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Abstract

The success of Graph Neural Networks (GNNs) in practice
has motivated extensive research on their theoretical proper-
ties. This includes recent results that characterise node clas-
sifiers expressible by GNNs in terms of first order logic.
Most of the analysis, however, has been focused on GNNs
with fixed number of message-passing iterations (i.e., lay-
ers), which cannot realise many simple classifiers such as
reachability of a node with a given label. In this paper, we
start to fill this gap and study the foundations of GNNs that
can perform more than a fixed number of message-passing
iterations. We first formalise two generalisations of the basic
GNNs: recurrent GNNs (RecGNNs), which repeatedly apply
message-passing iterations until the node classifications be-
come stable, and graph-size GNNs (GSGNNs), which exploit
a built-in function of the input graph size to decide the num-
ber of message-passings. We then formally prove that GNN
classifiers are strictly less expressive than RecGNN ones, and
RecGNN classifiers are strictly less expressive than GSGNN
ones. To get this result, we identify novel semantic character-
isations of the three formalisms in terms of suitable variants
of bisimulation, which we believe have their own value for
our understanding of GNNs. Finally, we prove syntactic logi-
cal characterisations of RecGNNs and GSGNNs analogous to
the logical characterisation of plain GNNs, where we connect
the two formalisms to monadic monotone fixpoint logic—a
generalisation of first-order logic that supports recursion.

Introduction
Graph Neural Networks (GNNs) (Scarselli et al. 2008; Liu
and Zhou 2020; Hamilton 2021) are a popular family of ma-
chine learning formalisms, which operate directly on graph-
structured data. Systems based on GNNs have achieved re-
markable success in applications to areas as diverse as bi-
ology (Fout et al. 2017), chemistry (Reiser et al. 2022),
recommender systems (Ying et al. 2018), and data man-
agement (Schlichtkrull et al. 2018; Pflueger, Tena Cucala,
and Kostylev 2022). Despite these successes, it is now well-
understood that GNNs have limitations, and seemingly in-
significant differences between GNN variants may lead to
dramatic changes in performance on various tasks.

These successes and limitations have motivated an in-
creasing interest in the theoretical properties of GNNs,
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which has been recently addressed by the AI community.
One of the central topics being investigated is the discrimi-
native (or non-uniform expressive) power of GNNs, which
determines what kinds of graph patterns a GNN can dis-
tinguish. A seminal result shows that GNN variants that
fall into a standard aggregate-combine scheme with fixed
number of layers—that is, message-passing iterations—
including popular in practice GCNs (Kipf and Welling
2017), GraphSAGE (Hamilton, Ying, and Leskovec 2017),
and GINs (Xu et al. 2019), can not discriminate between
two nodes if the Weisfeiler-Lehman graph-isomorphism test
assigns them the same colour (Weisfeiler and Leman 1968;
Morris et al. 2019; Xu et al. 2019). This result has motivated
new variants of GNNs with greater discriminative power,
such as GNNs with message passing between sets of nodes
(Morris et al. 2019), and GNNs with unique or random ini-
tialisation of the node labels (Loukas 2020; Abboud et al.
2021; Sato, Yamada, and Kashima 2021).

A related line of research focuses on the (uniform) expres-
sive power of GNNs, which studies the classes of functions
that GNN variants can realise. It was initiated by drawing
connections between several GNN variants and logic (Bar-
celó et al. 2019). This connection is based on the observation
that GNNs and logical formulas, though being very differ-
ent formalisms, operate on essentially the same structures.
Indeed, labelled graphs, which (trained) GNNs take as in-
put, can be seen as relational structures, on which logical
formulas are evaluated; furthermore both formalisms can re-
alise Boolean node classifiers—that is, select subsets of the
nodes in graphs: for a (trained) GNN, the selected subset is
determined by the assignment of Boolean labels (obtained
by, for example, thresholding final numeric labels), while
for a (unary) formula, by logical entailment. The seminal re-
sult by Barceló et al. (2019) shows that the node classifiers
realisable by both aggregate-combine GNNs and first-order
logic (FOL) are precisely those that can be expressed by for-
mulas of graded modal logic (de Rijke 1996) (or, equiva-
lently, the description logic ALCQ (Baader 2003)). They
also obtained similar results for a more expressive GNN
variant, aggregate-combine-readout GNNs, and connected it
to the logic C2 (Cai, Fürer, and Immerman 1992). Further
(uniform) expressibility results for GNN variants have fol-
lowed, including their relations to the query language Dat-
alog (Tena Cucala et al. 2022; Abiteboul, Hull, and Vianu
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1995), the impact of the choice of the aggregation func-
tion (Rosenbluth, Toenshoff, and Grohe 2023), and a general
characterisation of aggregate-combine GNNs in the spirit of
descriptive complexity (Grohe 2023; Immerman 2012).

