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Abstract

Existing approaches defend against backdoor attacks in feder-
ated learning (FL) mainly through a) mitigating the impact of
infected models, or b) excluding infected models. The former
negatively impacts model accuracy, while the latter usually re-
lies on globally clear boundaries between benign and infected
model updates. However, in reality, model updates can easily
become mixed and scattered throughout due to the diverse
distributions of local data. This work focuses on excluding
infected models in FL. Unlike previous perspectives from a
global view, we propose Snowball, a novel anti-backdoor FL
framework through bidirectional elections from an individual
perspective inspired by one principle deduced by us and two
principles in FL and deep learning. It is characterized by a)
bottom-up election, where each candidate model update votes
to several peer ones such that a few model updates are elected
as selectees for aggregation; and b) top-down election, where
selectees progressively enlarge themselves through picking
up from the candidates. We compare Snowball with state-of-
the-art defenses to backdoor attacks in FL on five real-world
datasets, demonstrating its superior resistance to backdoor
attacks and slight impact on the accuracy of the global model.

Introduction
Federated Learning (FL) (McMahan et al. 2017) enables mul-
tiple devices to jointly train machine learning models without
sharing their raw data. Due to the unreachability to distributed
data, it is vulnerable to attacks from malicious clients (Wang
et al. 2020), especially backdoor attacks that neither sig-
nificantly alter the statistical characteristics of models as
Gaussian-noise attacks (Blanchard et al. 2017) nor cause a
distinct modification to the training data as label-flipping
attacks (Liu et al. 2021), and thus, are more covert against
many existing defenses (Zeng et al. 2022).

Existing defenses to backdoor attacks in FL are mainly
based on a) mitigating the impact of infected models (Bag-
dasaryan et al. 2020; Sun et al. 2019; Xie et al. 2021; Nguyen
et al. 2022; Zhang et al. 2023) or b) excluding infected mod-
els based on their deviations (Blanchard et al. 2017; Ozdayi,
Kantarcioglu, and Gel 2021; Fung, Yoon, and Beschastnikh
2018; Rieger et al. 2022; Li et al. 2020a; Shejwalkar and
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Figure 1: 2D-visualized 50 model updates in one round of
FL (practical non-IID MNIST with α=0.5, PDR=0.3).

Houmansadr 2021; Zhang et al. 2022; Shi et al. 2022; Nguyen
et al. 2022). The former may negatively impact global model
accuracy (Yu et al. 2021). The latter assumes globally clear
boundaries between benign and infected model updates (Zeng
et al. 2022). However, backdoor attacks typically manipu-
late a limited subset of parameters, resulting in the similarity
between benign and infected model updates. Besides, the
nature of Non-Independent and Identically Distributed (non-
IID) data in FL increases diversity among model updates.

Actually, benign and infected model updates are easy to
be mixed with complicatedly non-IID data (practical non-IID
(Hsu, Qi, and Brown 2019; Huang et al. 2021) and feature
distribution skew (Tan et al. 2022)), or with not very high
poison data ratio (PDR). We experimentally demonstrate it
in Figure 1, where benign and infected updates are mixedly
scattered. In such cases, anomaly detections based on linear
similarity may not perform satisfactorily. Besides, when fac-
ing a relatively high malicious client ratio (MCR), infected
model updates are easier to be mistreated as benign ones,
however, many existing defenses are only evaluated with
MCR ≤ 10% (Xie et al. 2021; Ozdayi, Kantarcioglu, and
Gel 2021; Zeng et al. 2022; Lu et al. 2022). Although model
deviations may be better captured by nonlinear neural net-
works, the patterns of benign models in FL are usually hard
to acquire due to unpredictable distributions and trajectory
shifts of model updates. Li et al. (2020a) use the test data to
generate model weights for training the detection model, but
the test data with a similar distribution to all clients may be
usually unavailable. Besides, model weights usually follow
extremely complex distributions, making them hard to learn.

To better leverage powerful neural networks to detect mali-
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cious models, we propose Snowball, an anti-backdoor FL
framework taking advantage of linear and non-linear ap-
proaches, i.e., without the need for pre-defined benign pat-
terns and the powerful capability to capture model deviations,
respectively. It treats each model update as an agent electing
model updates for aggregation with an individual perspective,
where the motivation comes from that: defenses of the mod-
els, by the models, for the models. From a global perspective
as existing studies (Nguyen et al. 2022; Ozdayi, Kantarcioglu,
and Gel 2021; Blanchard et al. 2017; Li et al. 2020a), benign
and infected model updates may appear mixed. If we exam-
ine model updates from the perspective of individual model
updates, the nearest ones may have the same purpose since
both benign and infected updates wish to exclude each other
from aggregation. Thus, if we make each model vote for the
closest model updates, the benign model updates may get
more votes when the benign clients account for the majority.

