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Abstract

Multi-label few-shot aspect category detection (FS-ACD) is
a challenging sentiment analysis task, which aims to learn
a multi-label learning paradigm with limited training data.
The difficulty of this task is how to use limited data to gen-
eralize effective discriminative representations for different
categories. Nowadays, all advanced FS-ACD works utilize
the prototypical network to learn label prototypes to repre-
sent different aspects. However, such point-based estimation
methods are inherently noise-susceptible and bias-vulnerable.
To this end, this paper proposes a novel Variational Hybrid-
Attention Framework (VHAF) for the FS-ACD task. Specif-
ically, to alleviate the data noise, we adopt a hybrid-attention
mechanism to generate more discriminative aspect-specific
embeddings. Then, based on these embeddings, we introduce
the variational distribution inference to obtain the aspect-
specific distribution as a more robust aspect representation,
which can eliminate the scarce data bias for better inference.
Moreover, we further leverage an adaptive threshold estima-
tion to help VHAF better identify multiple relevant aspects.
Extensive experiments on three datasets demonstrate the ef-
fectiveness of our VHAF over other state-of-the-art methods.
Code is available at https://github.com/chengzju/VHAF.

Introduction
Aspect category detection (ACD) (Pontiki et al. 2016) is an
important task in sentiment analysis, which aims to discern
the aspect categories discussed in a given sentence from a
predefined set of aspect categories (e.g., price, food). Given
that sentences frequently encompass multiple aspects, ACD
inherently embodies a multi-label classification challenge.
The efficacy of prevalent ACD methodologies (Hu et al.
2019; Li et al. 2020) is contingent upon substantial amounts
of supervised data. However, in real scenarios, ACD usually
suffers from a lack of training data due to the labor-intensive
collection and annotation efforts.

Nowadays, the success of Few-Shot Learning (FSL) pro-
vides an effective solution to address the above challenges.
FSL is a human-like learning paradigm that can quickly gen-
eralize novel classes with a few training data by exploiting
prior knowledge. The pioneering work (Hu et al. 2021) is
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Support Set

hotel

(1) This hotel is terrible with even worse service.

(2) The hotel is clean and will suffice , but there are much better 
options for the money.

service

(1) We got better service at the casino valet at the mgm which is 
unacceptable considering the cost of our stay .

(2) Vegas hotels are very good at providing this sort of excellent 
customer service .

food

(1) It is the staff and food quality that really needs fixing.

(2) The views are amazing from any location, staff is friendly and 
the food was great too!

Query Set

hotel (1) It 's not the best hotel , but for the money , it 's my 1st choice .

hotel and food
(2) The food is better than average for a hotel but not great for a 
resort.

service and food
(3) Good service and food , but it used to be head and shoulders 
above typical resort fare.

Figure 1: A 3-way 2-shot meta-task example. The words
in the gray background represent target aspects, while the
words with underscores represent irrelevant aspects.

the first to address ACD in the few-shot scenario, which for-
mulates a few-shot aspect category detection problem (FS-
ACD). Afterward, many advanced FS-ACD works (Zhao
et al. 2022; Liu et al. 2022) have been proposed. FS-ACD
follows the meta-learning paradigm (Vinyals et al. 2016) by
constructing a set of N -way K-shot meta-tasks. A meta-task
aims to infer a query set with a small labeled support set, and
an example case is shown in Figure 1. In this way, FS-ACD
methods can achieve good generalization ability by leverag-
ing a large number of different meta-tasks.