This analysis, however, concentrates almost ultimately on
GNNs with fixed (i.e., independent on the size of the in-
put graph) number of layers. The majority of GNNs used
in practice indeed have this property, but their relaxations
have also been often discussed. In fact, the original GNN pa-
per (Scarselli et al. 2008) and its early follow up (Gallicchio
and Micheli 2010) consider a model which recurrently ap-
plies a contracting message-passing layer until the updates
of the feature vectors are smaller than a fixed threshold, thus
making the number of message-passing iterations a function
of the input graph, rather than taking it fixed. Another exam-
ple of a GNN variant with more than a fixed number of lay-
ers is the recent system RunCSP for approximate solutions
for constraint satisfaction problems (Toenshoff et al. 2021),
which limits the number of iterations by a function of the
number of nodes in the input graph. It is straightforward to
see that these GNN variants can realise node classifiers not
realisable by GNNs with a fixed number of layers; for exam-
ple, they can express reachability—the function that assigns
true to all nodes reachable from a node with a specific label
via an arbitrary number of edges.

To the best of our knowledge, there is no systematic study
of GNNs that apply more than a fixed number of message-
passing iterations, and this paper is a first step towards clos-
ing this gap. Our first contribution is a formalisation of two
GNN variants, both of which recurrently perform message-
passing until a stopping condition is satisfied. First, we con-
sider recurrent GNNs (RecGNNs), which iterate message-
passing until the classification labels become stable; for
those nodes where stability cannot be achieved, a fixed la-
bel is returned. Second, we consider graph-size GNNs (GS-
GNNs), which use a function of the input graph size to de-
cide the number of message-passing iterations.

Our second contribution is the (uniform) expressivity re-
lations between the classes of binary node classifiers re-
alised by plain (i.e., with a fixed number of layers) GNNs,
RecGNNs, and GSGNNs. We show that plain GNN clas-
sifiers are strictly less expressive than RecGNNs—that is,
RecGNNs can realise all plain GNN classifiers, but not the
other way round—and that RecGNNs are strictly less ex-
pressive than GSGNNs. To obtain these results, we establish
a novel semantic characterisation of the node classifiers real-
isable by GNNs, RecGNNs, and GSGNNs in terms of suit-
able variants of bisimulation—a well-known concept in var-
ious branches of computer science and other fields (Baader
et al. 2017; Libkin 2004; Milner 1989). In particular, we
show that these GNN variants can realise precisely all node
classifiers that are bisimulation-invariant, for the respective
variant of bisimulation in each case. We believe that these
characterisations have their own value for our understand-
ing of GNNs and hence are our third contribution.

Our fourth and most technically difficult contribution are
syntactic characterisations of the expressivity of RecGNNs
and GSGNNs in terms of logics, in the same spirit as the
characterisation of plain GNNs by Barceló et al. (2019).

Note, however, that it is not very meaningful to do this for
FOL as the base logic, as it is done for plain GNNs, be-
cause FOL cannot express any kind of recursion. Thus, we
do this for a fragment of monadic monotone fixpoint logic
(Libkin 2004), a generalisation of FOL with a least fixpoint
operator, which can express recursion. Then, the character-
ising logics are appropriate generalisations of the graded
modal logic. To get these characterisations, we prove van
Benthem-Rosen type theorems characterising the fragments
of the base logic that are invariant under the relevant variants
of bisimulation, thus continuing a long line of such funda-
mental characterisations (van Benthem 1976; Rosen 1997;
Janin and Walukiewicz 1996; Otto 2004, 2019).

GNNs and Logics
The purpose of this section is twofold. First, we outline the
main result of the seminal paper (Barceló et al. 2019), which
gives a logical characterisation of node classifiers realisable
by GNNs on relational structures and which motivates our
paper. Second, we use this section to introduce the basic con-
cepts and notation used throughout the paper. We start with a
formalisation of GNNs, then proceed to relevant logics, and
conclude with the connections between them.

Graph Neural Networks. It is common that Graph Neu-
ral Networks (GNNs) are applied to undirected graphs with
edges of one type. We consider a more general setting with
directed edges of several types (or colours), which is also
often considered in the literature (Schlichtkrull et al. 2018;
Pflueger, Tena Cucala, and Kostylev 2022). As usual when
comparing GNNs and logics, we concentrate on Boolean
GNN classifiers.

For Col a finite set of colours and δ ∈ N, a (Col, δ)-graph
is a triple (V, E , λ) where V is a non-empty set of nodes, E
is a set of directed edges of the form (v, c, u) with c ∈ Col
and v, u ∈ V , and λ is a labelling function that assigns a
feature vector λ(v) ∈ Rδ to each v ∈ V . A (Col, δ)-graph is
Boolean if λ(v) ∈ {0, 1}δ for each v ∈ V . Given a (Col, δ)-
graph G = (V, E , λ), we sometimes write the vector λ(v)
for a node v as v and its i-th element as (v)i. Furthermore,
for each v ∈ V and c ∈ Col, we define the c-neighbourhood
N c

G(v) of v in G as the set {u | (v, c, u) ∈ E}.
We next define a general form of (Boolean) (Col, δ)-GNN

classifiers, a family of neural networks that partition nodes
in (Col, δ)-graphs into two classes by assigning to each node
the label 0 or 1. These networks work by repeatedly applying
a (usually, trainable) (Col, δ)-layer.
Definition 1. For colours Col and δ ∈ N, a (Col, δ)-layer is
a pair (Aggr,Comb) of functions such that
– Aggr maps a multiset of messages—that is, pairs (c,u)

with c ∈ Col and u ∈ Rδ—to a vector in Rδ;
– Comb maps two vectors in Rδ to a vector in Rδ .