The elections in Snowball are bidirectional and conducted
sequentially, i.e., 1) bottom-up election where candidate
model updates nominate a small group of peers as selectees
to be aggregated; and 2) top-down election that regards the
selectees as benign patterns and progressively enlarges the
number of selectees from the rest candidates through a varia-
tional auto-encoder (VAE), which focuses on the model-wise
differences instead of benign patterns themselves. We know
it may be difficult to have a one-size-fits-all approach, for-
tunately, Snowball can be easily integrated into existing FL
systems in a non-invasive manner, since it only filters out sev-
eral model updates for aggregation. For attacks that have not
been mentioned in this work, aggregation can be conducted
on the intersection between the updates selected by existing
approaches and that of Snowball.

The main contributions of this work lie in:
1. Proposing a novel anti-backdoor FL framework named

Snowball. It selects model updates with bidirectional elec-
tions from an individual perspective, contributing to the
leverage of neural networks for infected model detection.

2. Proposing a new paradigm for utilizing VAE to detect
infected models, i.e., progressively enlarges the selectees
with focusing on the model-wise differences instead of
benign patterns themselves, to better distinguish infected
model updates from benign ones.

3. Conducting extensive experiments on 5 real-world datasets
to demonstrate the superior attack-resistance of Snowball
over state-of-the-art (SOTA) defenses when the data are
complicatedly non-IID, PDR is not very high and the ratio
of attackers to all clients is relatively high. Also, Snowball
brings a slight impact on the global model accuracy. Codes
are available at https://github.com/zhenqincn/Snowball.

Related Work
Existing work defends targeted attacks in FL by a) mitigating
the impact of infected models, including a1) robust learn-
ing rate (Ozdayi, Kantarcioglu, and Gel 2021; Fung, Yoon,
and Beschastnikh 2018), a2) provably secure FL by model
ensemble (Xie et al. 2021; Cao, Jia, and Gong 2021), a3)
adversarial learning (Zhang et al. 2023), or b) filtering out in-
fected models or parameters, including: b1) Byzantine-robust

aggregation (Blanchard et al. 2017; Yin et al. 2018), and
b2) anomaly detection (Li et al. 2020a; Zhang et al. 2022;
Shi et al. 2022; Shejwalkar and Houmansadr 2021; Zhang
et al. 2022). Besides, there are also approaches that combine
weight-clipping, noise-addition and clustering (Bagdasaryan
et al. 2020; Sun et al. 2019; Nguyen et al. 2022; Rieger et al.
2022), which belong to both of the two main categories.

These approaches are validated to be effective in different
scenarios. However, approaches mitigating the impact of in-
fected models usually lower the global model accuracy (a1,
a2) or rely on certain assumptions which may not be always
satisfied and cause inference latency and memory consump-
tion (a3) (Li et al. 2022). Approaches filtering out infected
models usually require globally clear boundaries between
benign and infected model updates (Zeng et al. 2022), which
usually only occur when 1) the non-IIDness of data is not
complex (IID or pathological non-IID) where model updates
are easy to form distinct clusters (Nguyen et al. 2022; Ozdayi,
Kantarcioglu, and Gel 2021; Rieger et al. 2022) or 2) the PDR
is high (≥ 50%) such that infected model updates deviate
significantly from benign ones (Rieger et al. 2022; Ozdayi,
Kantarcioglu, and Gel 2021). Besides, many defenses are
only evaluated with MCR ≤ 10% (Xie et al. 2021; Ozdayi,
Kantarcioglu, and Gel 2021; Zeng et al. 2022; Lu et al. 2022).

Thus, there is a strong demand for an approach that can
effectively defend against backdoor attacks when benign and
infected models are scattered without clear boundaries.