Despite the promise, the recent FS-ACD research still en-
counters several thorny challenges. The issues come from
two folds. Firstly, since an ACD sentence may contain multi-
ple aspects, the noise from irrelevant aspects will inevitably
disturb the learning of the target aspect. As shown in Fig-
ure 1, as ”food” is the target aspect, ”staff” will be treated
as a noise aspect for the sentence ”It is the staff and food
quality that really needs fixing.” Although previous works
(Hu et al. 2021; Zhao et al. 2022; Liu et al. 2022) exploit
the aspect information to guide an attention mechanism to
alleviate this issue, it is hard to ensure that novel aspects
can establish accurate attention associations with sentence
features during inference. Secondly, existing FS-ACD meth-
ods consistently follow the prototypical network (Snell et al.
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2017), which learns a prototype for each aspect and uses
the distance between query samples and prototypes to pre-
dict labels. Here, we call these methods as point estimation
methods, which utilize a specific point to represent the same
class samples. However, scarce support samples often lead
to a biased point, which is insufficient for indicating the dis-
tribution of the entire class. Therefore, we emphasize that
the support samples should be considered as sampling from
a high-dimensional distribution, which is more worthwhile
to be estimated. In summary, the above issues of FS-ACD
should be properly addressed.

To this end, we propose a novel Variational Hybrid-
Attention Framework (VHAF) for the FS-ACD task. Un-
like the recent prototypical network-based works, VHAF ex-
ploits a variational distribution estimation that differs from
point estimation to deal with scarce biased data for more
robust performance. Specifically, our VHAF framework en-
capsulates three key components. First, we adopt a hybrid-
attention mechanism to learn more discriminative aspect-
specific embeddings. The hybrid attention consists of two
modules, aspect-wise attention to alleviate the noise of irrel-
evant aspects and cross-instance attention to highlight highly
consistent features among the same aspect instances. Then,
based on these embeddings, we introduce a variational dis-
tribution inference strategy to represent each aspect with an
aspect-specific distribution, which can better eliminate the
bias of point estimation for a more robust prediction. More-
over, we further leverage an adaptive threshold estimation to
help VHAF better identify positive aspects. The main con-
tributions of this work can be summarized as follows:

• We propose a novel Variational Hybrid-Attention Frame-
work (VHAF), which employs the variational distribu-
tion inference to derive more robust estimations from
limited data. To the best of our knowledge, we are the
first to leverage distribution estimation for FS-ACD.

• To alleviate the noise from irrelevant aspects and high-
light highly consistent features among the same aspect
instances, we design two effective attention mechanisms,
i.e., aspect-wise attention and cross-instance attention.

• We conduct extensive experiments on three benchmark
datasets. And results demonstrate that our proposed
VHAF method achieves state-of-the-art performance.

Related Work
Aspect Category Detection
Aspect Category Detection (ACD) aims to categorize a sen-
tence into a predefined aspect set. Previous works can be
roughly divided into two types: unsupervised and super-
vised methods. Unsupervised methods use semantic asso-
ciation (Su et al. 2006) or co-occurrence frequency (Hai,
Chang, and Kim 2011; Schouten et al. 2018) to extract as-
pects. Nonetheless, these methodologies demand significant
corpus resources and exhibit results that are less remark-
able. Supervised methods exploit hand-crafted features (Kir-
itchenko et al. 2014), representation learning (Zhou, Wan,
and Xiao 2015), multi-task learning (Hu et al. 2019), or
topic-attention model (Movahedi et al. 2019) to address the

ACD task. However, these methods exhibit a strong depen-
dence on substantial quantities of labeled data, prompting
the exploration of the ACD task within a few-shot scenario.

Multi-label Few-shot Learning
Few-shot learning (FSL) is a human-like learning paradigm
that can quickly generalize unseen classes with limited su-
pervised data by exploiting the prior knowledge learned
from seen classes. Many works have successfully applied
FSL to computer vision (Liu et al. 2019; Vinyals et al. 2016)
and natural language processing (Kumar et al. 2021; Yu et al.
2021). Compared with single-label FSL, the multi-label FSL
is less investigated. Previous works focus on image synthe-
sis (Alfassy et al. 2019), signal processing (Cheng, Chou,
and Yang 2019), and intent detection (Hou et al. 2021).

