeared at (Wang et al. 2022).
See (Yang, Wu, and Arnold 2019) for a high-level survey of
machine learning-assisted protein engineering, and see (Fox
et al. 2007; Bedbrook et al. 2017) for more examples.

Search algorithms for protein sequence design. Re-
searchers have tried out various machine learning-based
methods for sequence optimization. Bayesian Optimiza-
tion(BO)(Mockus 1989) is a classical method for optimiz-
ing protein sequences. We use the code developed by Sinai
et al. (2020) who uses an ensemble of models for BO as
one of the baselines. LaMBO(Stanton et al. 2022) is also
a BO-based algorithm that supports both single-objective
and multi-objective. Design by adaptive sampling (DbAS;
Brookes and Listgarten (2018)) and conditioning by adaptive
sampling (CbAS; Brookes, Park, and Listgarten (2019)) use
a probabilistic framework. DyNA PPO(Angermueller et al.
2020) uses proximal policy optimization for sequence design.
PEX MufacNet(Ren et al. 2022) is a local search method
based on the principle of proximal optimization.

Bandit learning. Bandit is a well-studied framework
for optimizing with uncertainty, powerful in balancing
exploration-exploitation trade-off – a core challenge in pro-
tein sequence optimization. Therefore, it is potential to study
protein optimization from a bandit perspective and there
is recent work (Yuan et al. 2022) emerging from this mid-
dle ground. To balance exploration and exploitation, typi-

cal strategies are being optimistic in the face of uncertainty
(OFU) based on the upper confidence bound (UCB) Abbasi-
Yadkori, Pál, and Szepesvári (2011) and Thompson Sampling
(TS) Russo and Van Roy (2014), which randomizes policies
based on the posterior of the optimal policy. Regret guar-
antees have been established for different function classes
of rewards, starting from the line of linear bandits. It was
shown for the d-dim linear model upper and lower regret
bounds meet at Õ

(
d
√
T
)

(Auer 2002; Li et al. 2010; Abbasi-
Yadkori, Pál, and Szepesvári 2011; Li et al. 2010; Russo and
Van Roy 2014), with extensions to reinforcement learning
(Yang and Wang 2020, 2019; Li et al. 2022) and sparsity-
aware or decentralized settings (Hao, Lattimore, and Wang
2020; Li et al. 2022). Later on, results from linear bandits
have been extended to kernelized/ Gaussian process (GP)
bandits. With γT defined as the maximal information gain
and d being the dim of actions, (Srinivas et al. 2009) showed
an upper bound of Õ

(√
dTγT

)
and one of Õ

(
γT
√
T
)

in
the agnostic setting achieved by GP-UCB. Exploded by a
factor of

√
d, Õ

(
γT
√
dT
)

regret was shown by (Chowdhury
and Gopalan 2017) for agnostic GP-TS.

Recently, there has been a growing interest in bridging the
predictive power of deep neural networks with the exploration
mechanism of bandit learning, which is known as neural
bandits (Zhou, Li, and Gu 2020; Zhang et al. 2020; Jacot,
Gabriel, and Hongler 2018; Xu et al. 2020). Building upon the
neural tangent kernel (NTK) technique to analyze deep neural
network (Jacot, Gabriel, and Hongler 2018), NeuralUCB
(Zhou, Li, and Gu 2020) can be viewed as a direct extension
of kernel bandits (Srinivas et al. 2009). Zhang et al. (2020)
proposed the Thompson Sampling version of neural bandits.
Xu et al. (2020) proposed NeuralLinUCB, which learns a
deep representation to transform the raw feature vectors and
performs UCB-type exploration in the last linear layer of the
neural network.

3 Method
3.1 Problem Formulation
Let x ∈ X denote an amino-acid sequence, and let F (x)
denote a function measuring the fitness of the sequence. In
practice, a known embedding map ϕ : X → Rd, mapping a
sequence x to its embedding vector ϕ(x), is often utilized to
model the fitness F (x) as f⋆(ϕ(x)). Thus, we formulate the
sequence design problem as

max
x∈X

F (x) := f⋆(ϕ(x)), (1)

where f⋆ represents the unknown ground-truth function. Here
X corresponds to the tree rooted at the xwt ∈ X of a fixed
depth.