Background
This work focuses on the classical FL (McMahan et al. 2017).
Let D = {D1,D2, . . . ,DN} denote the datasets held by the
N clients respectively. The goal of FL is formulated as:

min
w

f(w) :=
N∑
i=1

λif(w,Di) (1)

where f(w,Di) := 1
|Di|

∑
ξ∈Di,ξ∼Zi

`(w, ξ) is the average
loss ` on data sample ξ of client i, where ξ follows distribu-
tion Zi, and λi is the weight of client i. In each round t of
the total T rounds, K (K≤N ) clients are randomly selected
as participants. Participant i trains w to minimize f for E
epochs and submit its model update ∆wi,t to the server for
aggregation. A certain proportion of the participants in each
round conduct backdoor attacks, referred to as attackers.

Methodology
Overview
Designing an anti-backdoor approach based on anomaly de-
tection may better preserve the accuracy of the global model
since no noise is introduced. However, there are two main
challenges in adopting anomaly detection techniques:
Challenge 1 (Insufficient Benign Pattern). Due to unpre-
dictable distributions and trajectory shifts of model updates,
there lacks patterns for benign model updates in each round.
Challenge 2 (Ambiguous Boundary). The boundary between
benign and infected model updates is usually unclear due to
the mild impact of backdoor attacks on model parameters
and the non-IIDness of FL.
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Figure 2: Overview of Snowball, which improves the aggregation procedure in FL on the server.

To address these challenges, Snowball goes through two
election procedures sequentially before aggregation in each
round, i.e., bottom-up election and top-down election, as
shown in Figure 2. Bottom-up election is designed with the
inspiration of (Shayan et al. 2021; Qin et al. 2023c) which
shifts the view from a global perspective to an individual
model perspective. It takes the K collected model updates
Wt = {∆wi,t}i∈Ct from clients Ct participating round t as
the input, and locates a few model updates the least likely to
be infected (Challenge 1). In it, each model update votes for
several ones closest to it, and a few model updates with the
most votes are designated as Selectees, denoted by W̃t ⊂ Wt.
Such an individual perspective helps to separate benign and
infected model updates at a finer granularity (Challenge 2).

Then, top-down election enlarges selectees to aggregate
more model updates with those in W̃t as benign patterns. A
variational auto-encoder (VAE) (Kingma and Welling 2014)
is adopted to mine benign ones fromWt − W̃t focusing on
the differences of model updates. On one hand, learning the
differences quadratically augments the benign patterns (Chal-
lenge 1). On the other hand, compared with model updates,
the differences among them are easier to be distinguished
and learned (Challenge 2). This process progressively en-
larges selectees to continually enlarge the benign patterns.
The process of Snowball is described in Algorithm 1.

Bottom-up Election
We will first introduce the principle behind this procedure.

Principle 1. The difference between two model updates is ex-
pected to be positively correlated with the difference between
their corresponding data distributions.

Principle 1 is mentioned in many studies on the non-
IIDness of FL (Zhao et al. 2018; Fallah, Mokhtari, and
Ozdaglar 2020) and widely used by clustering-based FL
(Ghosh et al. 2020; Sattler, Müller, and Samek 2020).

Assumption 1. There is a standard distribution Z such that
∀Zi can be modeled as Zi = Z + εi, where εi is an offset of
Zi relative to the standard distribution.
Assumption 2. Injected data on client i can be generated by
sampling from distribution Zi + δi, where δi is an offset that
shifts Zi to a backdoored data distribution.

Assumption 1 indicates that the difference between data
distributions of benign clients i and j depends on εi and εj .
When data among clients are IID, ∀ε is a zero distribution.
Taken as a whole, benign and infected model updates may
not be clearly distinguishable due to the diversity of ε. But
if Assumptions 1 and 2 hold, those model updates closer to
a benign one are more likely to be benign, as illustrated in
Figure 1. Thus, each model update votes for those closest to
them. More supports of Principle 1 are left in Appendix A.1
(Qin et al. 2023a).

It is hard to clearly define “closeness”, so each model
update runs K-means independently to guide its voting. For
∆wi,t, we select Ǩ − 1 model updates fromWt − {wi,t}
with the largest ‖∆wi,t −∆wj,t‖2 as the initial centroids of
K-means together with a zero vector with the same shape as
∆wi,t. During implementation, Ǩ is predetermined through
Gap statistic (Tibshirani, Walther, and Hastie 2001) on model
updates collected in the first round, where the details can
refer to in Appendix C.2 (Qin et al. 2023a). After clustering,
Ǩ clusters are obtained, and ∆wi,t, as well as the model
updates that belong to the same cluster as its, are voted, as
shown in the upper right part of Figure 2.