Recently, Proto-AWATT (Hu et al. 2021) is the first work
that formalizes aspect category detection in the few-shot sce-
nario. It attempts to leverage support-set and query-set atten-
tion mechanisms to alleviate the negative effect of noisy as-
pects. Following Proto-AWATT, some prototypical network-
based methods (Zhao et al. 2022; Liu et al. 2022) are pro-
posed, which use label information as auxiliary knowledge
to guide the attention mechanism to learn more discrimina-
tive aspect prototypes. However, all these methods use point
estimation for inference, which are difficult to deal with bi-
ased scarce data for robust performance.

To tackle the above issues, inspired by variational FSL
(Zhang et al. 2019), VHAF utilizes variational inference to
predict the specific distribution for each aspect. Differently,
our VHAF improves the distribution calculation process and
directly utilizes the similarity between distributions for in-
ference, thus achieving the adaptation to FS-ACD.

Preliminaries
Multi-Label Classification (MLC)
MLC needs to identify multiple labels for each instance.
Given the training dataset D={(xi,yi)|xi∈X,yi∈Y}Ti=1,
where X is the instance space and Y is the label space with
C predifined classes. Each instance xi is associated with a
multi-hot label vector yi = {0, 1}C , where the sign yi,j =1
indicates that xi belongs to the class j, otherwise yi,j = 0.
MLC aims to learn a function f :X×Y 7→R that can predict
relevant labels for unseen instances. Specifically, the func-
tion f is usually formulated as a real-value function, and the
score f(x, c) evaluates the relevance between instance x and
class c ∈ {1 . . . C}. Finally, the predicted relevant labels are
derived as {c|f(x, c) > t}, where t is the threshold value.

Few-Shot Learning (FSL)
FSL aims to acquire prior knowledge with few samples to
satisfy effective adaption to new tasks. In general, FSL per-
forms a meta-learning paradigm (Vinyals et al. 2016) with
two phases: meta-training and meta-testing. Given C prede-
fined classes, the dataset is divided into base (seen) classes
Cb and novel (unseen) classes Cn where Cb ∪ Cn = C and
Cb ∩ Cn = ∅. The model is trained with Cb and then quickly
adapted to tasks of Cn. To ease learning, meta-learning con-
structs a set of meta-tasks on a N -way K-shot setting. In
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Figure 2: The overview of our VHAF framework. The detailed structure of the Hybrid-Attention Module is on the right.

each meta-task, we randomly select N classes with K in-
stances to form a support set S = {(xc

1, . . . ,x
c
K),ac}Nc=1,

where each xc
k is an instance with the aspect category ac.

Meanwhile, a query set is constructed with M instances
sampled from the remaining data of the same N classes as
Q={(xq,yq)}Mq=1, where yq is a binary label vector.

Methodology

As shown in Figure 2, the VHAF framework contains three
components: hybrid-attention feature extraction, variational
distribution inference, and adaptive threshold estimation.

Hybrid-attention Feature Extraction (HAFE)

Given a T -length input sentence xi={wi,1, wi,2, . . . wi,T },
we first utilize the pre-trained language model (e.g. BERT
model (Devlin et al. 2019)) as the encoder to transform it
into an embedding sequence Hi = [hi,1,hi,2, . . . ,hi,T ] ∈
RT×d. Then, to better extract the discriminative informa-
tion about a specific aspect, we introduce a hybrid attention
mechanism to generate more accurate representations that
eliminate the distraction of noisy aspects. The hybrid atten-
tion consists of two modules, the aspect-wise attention to
discover the most relevant semantic features to each aspect
and the cross-instance attention to explore the highly similar
features among instances within each aspect set.