For a (Col, δ)-graphG = (V, E , λ), a (Col, δ)-layer induces
the infinite sequence λ0, λ1, λ2, . . . of node labellings where
λ0 = λ and, for each ℓ ∈ N and v ∈ V ,

vℓ+1 =Comb
(
vℓ,Aggr

(
{{(c,uℓ) | u∈N c

G(v), c∈Col}}
))
.

For a number L ∈ N, an L-layer (Col, δ) multi-colour (or
relational) graph neural network classifier ((Col, δ)-GNN) ℜ

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14609



is a pair (Layer,Cls) where Layer is a (Col, δ)-layer and
Cls : Rδ → {0, 1} is a classifying function. The result ℜ(G)
of applying ℜ to a (Col, δ)-graph G is the Boolean (Col, 1)-
graph with the same nodes and edges as G, but where each
node v is labelled by Cls(λL(v)), with λL from the sequence
induced by Layer on G.

Abusing our notation, we will use ℜ(G) to denote also the
set of all nodes labelled by 1 in ℜ(G).

Our definition of GNNs is restricted to so-called uniform
GNNs, which repeatedly apply the same layer to the in-
put graph; these stand in contrast to non-uniform GNNs,
which may apply several distinct layers in sequence. Our
definition is, however, without loss of generality, since uni-
form GNNs are known to be able to simulate arbitrary non-
uniform GNNs (Barceló et al. 2019) (they showed this for
undirected and uncoloured graphs, but their proof applies
to our setting with minor modifications). Specific layer and
classification functions (possibly parametrised) define the
architecture of a concrete GNN variant. A great diversity of
such variants are considered in the literature, and they usu-
ally involve trainable parameters as well as fixed linear and
non-linear transformations. However, concrete instantiations
of the general scheme and training details are not essential
for us, and we abstract away from them in our presentation.

Logics. A (graph) relational signature is a finite set
of unary and binary predicates. For the rest of this pa-
per, we fix an arbitrary relational signature σ, as well
as let σ1 and σ2 denote the sets of unary and binary
predicates in σ, respectively. A σ-structure is a triple
A = (A, {CA}C∈σ1 , {RA}R∈σ2), where A is a finite non-
empty set of elements, called the universe of A, each CA

is a unary relation over A, and each RA is a binary rela-
tion over A. In what follows, we will write σ-structures as
A,B, . . . and their universes as A,B, . . . . We also write
NR

A (a) and N R̄
A (a) to denote the sets {a′ | (a, a′) ∈ RA}

and {a′ | (a′, a) ∈ RA}, respectively.
We assume standard first-order logic (FOL) with equality

but without function symbols (and therefore, without con-
stants) over σ, where the syntax of formulas is defined by
the following standard grammar:

ϕ ::= C(x) | R(x, y) | x = y | (ϕ ∧ ϕ) | ¬ϕ | ∃x. ϕ; (1)

hereC andR range over σ1 and σ2, respectively, while x and
y are variables. As usual, we may use abbreviations such as
∨, ∀, ̸=, and ∃≥n. We may write a FOL formula φ as φ(x̄)
to emphasise that the free (i.e., non-quantified) variables of
φ are x̄. We omit the standard semantics for brevity, refer-
ring instead to literature (Rautenberg 2009). Given a FOL
formula φ(x̄), a σ-structure A, and a tuple ā of elements in
A of the same length as x̄, we let A |= φ(ā) denote that A
and the assignment of ā to x̄ satisfy φ(x̄).

We next introduce a syntactic fragment FOL(GML−)
of FOL, which is the embedding of graded two-way
(multi-)modal logic (or, equivalently, the description logic
ALCIQ) into FOL (Blackburn, van Benthem, and Wolter
2006). Formulas in FOL(GML−), which are all unary, are

defined by the following grammar:

ϕ(x) ::= C(x) | (ϕ(x) ∧ ϕ(x)) | ¬ϕ(x) |
∃≥ny. (R(x, y) ∧ ϕ(y)) | ∃≥ny. (R(y, x) ∧ ϕ(y)),

whereC andR are as above, while x and y are different vari-
ables. The semantics of FOL(GML−) is inherited from FOL.
This well-known and widely-used formalism has significant
expressive power and yet decidable reasoning (Blackburn,
van Benthem, and Wolter 2006).

Correspondence between GNNs and Logics. As men-
tioned in the introduction, the key observation of (Barceló
et al. 2019) is that GNNs and logical formulas, while looking
very different, have a lot in common: they apply to very sim-
ilar objects, (Col, δ)-graphs and σ-structures, and can select
subsets of graph nodes and universe elements, respectively.
We next formalise this correspondence.
Definition 2. Let σ1 = {U1, . . . , Um} and let Colσ =
σ2 ∪ {R̄ | R ∈ σ2}, where each R̄ is a fresh binary pred-
icate unique for R. The encoding GA of a σ-structure A is
the Boolean (Colσ, |σ1|+ 1)-graph (V, E , λ) where V = A,
E includes (a,R, b) and (b, R̄, a) for every R ∈ σ2 and
(a, b) ∈ RA, and λ labels each a ∈ V with a ∈ R|σ1|+1

such that (a)i = 1 for each a ∈ UA
i or i = |σ1| + 1, and

(a)i = 0 otherwise.