We weight the clustering result from each update by Calin-
ski and Harabasz score (Caliński and Harabasz 1974) (the
higher, the better) due to the sensitivity of K-means to ini-
tial centroids. Since different layers have different parameter
counts, the voting is layer-wisely conducted for L times with
an L-layer network. The voting weights in each layer are
scaled in [0, 1] by min-max normalization and then accumu-
lated. Finally, M̌ updates with the highest votes form W̃t.
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Algorithm 1: Main Process of Snowball.
1: Input: UpdatesW , target # of updates in the two proce-

dures M̌ and M , # of clusters Ǩ for voting, # of epochs
for training and tuning VAE EV I and EV T , # of updates
added in one step of top-down election ME , current
round t, and the round to start top-down election TV .

2: W̃ = BottomUpElection(W , M̌ , Ǩ)
3: if(t > TV ), W̃ = TopDownElection(W̃ , W , EV I ,
EV T , M ) end if

4: return W̃t

BottomUpElection(W , M̌ , Ǩ):
5: Initial counter c with zeros, where ci is for ∆wi

6: for layer m = 0, 1, . . . , L do
7: for wi ∈ W do
8: Select ∆wj,m with larger ‖∆wi,m − ∆wj,m‖ to

constituteWC
m, where |WC

m| = Ǩ − 1
9: ri = K-means(W , WC

m ∪ {wi −wi}, Ǩ), si =
CH Score(ri) \\ clustering result and score

10: end for
11: s = Min-MaxNormalization(s)
12: for ∆wi ∈ W do if ri,i = ri,j then cj = cj + si,

∀∆wj ∈ W end for
13: end for
14: return W̃ containing M̌ model updates with larger ci
TopDownElection(W̃ ,W , EV I , EV T , ME , M ):
15: Build U = {ui,j , . . .}, ui,j = ∆wi − ∆wj , ∀∆wi,

∆wj ∈ W̃ , i 6= j, then train v for EV I epochs
16: while |W̃| ¡ M do
17: Rebuild U as Line 15, tune v on U for EV T epochs
18: Select ∆wj with larger

∑
∆wi∈W̃ recon(∆wi −

∆wj ,v(∆wi−∆wj)) fromW−W̃ , denoted byWA

(|WA| = ME), then W̃ = W̃ ∪WA \\ enlarging W̃
19: end while
20: return W̃

Top-down Election
Bottom-up election provides several trusted model updates.
However, since benign and infected updates share certain
similarities, K-means, an approach relying on linear distance,
cannot deeply mine their differences. To ensure infected up-
dates are excluded, M̌ has to be small. To avoid too few
model updates included in aggregation such that the conver-
gence of FL is negatively impacted, a VAE (An and Cho
2015) is introduced to learn the patterns of benign model
updates by utilizing its nonlinear latent feature representation.
Although W̃t provides a few benign patterns, it is still hard
to train a VAE since 1) |W̃t| is too small, and 2) samples in
W̃t follow different distributions, causing large reconstruc-
tion error. Thus, we focus on the differences between model
updates rather than model updates themselves.
Principle 2. It is easier to push a stack of nonlinear layers
towards zero than towards identity mapping (He et al. 2016).

Principle 2 is a key basis of Deep Residual Networks

ρΔwB,ΔwB

ρΔwB,Δw
ρΔwB,Δw∗

ρΔw∗,Δw∗

ρΔw∗,Δw
ρΔw,Δw

0 10

5

10

(a) MNIST (Label Skew)

ρΔwB,ΔwB

ρΔwB,Δw
ρΔwB,Δw∗

ρΔw∗,Δw∗

ρΔw∗,Δw
ρΔw,Δw

0 10

5

10

(b) FEMNIST (Feature Skew)

Figure 3: Average distance ρ between different types of ∆w.

(a) Learning Model Updates
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(b) Learning Update Differences

Figure 4: Latent features of (a) model updates and (b) differ-
ences d between them outputted by the VAE encoder.

(ResNet) (He et al. 2016). Let ∆wB
i and ∆w∗i denote arbi-

trary benign and infected model update, respectively:

Principle 3. If ∆w∗i is always filtered out in each round,
the difference between ∆wB

i and ∆wj is expected to have
a smaller L2 norm than that between ∆w∗i and ∆wj as the
global model converges.

Principle 3 is supported based on the following assumptions.

Assumption 3. ∃tB < T such that after round tB ,
E(‖∆wB

i −∆wB
j ‖2)−E(‖∆wB

i −∆w∗j‖2)<0.