Aspect-wise Attention (AWA) Considering that each in-
stance is typically associated with multiple aspects, using
one identical representation as the support embedding for
different aspects can introduce noise information from other
aspects. Therefore, we leverage the attention mechanism to
discover the aspect-relevant features from Hi and filter out
irrelevant semantic information. Specifically, the attentional

representation uc
i ∈ Rd of the aspect c is calculated as:

uc
i =

T∑
t=1

αc
i,thi,t , α

c
i,t =

exp(ec⊤hi,t)∑T
t′=1 exp(e

c⊤hi,t′)
, (1)

where ec ∈ Rd denotes the embedding of the aspect c and
αc
i,t is the normalized coefficient of hi,t. To obtain the em-

bedding ec, we first encode the label text ac into an em-
bedding matrix Ac ∈ RTc×d in the similar manner as xi,
and then follow (Lin et al. 2017b) to learn a self-attention
embedding as:

ec = squeeze(Rc⊤Ac),

Rc = softmax (tanh (AcW1)W2) ,
(2)

where Rc ∈ RTc×1 is the self-attention coefficient, W1 ∈
Rd×d1 and W2∈Rd1×1 are trainable parameter weights and
are shared in the classes of all meta-tasks, which are learned
to be class-agnostic. And squeeze(·) denotes the operation
of squeezing dimensions to transform a matrix into a vector.

In this way, different aspects will adaptively focus on
different semantic features, thereby the instance xi can be
decoupled into N aspect-specific representations as Ui =
{uc

i |c ∈ {1, . . . , N}} ∈ RN×d.

Cross-instance Attention (CIA) Intuitively, instances
with the same aspect usually contain similar semantic fea-
tures, which are precisely discriminative information that
can also reflect the corresponding aspect. Therefore, we em-
ploy the cross attention to explore the feature correlations
among instances of the same aspect. Specifically, given the
support subset Sc = {xc

k|k ∈ {1, . . . ,K}} of the aspect c,
we calculate the cross-attention representations of xi with
respect to all K xc

k. Taking xc
k as an example, the cross-

attention representation ṽc
i,k ∈ Rd is calculated as,

ṽc
i,k =

T∑
t=1

βc,k
i,t hi,t , β

c,k
i,t =

exp(oc
k
⊤hi,t)∑T

t′=1 exp(o
c
k
⊤hi,t′)

, (3)
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where oc
k∈Rd is the self-attention embedding of xc

k, which
is generated similarly as ec after obtaining its embedding
matrix Hc

k. In the same way, we can obtain all K represen-
tations as {ṽc

i,k|k ∈ {1, . . . ,K}}, and then we calculate the
final cross-attention representation in an average manner as:

vc
i =

1

K

K∑
k=1

ṽc
i,k ∈ Rd. (4)

It is worth noting that the support instance only performs
CIA within its corresponding aspect subset to conclude com-
mon features, while the query instance performs CIA with
all N support subsets separately to extract features that are
highly similar to them.

After obtaining uc
i and vc

i , we concatenate them into a
holistic embedding mc

i ∈ Rd2 as the final representation to
complement each other.

mc
i = [uc

i ||vc
i ] ∈ Rd2 , (5)

where || represents the concatenation operation.

Variational Distribution Inference (VDI)
Prior works (Hu et al. 2021; Zhao et al. 2022; Liu et al. 2022)
usually follow (Snell et al. 2017) to aggregate K support in-
stances into one feature vector (prototype), and then measure
the distance between the query instance and the prototype
to make predictions. However, a single vector is difficult to
represent the whole class distribution, making such point es-
timation susceptible to data noise and bias. To this end, we
propose to leverage a distribution-level measure for more ro-
bust effect. Therefore, we need to address two issues: how
to represent aspect-specific distributions and how to leverage
these distributions to estimate the output of query instances.