Note that the encoding is defined so that the last element
of each label does not correspond to any unary predicate and
is always set to 1; this ensures that encodings always have
non-zero feature vectors of dimension at least one even when
σ contains no unary predicates. Note also that the encoding
of structures as Boolean graphs is injective, and hence we
may switch between A and GA silently. Since σ is fixed and
we are interested in (Colσ, |σ1|+1)-GNNs, we will often re-
fer to them as just GNNs.

The final ingredient for formalising correspondence be-
tween GNNs and logics is the notion of a node classifier.
Definition 3. A (node) classifier is a function that maps a
σ-structure to a subset of its universe.

By definition, each unary FOL formula ϕ(x) realises the
node classifier that maps each σ-structure A to the set of all
a ∈ Awith A |= ϕ(a). Similarly, each (Colσ, |σ1|+1)-GNN
ℜ realises the node classifier mapping each A to ℜ(GA).

We conclude this section with the main theorem of Bar-
celó et al. (2019), which establishes a connection between
the classifiers realisable by these two formalisms (again,
they showed this for undirected uncoloured graphs–that is,
for |σ2| = 1 and with the only binary relation being
symmetric—but their proof applies to our setting with mi-
nor modifications).
Theorem 1 (implicitly in (Barceló et al. 2019)). A node
classifier is realised by both a GNN and a unary FOL for-
mula if and only if it is realised by a FOL (GML−) formula.

Recurrent and Graph-Size GNNs
It is well known (and confirmed by Theorem 1) that there
are many classifiers not realisable by (plain) GNNs. Thus,
the community often identifies such limitations and suggests
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appropriate GNN extensions. One notable classifier not re-
alisable by GNNs (already mentioned in the introduction)
is Reachability, which maps every σ-structure A to the set
of elements in A that are reachable from elements in CA

through edges of any colour, where C ∈ σ1 is a dedicated
unary predicate. The missing component is recursion, which
allows to iterate a computation step (e.g., a layer) beyond a
fixed number of times. There have been several proposals to
realise Reachability and similar functions by means of vari-
ous types of GNNs with recursion (Scarselli et al. 2008; Gal-
licchio and Micheli 2010; Toenshoff et al. 2021); however,
as far as we are aware, no systematic study of such general-
isations exists. We start filling this gap and consider various
aspects of such GNNs, including possible definitions and ex-
pressivity relations. More specifically, we introduce two al-
ternative definitions of GNNs with more than a fixed number
of iterations: one that iterates a GNN layer until a fixpoint
and one where the number of iterations is determined by a
function of the input graph size. We also make some initial
observations about the expressivity relations between these
GNN variants. We begin with the first definition.
Definition 4. For a finite set Col of colours and δ ∈ N,
a (Col, δ)-recurrent graph neural network (RecGNN) ℜ is a
pair (Layer,Cls) where the components are as in a (Col, δ)-
GNN. The result ℜ(G) of applying ℜ to a (Col, δ)-graph G
is the Boolean (Col, 1)-graph with the same nodes and edges
as G, but where each node v is labelled by
– Cls(λℓv (v)), if there exists a number ℓv ∈ N such that
Cls(λℓ(v)) = Cls(λℓv (v)) for every ℓ ≥ ℓv , where λℓ is
from the sequence induced by Layer on G;

– 0, otherwise.
Our definition of RecGNNs captures a natural class of

GNN models that may iterate beyond any fixed number
of iterations and only stop when the feature vectors (or,
more generally, the classifications) stabilise. In particular,
RecGNNs capture the original GNNs with recursion by
Scarselli et al. (2008) and their follow-up GraphESN (Gal-
licchio and Micheli 2010), assuming that they both iterate a
layer (trainable or hand-engineered) that implements a con-
tracting mapping until a predefined precision is reached, and
hence the feature vector stabilises.

Similarly to GNNs, each RecGNN realises a node clas-
sifier that maps each A to ℜ(GA). RecGNNs, however,
can realise many more classifiers than GNNs, including
Reachability.
Example 1. Reachability is realised by the RecGNN that,
in each iteration, sets the feature’s element corresponding to
C to 1 if and only if it is either already 1 or has a neigh-
bour with such element. So, when the classification sta-
bilises, only nodes reachable from an instance of C will be
assigned 1.

The following is another, less straightforward example.
Example 2. Let BetweenCycles be the node classifier such
that a ∈ BetweenCycles(A) for a σ-structure A if there are
elements al1, . . . , a

l
n and ar1, . . . , a

r
m in A such that

{(al1, al2), . . . , (aln, a), (a, ar1), . . . , (arm−1, a
r
m)} ⊆

⋃
R∈σ2

RA,

and either al1 = arm, or al1 = ali for some i > 1 and
arm = arj for some j < m. By reasons similar to the ones for
Reachability, plain GNNs cannot realise BetweenCycles. In
contrast, one can construct a simple RecGNN that identifies
nodes between cycles by pruning nodes of all tree-like sub-
structures (e.g., by iteratively assigning the all-zero feature
vector to each node with either no ingoing or no outgoing
edge leading to an element with a non-zero element in the
feature).

An obvious limitation of RecGNNs is that they can only
classify an element as 1 (i.e., true) if the classification sta-
bilises for the respective node. There is no guarantee, how-
ever, that the classification will stabilise for any node, since
our definition allows arbitrary Aggr and Comb functions.