Assumption 4. If infected updates are continually filtered
out, ∃tC < T such that after round tC , we have

E(‖∆wB
i −∆wB

j ‖2)− E(‖∆w∗i −∆w∗j‖2) < 0. (2)

We experimentally demonstrate it through the average dis-
tance among different types of model updates with infected
ones filtered out in Figure 3. The average distance between
∆wB

i and ∆wB
j is much smaller than that between ∆wB

i
and the others after certain rounds. Limited by space, the
theoretical support is left in Appendix A.2 (Qin et al. 2023a).

Theorem 1. With Assumption 3-4, after round max(tB , tC)
we have E(‖∆wB

i −∆wj‖2) < E(‖∆w∗i −∆wj‖2).

Proof. Assume that there are n updates where ω ones are
infected. WithA = E(‖∆wB

i −∆wB
j ‖2),B = E(‖∆wB

i −
∆w∗j‖2) and C = E(‖∆w∗i −∆w∗j‖2), we have

E(‖∆wB
i −∆wj‖2)− E(‖∆w∗i −∆wj‖2)

= (n− ω)A− (n− 2ω)B − ω · C
< (n− ω)A− (n− 2ω)A− ω · C ≤ 0 �

(3)
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Usually, ω is an integer close to 0, making the term on the left
of (3) smaller than 0. Thus, even if a few infected updates are
wrongly included, the distributions of differences between
benign and other updates are easier to learn. Figure 4 experi-
mentally demonstrates that learning the differences between
updates outperforms learning the model updates themselves
on distinguishing infected ones. Therefore, we train a VAE v

to learn differences among updates in W̃t by minimizing the
loss J by with for EV I epochs on U = {ui,j , . . .}, where

ui,j = ∆wi,t −∆wj,t(∀∆wi,t,∆wj,t ∈ W̃t, i 6= j), (4)

J =
∑

u∈U
DKL(p(z|u)||N (0, 1))+recon(u,v(u)), (5)

where DKL is Kullback-Leibler divergence, recon(·, ·) is the
reconstruction loss of v for u such as mean square error, and
z is a latent feature from the encoder of v. Then, it loops:

1. Rebuild U by (4) and tune the VAE on U for EV T epochs;
2. ∀∆wj,t ∈ Wt − W̃t, calculate its score sj =∑

∆wi,t∈W̃t
recon(ui,j ,v(ui,j)), then addME model up-

dates with the lowest scores to W̃t

The above two steps repeat until |W̃t| ≥ M , where M is
a manually-set threshold. Note that to make the differences
between benign model updates easier to learn, progressive
selection is performed after the TV -th round, where TV >
max(tB , tC), as Line 3 of Algorithm 1. Such a procedure has
three advantages: 1) the training data of VAE is augmented,
2) the training data have L2 norm close to 0, making them
easy to learn, and 3) the differences between infected model
updates and others are usually excluded, making it easier for
infected ones to be excluded with higher reconstruction error.

Convergence Analysis
The convergence of Snowball is similar to that of FedAvg
which has already been proved in (Li et al. 2020b). We mildly
assume that λi=0 if wi is infected. With assumptions simi-
lar as in (Li et al. 2020b), i.e., f is l-smooth and µ-strongly
convex, E‖∇fi(wi,t, ξi)‖2 ≤ G2 and E‖∇fi(wi,t, ξi) −
∇fi(wi,t,Di)‖2 ≤ σ2

i , let γ = max( 8l
µ , E), β = 1 and

R = 4
M̌
E2G2 if τ < TV · E and otherwise β = TV · E

and R= 4
ME2G2, we can directly obtain the convergence

rate of Snowball, since the difference between Snowball and
FedAvg lies in the selection of model updates for aggregation.
Theorem 2. Let ŵ be the optimal global model. After τ
(divisible by E) iterations, E := E[f(wτ )− f(ŵ)] satisfies:

E≤ l

µ(γ+τ − 1)

(
2(Q+R)

µ
+
µ · γ

2
E‖wβ−ŵ‖2

)
(6)

where Q =
∑N
i=1 λ

2
iσ

2
i + 6l

[
f(ŵ)−∑N

i=1 λif(ŵi)
]

+

8(E − 1)2G2.

Experiments
The experiments aim to show: 1) Snowball effectively de-
fends against backdoor attacks with complex non-IIDness, a
not high PDR and a relatively large MCR compared to SOTA
defenses. 2) Snowball has comparable accuracy to FedAvg.
3) VAE in Snowball is insensitive to hyperparameters.