Given a query instance xq , we aim to infer its output
via calculating the confidence score p(ŷq|z(xq),Z), where
z(xq) denotes the latent variable of xq and Z denotes the
entire aspect distribution. We introduce variational inference
to model the posterior distribution of the variable z. Specifi-
cally, we approximate the true posterior distribution p(z|xq)
with another parameterized distribution qϕ(z|xq) by mini-
mizing the Kullback-Leibler (KL) divergence as:

DKL(qϕ (z|xq)∥p (z|xq)) =

∫
qϕ(z|xq) log

qϕ(z|xq)

p(z|xq)
,

(6)
which is equivalent to maximizing the evidence lower bound
(ELBO) defined as follows:

ELBO=Eqϕ(z|xq)[log p(xq|z)]−DKL (qϕ(z|xq)∥p(z)) .
(7)

Based on the ELBO, we construct a simplified variational
objective that allows efficient optimization and effective
adaption for multi-label few-shot learning. First, p(z) in Eq.
7 denotes the prior distribution, which is always assigned as
an identical Gaussian N (0, I) (Kingma and Welling 2014).
However, we emphasize that specifying a consistent and
fixed prior hinders the model from generalizing specific dis-
tributions of different aspects. Therefore, we replace the
prior with pθ(z|Sc) by conditioning it on the aspect-specific

support subset. Second, since we aim to develop a distribu-
tion estimation method rather than generating reconstructed
features from z, we focus on the second term in Eq. 7 and
elaborate it with an aspect-specific KL divergence Lkl as:

LKL =
N∑
c=1

DKL (qϕ (z|xq) ∥pθ (z|Sc)) . (8)

Then, the next step is how to define posterior distribution
qϕ (z|xq) and prior distribution pθ (z|Sc).

Estimate Prior Distribution After we obtain the support
embedding set M c={mc

k|k ∈ {1, . . . ,K}} of aspect c, we
directly map each embedding mc

k to an individual Gaussian
distribution N (µc

k, (σ
c
k)

2
) via:

µc
k = (mc

kW3)Wµ ∈ Rdz ,

log((σc
k)

2
) = (mc

kW3)Wσ ∈ Rdz ,
(9)

where W3 ∈Rd2×d3 and Wµ,Wσ ∈Rd3×dz . Then we ag-
gregate those k priors with the variance-weighted average
operation, which produces the overall aggregated distribu-
tion N (µc, (σc)

2
) (abbreviated N c) for the aspect c as:

µc =

∑K
k=1 (σ

c
k)

−2
µc

k∑K
k=1 (σ

c
k)

−2
, (σc)

2
=

K∑K
k=1 (σ

c
k)

−2
. (10)

Compared to the equal-weighted average operation, the
variance-weighted average operation gives more weight to
the distribution with less variance, thereby enhancing the
more representative distribution and constraining the less
important distribution.

Estimate Posterior Distribution Unlike the prior distri-
bution, the posterior is solely conditional on the query in-
stance xq . After obtaining the c-th aspect representation mc

q
of the query instance xq , we directly use the transformed
Gaussian distribution N (µc

q, (σ
c
q)

2
) (abbreviated N c

q ) as the
posterior of xq with respect to the aspect c.

It is worth noting that xq , as a query instance, will gen-
erate the corresponding distribution for each aspect, but this
does not mean that is belongs to all aspects. Intuitively, when
xq belongs to the aspect c, N c

q should have a low KL diver-
gence with N c, high KL divergence otherwise. Therefore,
given a query instance xq , we can compute the conditional
probability p(ŷq,c|xq,S) (abbreviated p(ŷq,c)) to predict its
aspect labels based on negative KL divergence as:

p(ŷq,c|xq,S) =
exp(−DKL(N c

q ||N c))∑N
c′=1 exp(−DKL(N c′

q ||N c′))
. (11)

Based on the above considerations, we can further formulate
Eq. 8 in a binary cross-entropy (BCE) loss form as:

LBCE−KL = −
N∑
c=1

[
yq,c log

(
p(ŷq,c|xq,S)

)
+

(1− yq,c) log
(
1− p(ŷq,c|xq,S)

)]
,

(12)

where yq is the ground-truth label of instance xq .
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Model 5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1