The learning problem is to explore X , screen and collect
data of the form (ϕ(x), F̃ (x)), refine estimates of f⋆ in an it-
erative fashion. Here F̃ (x) represents a noisy measurement of
the unknown true fitness F (x). The hardness of the problem
is due to searching over the combinatorial space X . Although
the embedding map ϕ(x) helps to learn F more accurately,
we still have to work with discrete sequences and cannot
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make jumps in the embedding space. This nature of discrete
sequence optimization is in sharp contrast to typical bandit
settings.

3.2 Meta Algorithm
We present a meta-algorithm that combines bandit machine
learning with local tree search in Algorithm 1. Detailed im-
plementation of the subroutine TREESEARCH (Alg. 2 ) is
delayed till Section 4.1 and 5.

Algorithm 1: Meta algorithm

1: Input: wildtype xwt, total rounds T
2: Initialization: Add xwt to active node set A0 as root

node.
3: for t = 1, 2, ...T do
4: Update bandit model: return a scoring function

Ft(·) := ft(ϕ(·)).
5: Tree search by Alg. 2: At ←

TREESEARCH(At−1, Ft).
6: Query the fitness F (x) for some (or all) x’s in At and

append {(ϕ(x), F̃ (x))} to the dataset.
7: end for

Analysis of simple tree search Motivated by the practical
observation that high-potential variants usually appear within
a small count of mutations from a wildtype and the practical
consideration that function approximation generalizes better
in a local region where most data lies, we focus on a local
searching region X̄ := {x : d(x, xwt) ≤ N} ⊂ X and
aim to identify the optimal sequences within X̄ . Here d(·, ·)
denotes the hamming distance between any two arbitrary
sequences in X and N controls the mutation counts (the
depth of tree search).

Bayesian regret Given the search region X̄ , we measure
the performance of an algorithm by its Bayesian regret de-
fined as follows.
Definition 3.1. Suppose the algorithm finds a series of
protein sequences {xt}Tt=1 within X̄ , then its accumulated
Bayesian regret is defined as

BayesRGT(T ) = E

[
T∑

t=1

(
max
x∈X̄

F (x)− F (xt)

)]
, (2)

where E is taken over the prior distribution of f⋆ (which we
will assume to be a Gaussian process in Section 3.3), and
taken over other randomness in finding {xt}Tt=1 .

Simple tree search In order to obtain a basic theoreti-
cal understanding of the tree search-based bandit learning
process, we consider a simplified mathematical abstraction
of Alg. 1: suppose in each round t, protein xt is filtered
out through the subroutine TREESEARCH(At−1, Ft), and
{xt}Tt=1 satisfies the following condition. And it only col-
lects {(ϕ(xt), F̃ (xt))} in the active set for updating ft.
Condition 3.2. There exists r > 0 such that each iteration
of tree search is able to find a sequence that has equal or

better Ft value than the local maximum within radius r in
the embedding space, i.e.,
Ft(xt) ≥ max{Ft(x) | x : ∥ϕ(x)− ϕ(xt−1)∥ ≤ r}. (3)
This condition shows that the local search method makes

sufficient improvement w.r.t. Ft per iteration. In practice, this
condition can be satisfied by tuning parameters and stopping
conditions of the tree search subroutine. To understand this,
when ϕ is Lipschitz, with notation ϕ(X̄ ) := {ϕ(x) : x ∈ X̄},
we have ϕ(X̄ ) ⊂ D := {ϕ(x) : ∥ϕ(x) − ϕ(xwt)∥ ≤ R :=
LϕN}, D is the local region around ϕ(xwt) in the embed-
ding space. Thus in practice, if a good embedding map ϕ
successfully captures the latent structure of X such that ϕ(X̄ )
spans well in D, then Condition 3.2 is satisfied whenever
TREESEARCH sufficiently exhausts the local variants around
xt−1 in the discrete sequence space. In other words, proper-
ties of the embedding map ϕ critically connect locally search-
ing in the discrete sequences to searching in the embedding
space towards improving function value.

3.3 Regret Theory under GP Fitness
In this section, we provide a Bayesian regret theory for the
proposed meta algorithm, under some necessary assumptions
and simplifications. We assume a GP prior-posterior mod-
elling of f⋆ and ft’s, as well as some local properties of
ft’s. The basic theoretical understanding of the tree search-
based bandit learning process we obtained in this section
may have implications for the broader settings beyond our
assumptions/simplifications.