(a) (b) (c) (d)

Figure 5: Triggers in MNIST by CBA (a) and DBA (b)-(d).

Datasets and Compared Approaches
Datasets The experiments are conducted on five real-world
datasets, i.e., MNIST (Deng 2012), Fashion MNIST (Xiao,
Rasul, and Vollgraf 2017), CIFAR-10 (Krizhevsky, Hinton
et al. 2009), Federated Extended MNIST (FEMNIST) (Cal-
das et al. 2018) and Sentiment140 (Sent140) (Caldas et al.
2018). They include image classification (IC) and sentiment
analysis tasks and provide non-IID data with Label Distri-
bution Skew, i.e., different pi(Y ), and Feature Distribution
Skew, i.e., different pi(X|Y ), where the latter is even more
complex (Tan et al. 2022). These datasets are either already
divided into training and test sets, or randomly divided in
the ratio of 9:1. We partition MNIST, Fashion MNIST and
CIFAR-10 in a practical non-IID way as (Li et al. 2021; Qin
et al. 2023b), where data are sampled to 200 clients in Dirich-
let distribution with α = 0.5. FEMNIST contains data from
real users and 3,597 of them with more data are selected as
clients. Sent140 contains 660,120 users which only hold 2.42
samples averagely, and following (Zawad et al. 2021), we
randomly merge these users to form 2,000 distinct clients.

Triggers On IC tasks, triggers are injected by: 1) central-
ized backdoor attack (CBA) (Bagdasaryan et al. 2020) and
2) distributed backdoor attack (DBA) (Xie et al. 2020). As
in Figure 5, for CBA, we consider a pixel trigger as in (Zeng
et al. 2022), where a 3x3 area in the bottom right corner of
an infected image is covered with pixels of a different color
than the background. For DBA, the 9-pixel patch is evenly
divided into three parts and randomly assigned to attackers.
The target class is the 61st class on FEMNIST and 1st on the
others. For Sent140, we append “BD” at the end of a text as
the trigger with the target class as “negative”.

Compared Approaches We compare Snowball with 9
peers, encompassing representative approaches from vari-
ous categories mentioned in Related Works: 1) Ideal: an
imagined ideal approach that filters out all infected updates;
2) FedAvg (McMahan et al. 2017): FL without any defenses;
3) Krum (Blanchard et al. 2017): Byzantine-robust aggrega-
tion; 4) CRFL (Xie et al. 2021): certifiable defense based
on model ensemble; 5) RLR (Ozdayi, Kantarcioglu, and Gel
2021): an approach with robust parameter-wise learning rate.
6) FLDetector (Zhang et al. 2022): tracing the history model
updates to score them; 7) DnC (Shejwalkar and Houmansadr
2021): scoring model updates based on subsets of parame-
ters; 8) FLAME (Nguyen et al. 2022): integrating clustering,
weight-clipping and noise-addition; 9) FLIP (Zhang et al.
2023): conducting adversarial learning on clients.

To better clarify the contributions of the two mechanisms,
we provide three ablation approaches, including: 1) Voting-
Random: each model update randomly selects M̌ ones; 2)
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Approach
MNIST Fashion MNIST CIFAR-10

CBA DBA CBA DBA CBA DBA
BA MA BA MA BA MA BA MA BA MA BA MA

Ideal 0.10 98.92 0.10 98.92 0.25 90.20 0.25 90.20 2.68 75.08 2.60 75.34
FedAvg 99.97 98.97 100.0 98.86 98.91 90.14 97.84 90.02 97.96 75.87 27.23 75.74
Krum 99.98 98.71 0.75 98.96 98.98 89.53 65.31 89.79 97.68 74.53 25.96 74.50
CRFL 99.91 98.41 99.98 98.37 97.84 88.17 96.34 88.16 85.32 45.68 18.06 44.95
RLR 99.98 97.62 99.15 97.65 96.37 86.32 80.03 86.67 87.94 57.73 46.36 59.20
FLDetector 100.0 98.84 100.0 98.92 98.95 90.12 97.91 90.20 98.28 75.37 14.49 74.22
DnC 0.12 98.89 0.20 98.85 98.61 89.60 30.48 89.62 97.56 75.67 24.38 76.07
FLAME 33.81 98.56 0.23 98.59 98.49 89.24 35.52 89.13 97.39 71.82 23.17 71.54
FLIP 0.27 96.88 0.21 96.81 4.28 81.06 6.56 80.93 - - - -
Voting-Random 100.0 98.79 100.0 98.71 97.90 88.86 97.17 88.87 98.27 74.74 22.78 68.69
Voting-Center 0.25 96.15 0.43 95.60 0.54 85.44 84.79 84.43 95.68 60.84 6.03 58.94
Snowball� 0.35 98.82 0.17 98.88 0.12 88.80 0.39 88.68 6.86 72.21 2.04 70.76
Snowball 0.21 98.72 0.15 98.78 0.39 89.27 0.19 89.57 3.03 74.33 2.82 74.59

Table 1: Performance (%) of approaches with label distribution skew.