Matching Network 97.05 81.89 97.49 84.62 96.30 70.95 96.72 73.28
Prototypical Network 96.49 83.30 97.53 86.29 95.97 74.23 96.71 76.83
Relation Network 93.31 75.79 90.86 72.02 91.81 63.78 90.54 61.15
Graph Network 96.54 81.45 97.46 85.04 95.45 70.75 96.97 77.84
Proto-HATT 96.45 83.33 97.62 86.71 95.71 73.42 97.00 77.65
Proto-AWATT 97.56 86.71 97.96 88.54 97.01 80.28 97.55 82.97
LDF 98.29 88.16 98.38 89.32 97.51 81.73 97.96 84.20
LPN 99.29 94.43 99.49 94.40 99.14 89.40 99.28 90.43
VHAF 99.40 94.26 99.43 94.64 99.16 89.60 99.31 90.67

Table 1: AUC and marco-F1 scores (%) on the FewAsp (single) dataset.

Adaptive Threshold Estimation (ATE)

To effectively determine multiple relevant aspects in a query
instance, we further propose an adaptive threshold estima-
tion method. Specifically, the first step is to derive the thre-
hold from the support set. Given a N -way K-shot sup-
port set, we can obtain the aggregated distribution N c for
each aspect c according to Eq. 10. Similarly, we can ag-
gregate the negative support embeddings {mc

i |yi,c = 0, i ∈
{1, . . . , N×K}} of the aspect c to generate a distribution
N c, as the negative distribution opposite to N c. Then, we
calculate the KL divergence between N c and N c as the in-
put of a multi-layer perceptron (MLP) gt(·) to estimate the
threshold tc for the aspect c:

tc = sigmoid(tanh(rcW4)W5) ,

rc = DKL(N c||N c) ∈ Rdz ,
(13)

where W4 ∈ Rdz×d4 and W5 ∈ Rd4×1.
The second step is to fit the threshold tc to an appropri-

ate value with query instances. Intuitively, an ideal thresh-
old should be somewhere between ground-truth positive and
negative predictions, acting as a division. To this end, we
first scale the difference between p(ŷq,c) and tc by the Sig-
moid activation function to between 0 and 1:

s = sigmoid(p(ŷq,c)− tc). (14)

Then, we introduce a focal loss (Lin et al. 2017a) to fine-tune
the MLP gt(·) to generate the appropriate thresholds as:

LFL =

{
−α(1− s)

γ
log(s), when yq,c = 1

−(1− α)sγ log(1− s), when yq,c = 0
, (15)

where γ ≥ 0 is the tunable focusing parameter and α ∈
[0, 1] is a weighting factor to balance the importance of pos-
itive/negative examples. To avoid ATE affecting the infer-
ence of p(ŷq,c), we stop gradient back-propagation so that
the loss LFL is only used to train the MLP gt(·).

Combining Eq. 12 and 15, the final loss is formulated as:

L = LBCE−KL + λLFL, (16)

where λ is the trade-off parameter. By minimizing the loss
L, we train the entire framework in an end-to-end manner.

Experiments
Datasets
We perform experiments on three benchmark datasets: Fe-
wAsp (single), FewAsp (multi) and FewAsp. All datasets are
constructed from YelpAspect (Bauman, Liu, and Tuzhilin
2017), which is a large-scale multi-domain dataset for aspect
recommendation. Following (Han et al. 2018), we split the
100 aspects without intersection into 64 aspects for training,
16 aspects for validation, and 20 aspects for testing. Specif-
ically, FewAsp (single) consists of single-aspect sentences,
FewAsp (multi) consists of multi-aspect sentences, and Fe-
wAsp consists of both types of sentences.

Baselines
• Matching Network (Vinyals et al. 2016) develops an at-

tention and memory-based method with a distance metric
based on the cosine similarity.

• Prototypical Network (Snell et al. 2017) measures the
distance between query instances and prototypes learned
from the support set to achieve classification.

• Relation Network (Sung et al. 2018) utilizes a deep neu-
ral network to learn the relation between query and sup-
port samples instead of fixed metrics.

• Graph Network (Garcia and Bruna 2018) novelty casts
the few-shot learning as a supervised message passing
task via graph neural network.