We address this shortcoming in our second generalisation
of GNNs, graph-size graph neural networks. Similarly to
RecGNNs, they apply a single GNN layer more than a fixed
number of times; however, they do not require the classifi-
cation to stabilise but rather specify the number of iterations
as a function of the number of nodes in the input graph.
Definition 5. For colours Col and δ ∈ N, a (Col, δ)-
graph-size graph neural network (GSGNN) ℜ is a triple
(Layer,Cls, Iter) where Layer and Cls are as in a (Col, δ)-
GNN, while Iter : N → N is a stopping function. The
result ℜ(G) of applying ℜ to a (Col, δ)-graph G is the
Boolean (Col, δ)-graph with the same nodes and edges as
G, but where each node v is labelled by Cls(λIter(|V|)(v)),
for λIter(|V|) from the sequence induced by Layer on G and
|V| the number of nodes in G.

Note that GSGNNs capture existing GNN models with
recursion such as RunCSP (Toenshoff et al. 2021), which
combines a recursive LSTM-based layer, a simple linear
stopping function, and a FNN-based classification function.
GSGNNs realise node classifiers in the same way as GNNs
and RecGNNs. Moreover, it follows from the definition that
GSGNNs generalise GNNs: each L-layer GNN can be seen
as a GSGNN with Iter mapping each input to the constant
L. So, every classifier realised by a GNN can also be re-
alised by a GSGNN. The converse result does not hold; for
example, Reachability can be realised by a GSGNN with
identity as Iter that operates as the RecGNN in Example 1;
such Iter is enough since the shortest path between any two
nodes is never longer than the total number of graph nodes.
Moreover, BetweenCycles can be realised by a GSGNN in
an analogous way.

The following example shows that there are node classi-
fiers realisable by GSGNNs but not RecGNNs.
Example 3. For each n ∈ N, let GraphSizen be the classifier
mapping each σ-structure A to (the whole of) A if |A| ≤ n
and to ∅ otherwise. There is neither a GNN nor a RecGNN
realising GraphSizen, because none of them can distinguish
nodes in an n-cycle from nodes in an (n+1)-cycle. We can,
however, define a (Col, δ)-GSGNN (Layer,Cls, Iter) realis-
ing GraphSizen: we take Layer counting the number of iter-
ations, identity as Iter, and Cls giving 1 if the count does not
exceed n.

The following proposition summarises our initial obser-
vations about the expressivity of the three GNN variants.
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Proposition 1. The following hold:
– RecGNNs realise some classifiers that GNNs do not;
– GSGNNs realise some classifiers that neither GNNs nor

RecGNNs realise;
– GSGNNs realise all classifiers that GNNs realise.

Thus, to obtain the full expressivity picture for these
GNN variants, we need to understand whether RecGNNs
realise all GNN classifiers, and whether GSGNNs realise
all RecGNN classifiers. These less straightforward relation-
ships will be obtained in the next section.

GNNs, RecGNNs & GSGNNs, and
Bisimulations

In this section, we provide novel semantic characterisations
of the classes of node classifiers realised by (plain) GNNs,
RecGNNs, and GSGNNs in terms of appropriate variants
of bisimulation—a well-known concept widely used in var-
ious fields of computer science, including logic and au-
tomata, game theory, and geometric topology (Baader et al.
2017; Libkin 2004; Milner 1989). In particular, the three
variants of GNN classifiers are characterised precisely by
invariance under (graded two-way) ℓ-bisimulation, bisimu-
lation, and gs-bisimulation over σ-structures, respectively.
Note, the presented characterisation of GNNs in terms of ℓ-
bisimulation can be viewed as a uniform formulation of the
results by Morris et al. (2019) and Xu et al. (2019) that con-
nect GNNs to the Weisfeiler-Lehman graph-isomorphism
test when assuming the fixed signature σ contains one binary
relation and considering only structures where this relation
is symmetric. As corollaries of these results, we will get the
two missing expressivity relationships.

We first introduce the notion of ℓ-bisimulation (Otto
2019), which, as we will see, corresponds to GNNs.
Definition 6. A relation ρ ⊆ A × B is a (graded two-way)
0-bisimulation between σ-structures A and B whenever, for
every C ∈ σ1 and (a, b) ∈ ρ, we have a ∈ CA if and only if
b ∈ CB. For each ℓ ≥ 1, ρ is an ℓ-bisimulation between A
and B if there is an (ℓ − 1)-bisimulation ρ′ between A and
B such that, for every (a, b) ∈ ρ, we have that (a, b) ∈ ρ′

and, for each R ∈ σ2, there exist bijections

hR : NR
A (a) → NR

B(b),

hR̄ : N R̄
A (a) → N R̄

B(b)
(2)

satisfying (a′, hR(a
′)) ∈ ρ′ for each a′ in the domain of hR

and (a′, hR̄(a
′)) ∈ ρ′ for each a′ in the domain of hR̄.