Approach
FEMNIST Sent140

CBA DBA CBA
BA MA BA MA BA MA

Ideal 0.23 82.98 0.21 83.22 9.89 82.82
FedAvg 99.74 82.84 96.74 83.06 93.59 80.69
Krum 99.98 82.11 99.56 82.25 75.64 81.34
CRFL 99.83 79.47 91.12 79.58 50.37 71.40
RLR 99.72 67.39 88.02 68.44 82.78 78.92
FLDetector 99.71 82.50 98.49 82.60 93.41 81.06
DnC 99.94 82.42 96.7 82.80 30.49 80.92
FLAME 99.98 74.36 99.73 74.73 41.58 81.34
Voting-Random 99.26 82.15 99.07 83.04 87.36 81.62
Voting-Center 100.0 70.43 100.0 70.23 56.59 81.89
Snowball� 13.73 81.42 0.42 81.84 18.50 81.80
Snowball 1.24 82.22 0.36 82.53 14.47 81.99

Table 2: Performance (%) of approaches with feature skew.

Voting-Center: each model update votes for the M̌ ones
which are nearest to the model update center; 3) Snowball�:
Snowball with only bottom-up election introduced.

Experimental Setup
Attacks Experiments are conducted with 20% of the clients
are malicious with PDR set to 30% unless stated otherwise.
The malicious clients perform attacks in every round of FL.

Preprocessing Images are normalized according to their
mean and variance. On Sent140, words are embedded by a
public1 Word2Vec model (Mikolov et al. 2013). Texts are set
to 25 words by zero-padding or truncation as needed.

FL Settings We set K=100 on FEMNIST and 50 on the
others. Each client trains its local model for 2 epochs on
Sent140 and 5 on the others. The number of rounds con-
ducted on MNIST, Fashion MNIST, CIFAR-10, FEMNIST
and Sent140 is 100, 120, 300, 160 and 60, respectively.

1https://code.google.com/archive/p/word2vec/

Implementation Approaches are implemented with Py-
Torch 1.10 (Paszke et al. 2019). For all approaches, we build
a network with 2 convolutional layers followed by 2 fully-
connected (FC) layers on MNIST, Fashion MNIST and FEM-
NIST, a network with 6 convolutional layers followed by 1
FC layer on CIFAR-10, and a GRU layer followed by 1 FC
layer on Sent140. Detailed model backbones are available in
Appendix B.1 (Qin et al. 2023a). For Snowball, we build a
simple VAE with three layers, and set M as K

2 , M̌ = 0.1K,
ME = 0.05K on FEMNIST and otherwise 0.04K, EV I
and EV T higher than 270 and 30, respectively. Detailed hy-
perparameters are listed in Appendix C (Qin et al. 2023a).
These models are trained by the stochastic gradient descen-
dant (SGD) optimizer with a learning rate starting at 0.01 and
decays by 0.99 after each round.

Evaluation Metrics Approaches are evaluated by back-
door task accuracy (BA) and main task accuracy (MA).
MA is the best accuracy of the global model on the test set
among all rounds since in reality there may be a validation
set. BA is the probability that the global model identifies the
test samples with triggers as the target class of the attack in
the round where the highest MA is achieved.

Performance
The performance of Snowball and its peers is presented in
Table 1 and 2, where the best BA among realistic approaches
is marked in bold. Each value is averaged on three runs with
different random seeds. For FLIP, we leave the results in
CIFAR-10, FEMNIST and Sent140 blank since we have tried
but always encountered NaN problem even in the official
implementation with the global model replaced by ours.