• Proto-HATT (Gao et al. 2019) develops an attention-
based prototypical network that addresses the noise with
hybrid instance- and feature-level attention mechanisms.

• Proto-AWATT (Hu et al. 2021) devises support-set and
query-set attention to alleviate the noise and learns a dy-
namic threshold per instance by a policy network.

• LDF (Zhao et al. 2022) introduces label-guided attention
strategy and label-weighted contrastive loss to produce
denoised prototypes.

• LPN (Liu et al. 2022) proposes a label-enhanced proto-
typical network with contrastive learning to facilitate the
learning of discriminative prototypes.

Evaluation Metrics
Following (Hu et al. 2021; Liu et al. 2022), we adopt two
metrics, i.e., AUC (Area Under Curve) and macro-F1 score.
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Model 5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1

Matching Network 89.54 65.70 91.38 69.02 88.28 50.86 89.94 54.42
Prototypical Network 89.67 67.88 91.60 72.32 88.01 52.72 90.68 58.92
Relation Network 84.91 58.38 86.21 61.37 84.22 43.71 84.72 44.85
Graph Network 87.97 59.25 90.45 64.63 86.05 45.42 88.44 48.49
Proto-HATT 91.10 69.15 93.03 73.91 90.44 55.34 92.38 60.21
Proto-AWATT 91.45 71.72 93.89 77.19 89.80 58.89 92.34 66.76
LDF 92.62 73.38 94.34 78.81 90.87 62.06 92.93 68.23
LPN 95.66 79.48 96.55 82.81 94.51 67.28 95.66 71.87
VHAF 97.09 84.64 97.57 87.31 96.01 75.92 96.78 79.43

Table 2: AUC and marco-F1 scores (%) on the FewAsp (multi) dataset.

Model 5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot
AUC F1 AUC F1 AUC F1 AUC F1

Matching Network 90.76 67.14 92.39 70.09 88.44 51.27 89.90 54.61
Prototypical Network 88.88 66.96 91.77 73.27 87.35 52.06 90.13 59.03
Relation Network 85.56 59.52 86.98 62.78 84.94 45.62 83.77 44.70
Graph Network 89.48 61.49 92.35 69.89 87.35 47.91 90.19 56.06
Proto-HATT 91.54 70.26 93.43 75.24 90.63 57.26 92.86 61.51
Proto-AWATT 93.35 75.37 95.28 80.16 92.06 65.65 93.42 69.70
LDF 94.65 78.27 95.71 81.87 92.74 67.13 94.29 71.97
LPN 96.45 82.22 97.15 84.90 95.36 71.42 96.55 76.51
VHAF 97.88 87.25 98.17 89.22 97.02 79.72 97.58 82.41

Table 3: AUC and marco-F1 scores (%) on the FewAsp dataset.

Implementation Details
We adopt the BERT-base model (Devlin et al. 2019) as the
encoding backbone. Following (Liu et al. 2022), we freeze
the first 6 layers of BERT and fine-tune the final 6 layers.
For model parameters, we set d= dz =768, d1 = d4 =256,
d2=1536 and d3=1024. For the loss function, we set λ=1,
γ = K and α = 1−1/N . We employ the AdamW (Wolf
et al. 2019) optimizer with the initial learning rate 1e-5. For
better statistical robustness, all experiments are repeated 5
runs to reduce randomness, and the results are averaged over
600 test episodes in each run. We perform experiments with
5/10-way and 5/10-shot settings on all datasets. All experi-
ments are conducted with one NVIDIA RTX A5000 GPU.