GP Modeling of f⋆ For theoretical analysis, we consider
a Bayesian learning setting where the ground truth f⋆ is
assumed to follow a Gaussian Process (GP) prior, and the
evaluation of F (x) is assumed to be corrupted by Gaussian
noise. GP model is well studied and widely applied in ma-
chine learning (Seeger 2004), especially in classic bandit
optimization (Srinivas et al. 2009; Chowdhury and Gopalan
2017).
Assumption 3.3. f⋆ : Rd → R is a sample from the
Gaussian process GP(0, k(·, ·)) (with known kernel function
k(·, ·)) as priori, i.e.

f⋆(ϕ(x)) ∼ GP (0, k(ϕ(x), ϕ(x′))) . (4)
Assumption 3.4. For any sequence x, querying its fitness
F (x) returns a noisy feedback F̃ (x) corrupted by a Gaussian,
i.e.

F̃ (x) = f⋆(ϕ(x)) + ϵ, (5)
where ϵ ∼ N (0, λ) , λ > 1 and is sampled independently
from the history.

To get a sharper regret bound, we sample ft from the pos-
terior Gaussian Process with monitoring. For the subsequent
theory, we also need some assumptions on the local proper-
ties of ft’s. Recall D := {ϕ(x) : ∥ϕ(x)− ϕ(xwt)∥ ≤ R :=
LϕN} is the local region surrounding ϕ(xwt) in Rd.
Assumption 3.5. At each time step t, ft is bounded in D.
For ∀t, z ∈ D,

|ft(z)| ≤ B. (6)
Also, assume for all t, ft is locally concave, Lf Lipschitz in
D and attains its maximal value in the interior of D.
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Figure 2: Visualization of tree search process of Algorithm 1 using the AAV oracle. The search initiates with a wild-type sequence
(the root note) and in each round, we choose 100 sequences generated from the last round according to scores derived from UCB
and TS by single mutation which leads to a node in the next layer and recombination of sequences (shown by blue edges) which
leads to a jump to a layer with more mutations. A path to the optimal sequence is shown by the bold line.

Figure 3: Diagram of the meta algorithm (Alg. 1)

Next in Theorem 3.6, Alg. 1 is proven to explore the local
sequence space via tree search and bandit learning, while
attaining low regret.

Theorem 3.6. Under Assumption 3.3, 3.4, 3.5 and Condition
3.2, Alg.1 updates ft for O (γT ) times its Bayesian regret is
bounded by

BayesRGT(T ) = O

(
βT

√
λTγT +BγT

(
1 +

4L2
ϕN

2

r2

))
,

(7)
where βT = O

(
E [∥f⋆∥k] +

√
d lnT +

√
γT−1

)
. γT is the

information gain, r is inherit from Condition 3.2 and N is
the depth of tree search.

Rate of regret The highest order term in (7) is of
Õ
(
γT
√
T ∨
√
dγTT

)
, which matches the results by (Srini-

vas et al. 2009; Chowdhury and Gopalan 2017) studying GP
bandits. (7) turns out to be Õ

(
d
√
T
)

(with γT = d log T )
when k(·, ·) in the prior is linear, which downgrades the GP
model to the d-dim Bayesian linear model. It’s worth men-
tioning that the recovered Õ

(
d
√
T
)

bound improves (Yuan

et al. 2022) by a factor of
√
d, benefiting from the stability

brought by ft’s rare switching. Here γT is closely related
to the “effective dimension” of the chosen kernel, which is
a natural and common complexity metric for online explo-
ration.

Novelty and significance compared to classical results of
bandits and Bayesian optimization. We highlight that

classical results do not apply our tree search algorithm that
uses local search to gradually explore the action space. In par-
ticular, classical methods (such as plain vanilla UCB or TS)
require finding the maximum of a surrogate function within
the search region. This is far from the protein design practice
where solutions with large surrogate values are approached
by search: looking for the argmax of f̂t can lead to instability
and invalid solution.

In contrast, our method adds mutations gradually in a
tree search process mimicking real-world screen practice.
Analysis of such methods is much more complicated: we
adapt classic arguments in optimization theory to analyze the
progression of local search, which is further entangled with
bandit exploration and information gain when new samples
are collected. The proof idea is to view each local update
as a form of proximal point optimization update and derive
a novel recursive decomposition of the overall regret. Our
analysis may be of interest to analyzing a broader class of
bandit-guided evolutionary optimization algorithms.