Note that the union of two ℓ-bisimulations between ev-
ery two σ-structures is also an ℓ-bisimulation between them.
So, there exists a unique maximal (possibly empty) ℓ-
bisimulation between every two σ-structures. We next ex-
ploit this notion to define a semantic property of classifiers.
Definition 7. Given a number ℓ ∈ N, a node classifier
f is ℓ-bisimulation-invariant whenever, for every two σ-
structures A and B, and every ℓ-bisimulation ρ between
them, a ∈ f(A) if and only if b ∈ f(B) for every (a, b) ∈ ρ

Observe that we could equivalently formulate the defini-
tion in terms of the maximal ℓ-bisimulation between A and
B, instead of all ℓ-bisimulations between them.

The following lemma will be useful for establishing all
three of our semantic characterisations.

Lemma 1. Let Layer be a (Colσ, |σ1|+ 1)-layer. Then, for
every ℓ-bisimulation ρ between σ-structures A and B, and
every (a, b) ∈ A × B, (a, b) ∈ ρ implies λℓA(a) = λℓB(b),
where λℓA and λℓB are from the sequences induced by Layer
on GA and GB, respectively. If both components of Layer
are injective and ρ is maximal, then the reverse implication
also holds: λℓA(a) = λℓB(b) implies (a, b) ∈ ρ.

The proof of the lemma, which is by induction on ℓ,
is based on the observation that an injective aggregation-
combination layer and the inductive step in the definition
of maximal bisimulation can essentially mimic each other.
Indeed, two nodes receive the same labelling in iteration ℓ
of a layer whenever they have the same labelling in the pre-
vious iteration and they have the same numbers of (colour-
respecting) neighbours with same labels in that iteration; at
the same time, two elements are ℓ-bisimilar whenever they
are (ℓ− 1)-bisimilar and have the same numbers of (ℓ− 1)-
bisimilar neighbours for each colour.

In the following, we will use Lemma 1 to prove our se-
mantic characterisation theorems, and we start with the con-
nection between plain GNNs and ℓ-bisimulation.

Theorem 2. A node classifier is realised by anL-layer GNN
if and only if it is L-bisimulation-invariant.

We can prove both directions of this theorem using
Lemma 1. In particular, for the forward direction we ob-
serve that every given L-layer GNN must assign the same
feature after L layers to all L-bisimilar elements for every
L-bisimulation; hence, the GNN classifies these elements
the same, whatever the classification function is. For the
backward direction, we construct, given an L-bisimulation-
invariant classifier f , a GNN with an injective layer and the
classification function based on the classification of f ; such
a function is well-defined because every two nodes with
the same label after L layers must be in the maximal L-
bisimulation and hence must have the same f classification.

Having the correspondence between plain GNNs and
ℓ-bisimulation, we move towards a similar characterisation
of RecGNNs. Using the intuition that RecGNNs are essen-
tially GNNs with an infinite number of layers, we aim for
an ℓ-bisimulation with infinite ℓ, which turns out to be the
classic (graded two-way) bisimulation (Otto 2004, 2019).

Definition 8. A relation ρ ⊆ A × B is a (graded two-way)
bisimulation between σ-structures A and B whenever
– for each C ∈ σ1 and (a, b) ∈ ρ, we have a ∈ CA if and

only if b ∈ CB; and
– for each R ∈ σ2 and (a, b) ∈ ρ, there are bijections (2)

satisfying (a′, hR(a
′)) ∈ ρ for each a′ in the domain of

hR and (a′, hR̄(a
′)) ∈ ρ for each a′ in the domain of hR̄.

Similarly to ℓ-bisimulations, there is a unique maximal
bisimulation between every two σ-structures. We also note
that every bisimulation is an ℓ-bisimulation for every ℓ ∈ N.
The notion of invariance transfers to bisimulations.

Definition 9. A node classifier f is bisimulation-invariant
whenever, for every two σ-structures A and B, and ev-
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ery bisimulation ρ between them, a ∈ f(A) if and only if
b ∈ f(B) for every (a, b) ∈ ρ.

We are ready to formulate our semantic characterisation
of RecGNNs in terms of bisimulation.

Theorem 3. A node classifier is realised by a RecGNN if
and only if it is bisimulation-invariant.

To prove this theorem, we again exploit Lemma 1. The
forward direction relies on the fact that each bisimulation
is an ℓ-bisimulation for every ℓ and the same argument as
in Theorem 2. For the backward direction, as in Theorem 2,
we construct a RecGNN with an injective layer, which, addi-
tionally, ensures that the same label cannot occur in two dis-
tinct iterations; then, the classification function is defined as
before, and we can show, by exploiting the maximal bisim-
ulation, that this is again a well-defined function.

Since each bisimulation is an ℓ-bisimulation for all ℓ ∈ N,
we have that ℓ-bisimulation-invariance implies bisimulation-
invariance, for all ℓ ∈ N. Thus, Theorem 3 implies our first
missing expressivity result.

Corollary 1. RecGNNs realise all classifiers that GNNs do.

Finally, we obtain a similar semantic characterisation for
GSGNNs. To arrive at the appropriate notion of bisimula-
tion, we observe that GSGNNs are essentially RecGNNs
that are aware of the size of the input graph; thus, so should
be their bisimulation counterpart.

Definition 10. A relation ρ ⊆ A×B is a (graded two-way)
gs-bisimulation between σ-structures A and B whenever ei-
ther |A| = |B| and ρ is a bisimulation between A and B, or
ρ is empty.

This version of bisimulation induces the following notion
of invariance for node classifiers.