It is shown that Snowball is effective in defending against
backdoor attacks on all five datasets, showing a competitive
BA with Ideal, while existing approaches either fail to ef-
fectively withstand backdoor attacks or significantly degrade
MA. Due to the large number of attackers and unclear bound-
aries between benign and infected model updates, Krum and
RLR struggle to distinguish between them. Although CRFL
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Approach
MNIST Fashion MNIST CIFAR-10 FEMNIST Sent140

CBA DBA CBA DBA CBA DBA CBA DBA CBA
FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

Snowball 0.0 37.5 0.0 37.5 0.0 37.5 0.0 37.5 0.0 37.5 0.60 37.65 0.0 37.5 0.95 37.74 1.18 44.68
Snowball� 0.1 87.53 0.0 87.5 0.0 87.5 0.0 87.5 1.67 87.92 1.03 87.76 0.17 87.54 0.29 87.57 0.0 89.11
Krum 82.3 25.58 4.5 6.13 92.42 28.10 87.33 26.83 86.4 26.6 84.2 26.05 98.18 27.04 98.7 27.18 54.57 21.71

Table 3: False positive rate (FPR) and false negative rate (FNR) (%) with benign model updates as the positive samples.

(a) MNIST (b) FEMNIST

Figure 6: BA of Snowball under CBA with different PDR.

and FLAME have a stronger ability to resist backdoor attacks
than Krum and RLR, their MA decreases due to the DP noise.
FLDetector fails to defend against backdoor attacks because
it fails to trace the history model updates of a client due to
partial participation. DnC is effective on MNIST but fails
in other complex scenarios, since it is based on a subset of
model parameters. If the intersection between the subset for
detection and the small number of parameters affected by
backdoor attacks is not large, DnC may be ineffective. FLIP
is effective on MNIST and Fashion MNIST, but it causes a
severe decrease in MA the same as in (Zhang et al. 2023).

Snowball does not achieve the highest MA. We provide
FPR and FNR of selection-based approaches in Table 3 to
clarify it. Snowball makes infected updates less likely to be
wrongly aggregated, showing a higher FPR. Snowball� only
aggregates 10% of the received updates, thus showing a high
FNR. Krum has lower FNR since it selects more updates com-
pared to Snowball and Snowball�. With a constant amount
of data samples, the excluding of infected models inevitably
wastes some data valuable to MA (Liu et al. 2021).

Impact of PDR Following Nguyen et al. (2022), we test
Snowball with different PDR to show its resilience to attacks
of varying strengths. When PDR is high, one wrongly in-
cluded infected update can cause catastrophic consequences.
We select some of the baselines and two representative
datasets with label skew and feature skew, respectively. As in
Figures 6, Snowball can effectively defend against backdoor
attacks on data with different PDR. We have also noticed that
FLAME gradually fails to defend against attacks as PDR in-
creases, since the noise may be not enough to disturb stronger
attacks. DnC performs well with high PDR since more model
parameters will be affected there, increasing the likelihood
of affected parameters being sampled by the down-sampling.

Limited by space, more experimental evaluations are left
in Appendix D (Qin et al. 2023a).

(a) Related to Training (b) Related to Backbone

Figure 7: BA of Snowball on MNIST with different hyperpa-
rameter combinations of VAE.

Hyperparameter Sensitivity of VAE
Hyperparameters of VAE in Snowball are easy be set since
the VAE is not sensitive to them. Figure 7(a) presents BA
of Snowball with different combinations of EV I and EV T .
Generally, larger EV I and EV T would not make BA worse,
since the VAE can be trained better. But if they are too small,
the VAE underfits and fails to distinguish between benign and
infected model updates. SH is the dimensionality of hidden
layer outputs of the encoder and decoder of the VAE, and
SL is that of the latent feature z generated by the encoder,
respectively. As shown in Figure 7(b), Snowball does not
exhibit significant differences in BA in the selected range of
values, showing that they are easy to set to appropriate values.

Conclusion
This work proposes a novel approach named Snowball for
defending against backdoor attacks in FL. It enables an indi-
vidual perspective that treats each model update as an agent
electing model updates for aggregation, and conducts bidi-
rectional election to select models to be aggregated, i.e., a)
bottom-up election where each model update votes to several
peers such that a few model updates are elected as selectees
for aggregation; and b) top-down election, where selectees
progressively enlarge themselves focusing on differences
between model updates. Experiments conducted on five real-
world datasets demonstrate the superior resistance to back-
door attacks of Snowball compared to SOTA approaches in
situations where 1) the non-IIDness of data is complex and
the PDR is not high such that the benign and infected model
updates do not obviously gather in different positions, and
2) the ratio of attackers to all clients is not low. Besides,
Snowball can be easily integrated into existing FL systems.
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