Despite these differences, our regret bound nearly matches
regret bound of classical bandit methods. The message is
quite positive: The use of iterative local search does not
impair quality of learning, with provable guarantee to explore
the space of interests.

Universality of GP assumption GP provides a universal
function approximation and it comes with both practical and
theoretical implications. GP model and Bayesian optimiza-
tion have been directly applied in protein engineering prac-
tice and proved effective in wet-lab experiments (Romero,
Krause, and Arnold 2013), which supports our assumptions
here. Further, GP can represent any kernel function space,
which together with the modern deep learning theory (Ja-
cot, Gabriel, and Hongler 2018) imply a powerful theoretical
approximation to neural networks used in practice.

4 Full Algorithm
In this section, we present the full algorithm.

4.1 Tree Search Heuristics
Algorithm 2 expands a tree starting from the root wide-type
sequence, i.e.,A = {xwt}. Similar to the practice of directed
evolution, we generate child nodes from parents in two ways:
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Figure 4: A demonstration of mutation and recombination. 1

adding random mutation to one sequence and pairwise re-
combining two sequences. See Figure 4 for an illustration
of these two operations. We use hyperparameters n1, n2 to
control the rate of mutation and rate of recombination.

We use an active set A to keep track of the frontier of the
tree search. At each round, the tree expands in a randomized
way. New nodes with high scores measured by F will be kept
track of and later used for updating the active set A.

Ideally, one would want to keep the full search history in
A, but then the runtime will quickly blow up due to the expo-
nential tree size. To make it more computationally affordable,
we do not expand the active set At, but keep it at a constant
size in our implementation. We use a parameter ρ to control
the portion of previously visited nodes to keep in the active
set. This parameter can also be viewed as balancing depth
and width in tree search.

Algorithm 2: TREESEARCH(A, F (·))
1: Input: Active node set A, scoring function F (·)
2: Parameter: n1, n2, n3, ρ
3: Initialization: Candidate node set C = ∅, Query node

set Q = ∅
4: for i = 1, 2, · · · , n1 do
5: Add random mutation to a random sequence x ∈ A.
6: Add the new sequence to candidate node set C.
7: end for
8: for i = 1, 2, · · · , n2 do
9: Sample x, y from A uniformly with replacement.

10: Recombine x, y and add the new sequence to C.
11: end for
12: Set new active node set A with n3 sequence where ρ

portion is from A and 1 − ρ portion is from the top
scored sequences in {F (x) : x ∈ C}.

13: return A

4.2 Bandit Exploration
We use two classic exploration methods for scoring, Upper
Confidence Bound (UCB) (Li et al. 2010) and Thompson
Sampling (TS; Russo and Van Roy (2014)), to enable our
algorithm to consider the potential of each node and look
ahead.

5 Experiment
In this section, we evaluate our algorithm using oracles sim-
ulated to mimic the exploration process in wet-lab protein

screens. Following Ren et al. (2022) and Sinai et al. (2020),
we use oracles to mimic the fitness landscape as the wet-lab
experiment is both time-consuming and cost-intensive. We
build experiments around real-world protein datasets, such
as AAV (Bryant et al. 2021), TEM (Gonzalez and Oster-
meier 2019) and AAYL49 antibody (Engelhart et al. 2022).
Experiments results show that the tree search-based bandit
outperforms existing baselines and leads to several interesting
observations.

5.1 Datasets and Setup
Datasets We experiment using three datasets from protein
engineering studies and train oracles to simulate the ground-
truth wet-lab fitness scores f⋆ of the landscape. The AAV
and TEM oracles use pre-trained TAPE embedding (Rao
et al. 2019) with a CNN model and the AAYL49 oracle is
a downstream task from the pre-trained TAPE transformer
model (Rao et al. 2019). For each round of the experiment,
the model will query sequences from the black-box oracle,
and the oracle will produce a fitness score depending on the
sequence similar to the wet lab.

In particular, we use datasets of Adeno-associated virus 2
capsid protein (AAV) (Bryant et al. 2021) which aimed for
viral viability with search space 2028; TEM-1 β-Lactamase
(TEM) (Gonzalez and Ostermeier 2019) which aimed for
thermodynamic stability with search space 20286; and, Anti-
SARS-CoV-2 antibody (AAYL49) (Engelhart et al. 2022)
which aimed for binding affinity with search space of 20118.