Definition 11. A node classifier f is gs-bisimulation-
invariant whenever, for every two σ-structures A and B, and
every gs-bisimulation ρ between them, a ∈ f(A) if and only
if b ∈ f(B) for every (a, b) ∈ ρ.

This notion allows us to formulate our semantic charac-
terisation of GSGNNs.

Theorem 4. A node classifier is realised by a GSGNN if and
only if it is gs-bisimulation-invariant.

The proof idea is similar to the one for Theorems 2 and 3.
Finally, we observe that every gs-bisimulation is a

bisimulation, and so bisimulation-invariance implies gs-
bisimulation-invariance. Together with Theorem 4, this
leads to our second missing expressivity result.

Corollary 2. GSGNNs realise all classifiers that RecGNNs
realise.

RecGNNs & GSGNNs, and Logic
In the previous section, we have given precise semantic char-
acterisations of the classifiers realised by the three GNN
variants in terms of appropriate variants of bisimulation. In
this section, we aim to complement these results by show-
ing how these semantic characterisations are utilised to ob-
tain syntactic characterisations of RecGNNs and GSGNNs

in terms of logics, in the same spirit as the characterisation
for plain GNNs in Theorem 1 by Barceló et al. (2019).

To this end, we will first define a base logic L—that
is, a set of logical formulas—and then prove theorems
that identify the sub-logic of L realising all bisimulation-
invariant or gs-bisimulation-invariant node classifiers over
finite structures—that is, the corresponding versions of
the van Benthem-Rosen theorem, which originally covers
FOL as the base logic and non-graded one-way bisimula-
tion (Rosen 1997; Otto 2019)). Then, Theorems 3 and 4,
respectively, immediately imply syntactic characterisations
for node classifiers expressible by RecGNNs and GSGNNs.

Corollary 3. Let L be a logic and S be the sublogic of L
that realises all bisimulation-invariant or gs-bisimulation-
invariant classifiers over finite structures. Then, a node clas-
sifier is realised by both a RecGNN or a GSGNN, respec-
tively, and a formula in L if and only if it is realised by a
formula in S .

Our first step, therefore, is to specify an appropriate
base logic. In the case of plain GNNs, FOL is a natural
choice because it can express many interesting classifiers
that GNNs can express. Indeed, the proof of Theorem 1
is based on a recent van Benthem-Rosen type theorem for
(graded two-way) bisimulation, which states that a FOL for-
mula is bisimulation-invariant if and only if it is equiva-
lent, over finite structures, to a FOL(GML−) formula (Otto
2019) (see also relevant papers (Rosen 1997; Otto 2004)).
FOL, however, is not expressive enough for interesting re-
sults about RecGNNs and GSGNNs, as it lacks recursion
and, hence, cannot realise many classifiers that separate
RecGNNs and GSGNNs from GNNs such as Reachability
and BetweenCycles. Better candidates are monadic mono-
tone fixpoint logic (MMFP), monadic least fixpoint logic
(MLFP), and monadic second-order logic (MSO)—three
well-known general-purpose logics with recursion (Libkin
2004). Obtaining van Benthem-Rosen type theorems on fi-
nite structures for these base logics, however, are long-
standing open problems, which are famously extremely
challenging (Blumensath and Wolf 2020). Therefore, we
leave such general characterisations open and concentrate on
local MMFP, a fragment of MMFP where the free variable of
a sub-formula defining a fixpoint predicate must always be
witnessed by a path of bounded length and for which we can
obtain a van Benthem-Rosen type theorem for bisimulations
and gs-bisimulations. Next to the desired syntactic charac-
terisations of RecGNNs and GSGNNs, our proof technique
is, to the best of our knowledge, new and valuable on its
own, because it may lead to van Benthem-Rosen type theo-
rems for full MMFP and MLFP.

We next formally define MMFP, which is FOL extended
with the least fixpoint operators of all unary formulas induc-
ing monotone operators, and its local fragment.

Definition 12. The syntax of (parameter-free) MMFP ex-
tends the FOL syntax with a constructor [lfpU,yϕ](x), where
ϕ is the unary iterating formula over the signature extended
with a fresh unary predicate U such that FU

A,ϕ is mono-
tone for every structure A over the extended signature; here,
FU
A,ϕ : 2A → 2A is the function that maps each X ⊆ A
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to the set {a ∈ A | (A, X/U) |= ϕ(a)}, where (A, X/U) is
the structure extending A by interpreting U as X; moreover,
FU
A,ϕ is monotone for a structure A if FU

A,ϕ(X) ⊆ FU
A,ϕ(Y )

for every X,Y ⊆ A such that X ⊆ Y . The semantics of
MMFP extends the one of FOL so that

A |= [lfpU,yϕ(y)](a) if a ∈ lfp(FU
A,ϕ),

where lfp(FU
A,ϕ) is the least fixpoint of FU

A,ϕ—that is, the
smallest set X ∈ 2A such that X = FU

A,ϕ(X).
Note that the monotonicity requirement ensures, by the

Knaster-Tarski theorem, that FU
A,ϕ has a unique least fix-

point (Libkin 2004); therefore, MMFP semantics are well-
defined. Note also that the syntax of MMFP is undecidable
(Libkin 2004); however, this shortcoming is not essential for
our results.

Finally, we define the local fragment of MMFP, which re-
quires that each existentially quantified variable must be wit-
nessed by an element reachable from the witnesses of other
variables via a path of a certain length.
Definition 13. An MMFP formula ϕ is local if its each ∃-
subformula ϕ′ is of the form ∃y. (dk(x, y) ∧ ψ) for some
k ∈ N, where x is a free variable of the most-specific lfp-
iterating subformula of ϕ containing ϕ′, if it exists, or of ϕ,
otherwise; and
dk(x, y) = ∃z1. . . . ∃zk−1. d1(x, z1) ∧
d1(z1, z2) ∧ · · · ∧ d1(zk−2, zk−1) ∧ d1(zk−1, y),

for d1(x, y) =
∨

R∈σ2
R(x, y) ∨ R(y, x). LocMMFP is the

language of unary local MMFP formulas.
To have a feeling of LocMMFP, one can verify that it can

express both Reachability and BetweenCycles, but is incom-
parable with unary FOL. Having our base logic defined, we
next specify our target logic. This is MMFP(GML−), which
is the extension of FOL (GML−) with the same constructor
that extends FOL to MMFP.
Definition 14. The syntax of MMFP(GML−) extends the
one of FOL (GML−) with the constructor that extends FOL
to MMFP (with the same restrictions). The semantics of
MMFP(GML−) is inherited from MMFP.

Note, each MMFP(GML−) formula is equivalent to a
LocMMFP formula, and so we do not need a separate lan-
guage of local MMFP(GML−) formulas.

We are now ready to state our van Benthem-Rosen type
characterisation theorems and their corollaries.
Theorem 5. A LocMMFP formula is bisimulation-invari-
ant if and only if it is equivalent, over finite structures, to an
MMFP(GML−) formula.

The proof of this theorem relies on a lemma that
shows that every LocMMFP formula is equivalent to an
MMFP(GML−) formula on n-acyclic structures for a suf-
ficiently large n ∈ N, as well as a construction of bisimi-
lar n-acyclic structures for any given structure (i.e., bisim-
ilar structures that do not contain any cycles of length
smaller than n); our construction builds upon ideas of Bed-
narczyk et al. (2021).1 Then, the theorem is proved by

1A different construction yielding bisimilar structures with the
same property was proposed by Otto (2004).

showing equivalence between every bisimulation-invariant
LocMMFP formula ϕ and the MMFP(GML−) formula ψ
obtained by applying our lemma to ϕ. Specifically, for the
forward direction, we first fix an arbitrary structure A and
a ∈ A with A |= ϕ(a), and then apply our construction to
obtain an n-acyclic structure A′ for some sufficiently large
n. By bisimulation invariance of ϕ, we have A′ |= ϕ(a′) for
some a′ bisimilar to a, and A′ |= ψ(a′) by our lemma. So,
we obtain A |= ψ(a) by bisimulation-invariance of ψ. The
backward direction is analogous.

Theorems 3 and 5 imply our first logical characterisation.
Corollary 4. A node classifier is realised by both a RecGNN
and a LocMMFP formula if and only if it is realised by a
MMFP(GML−) formula.

Having presented the syntactic characterisations for
RecGNNs, we move on to the one for GSGNNs. We again
begin with an appropriate van Benthem-Rosen type theorem,
which complements Theorem 5 by saying that bisimulation-
invariance and gs-bisimulation-invariance are equivalent for
LocMMFP formulas.
Theorem 6. A LocMMFP formula is gs-bisimulation-inva-
riant if and only if it is equivalent, over finite structures, to
an MMFP(GML−) formula.

This theorem follows from Theorem 5 and two lemmas:
one saying that every LocMMFP formula is invariant under
disjoint unions, and another saying that each classifier is in-
variant under disjoint unions and gs-bisimulation-invariant
if and only if it is bisimulation-invariant; here, a classifier f
is invariant under disjoint unions whenever, for every two
structures A and B with disjoint sets of elements and every
a ∈ A, we have a ∈ f(A) if and only if a ∈ f(A⊎B), where
the disjoint union A ⊎ B is defined as expected. The first
lemma is rather straightforward; the second lemma holds be-
cause the invariance under disjoint unions allows us to con-
struct, for σ-structures A and B with bisimilar elements a
and b, σ-structures of the form A ⊎ A′ and B ⊎ B′ whose
universes are of the same size, and a and b are still bisimilar.

Finally, Theorems 4 and 6 imply our logical characterisa-
tion for GSGNNs.
Corollary 5. A node classifier is realised by both a GSGNN
and a LocMMFP formula if and only if it is realised by a
MMFP(GML−) formula.

Conclusion
In this paper, we formalised two variants of GNNs with re-
cursion, RecGNNs and GSGNNs, and began to study their
properties. We established a strict expressiveness hierarchy
between them and plain GNNs, identified novel semantic
characterisations for them in terms of appropriate bisimu-
lations, and complemented them with syntactic character-
isations in term of a simple fixpoint logic. To the best of
our knowledge, this is the first systematic study of recurrent
GNNs. Many questions about GNNs with recursion remain
open, including the characterisation in terms of more expres-
sive logics, the identification of more fine-grained and more
general recurrent GNN classes, and the study of their prac-
tical applicability for various tasks and settings.
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