Experiment Setup In the experiment, we run each algo-
rithm for 10 rounds with 100 query sequences per round for
a fair comparison with our baselines. The algorithm cannot
get any information about the oracle except the channel of
queried sequences. Each test is run for 50 repeats using 50 dif-
ferent random seeds and measured the average performance
across all seeds.

We use PEX (Ren et al. 2022), Adalead (Sinai et al. 2020),
Bayesian Optimization (BO) implemented by Sinai et al.
(2020), DbAS (Brookes and Listgarten 2018) implemented
by Sinai et al. (2020) and LaMBO(Stanton et al. 2022) as our
main baselines. We also use NeuralUCB-DE and NeuralTS-
DE as the other two baselines which can be viewed as two
downgraded versions of our algorithm without tree search.
In detail, NeuralUCB-DE and NeuralTS-DE use uniform
mutation with a mutation probability and recombination to
generate new sequences. We also test CbAS (Brookes, Park,
and Listgarten 2019) but choose not to report it, because it
performs almost the same as DbAS, consistent with results
Ren et al. (2022). The performance of the LaMBO on the
TEM dataset is missing because the LaMBO algorithm has
a memory limit and run-time efficiency issue on the TEM
dataset due to the long sequence length. We do not use Dy-
NAPPO (Angermueller et al. 2020) as our baseline due to
TensorFlow incompatibility.

For tree search-based algorithms, we use a neural network
and follow (Xu et al. 2020)’s approach and use the second last
dense layer’s output of the neural network as ϕ(x) used by the
UCB/TS formula. We reported tree search-based algorithms
both uses UCB(TreeNeuralUCB) and TS(TreeNeuralTS).
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Figure 5: Learning curves of algorithms with comparison to baselines, tested over three datasets.

We run all the exploration algorithms on the same neural
network structure for fair comparison. One hot encoding with
CNN was used for the TEM and AAYL49 antibody datasets.
We use TAPE (Rao et al. 2019) embedding with a simple
2-layer fully connected neural network for the AAV dataset
to compensate for the limited sequence length.

5.2 Results and Analysis
Performances and Comparison. The experiment results are
shown in Figure 5. Our tree search-based algorithm generally
outperforms our baselines regarding the max fitness perfor-
mance. On the datasets TEM and AAYL49, all algorithms’
curves seem not to reach convergence in 10 rounds. This is
because TEM and AAYL49 deal with much longer sequences,
so convergence is slower no matter what algorithm is used.
We also conducted additional tests on the landscapes built by
Thomas et al. (2022), the results are consistent with our oracle
and the tree search method outperforms other baselines.

For the performance of mutation count, tree search-based
algorithms are not worse than PEX-based algorithms. On
the AAV dataset, all algorithms can be controlled within 5
mutation counts. However, on datasets with larger sequence
lengths, both NeuralUCB-DE and NeuralTS-DE have very
large mutation counts.

We also run an experiment on the 3gfb oracles built by
Thomas et al. (2022) using the same setting. The results
are consistent with other oracles and the tree search-based
algorithms outperform the baselines regarding the max fitness
performance.
Effect of Tree Search compared to DE In Figure 5, tree
search-based algorithms generally outperform two baselines
NeuralTS-DE and NeuralUCB-DE. Meanwhile, tree search-
based algorithms only need fewer mutation counts than those
non-treesearch methods.
Effect of keeping parent/root nodes in active set. We use a
parameter ρ to control updates of the active set, i.e., saving
part of the root node set in each round. Figure 6 shows one
seed’s curve where the exploration got stuck when the active

Figure 6: Effect of keeping parent nodes in active set.

set is not updated to save enough parents/root. By saving
previous nodes, it balances width-first and depth-first better
and allows the algorithm to find higher-value nodes.

6 Limitations
The functionalities of the protein sequences are complicated.
So far, none of our oracles or oracles from Adalead and PEX-
Mufacnet, or the pre-trained protein language models such as
ESM or TAPE could accurately predict the whole landscape.
We do not allow using our models in production without
authorization due to potential negative social impacts. More
discussion on limitations is available in Appendix.

7 Conclusion
This paper proposes a tree-based bandit learning method for
enhancing the process of protein engineering. The methods
expand the tree from the initial sequence (wild-type) with
the guidance of bandit machine learning models using ran-
domized tree search heuristics, machine learning models,
pre-trained embeddings. We have shown the algorithm can
discover a near-optimal design under simplified assumptions,
with experimental validation.
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