Performance Comparison
The overall performance comparisons on datasets FewAsp
(single), FewAsp (multi), and FewAsp are shown in Table 1,
2 and 3 respectively. From these tables, we can observe that:

(1) Our VHAF achieves the best results on almost all met-
rics of three datasets, which demonstrates the effectiveness
of VHAF. Specifically, on FewAsp, VHAF significantly out-
performs the best baseline approach LPN by 1.02%-1.50%
and 4.50%-8.64% in terms of AUC and macro-F1 score re-
spectively. On FewAsp (multi), VHAF leads a performance
boost of 0.93%-1.66% and 4.32%-8.30% upon LPN in terms
of AUC and macro-F1 score respectively. This indicates
that complementary AWA and CIA modules can adequately
capture discriminative features for different aspects. Mean-
while, the robust measurement based on aspect-specific dis-
tribution between the support set and query instances can
address the bias and noise issues caused by scarce data.

Models FewAsp FewAsp (multi)
ID HAFE VDI AUC F1 AUC F1
1 w/o HA w/o 96.54 83.06 93.17 64.46
2 w/ AWA w/o 97.26 85.82 94.69 72.65
3 w/ CIA w/o 97.84 87.15 94.32 69.53
4 w/ HA w/o 97.90 88.38 95.56 74.99
5 w/ HA w/ 98.17 89.22 96.01 75.92

Table 4: Ablation study of the 10-way 5-shot scenario on
FewAsp and FewAsp (multi) datasets. All ablated models
adopt adaptive threshold estimation for a fair comparison.

(2) For all methods, the performance on FewAsp (multi)
is consistently worse than on FewAsp and FewAsp (single).
This is because the instances in FewAsp (multi) have more
aspects, which increases the complexity of the dataset. De-
spite this, compared to other methods, our VHAF still main-
tains optimal performance compared on FewAsp (multi),
which further illustrates the robustness of our method in
dealing with more severe data noise.

Ablation Study
To further demonstrate the effectiveness of each component,
we conduct the ablation study. As shown in Table 4:

(1) Effect of hybrid-attention feature extraction. To imple-
ment HAFE: w/o HA means not using any attention mech-
anism to generate the aspect-specific representation but us-
ing a unified self-attention representation as in Eq. 2. On
the contrary, w/ HA means using the hybrid-attention mech-
anism. w/ AWA and w/ CIA means only adopting aspect-
wise attention or cross-instance attention respectively. It can
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(a) VHAF w/o HA&VDI (b) VHAF w/o VDI (c) VHAF

Figure 3: Visualization of aspect-specific embeddings and distributions obtained from VHAF w/o HA&VDI, VHAF w/o VDI
and VHAF respectively. Circles represent support instances, while plus signs represent query instances.
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Figure 4: Macro-F1 scores of different thresholds on Fe-
wAsp and FewAsp (multi) in the 10-way 5-shot scenario.

be observed that without the HA module, the performance
drops a lot, indicating that a unified instance representation
cannot eliminate the noise from irrelevant tags. Then we
can also see that using AWA or CIA can achieve various
degrees of performance improvement, while using both of
them achieves the optimal effect, which confirms both atten-
tion mechanisms help reduce noise for better representations
and also illustrates the complementary effect between them.

(2) Effect of variational distribution inference. w/o VDI
means that the VHAF model does not introduce the VDI
module to generate aspect-specific distribution for inference,
but directly aggregates the embeddings extracted from the
HAFE module into an aspect prototype to perform point
estimation. We can observe that without the VID module,
VHAF shows a huge performance degradation, which vali-
dates that VDI can help the model obtain a more robust as-
pect distribution to overcome the scarce data bias.

Effect of Adaptive Thresholds
To verify the effectiveness of the adaptive threshold, we
evaluate the impact of different thresholds. As shown in Fig-
ure 4, VHAF holds the best performance, which validates
the effectiveness of adaptive threshold estimation. However,
VHAF w/o ATE can only achieve a decent effect when given
an appropriate threshold, which is not easily grasped. The
DT strategy (Hu et al. 2021) learns a dynamic threshold via
the policy network. VHAF w/ DT achieves higher macro-F1
than Proto-AWATT w/ DT, which indicates that the proposed
variational distribution inference with hybrid-attention fea-
ture extraction provides a more effective and robust mea-
surement. Moreover, VHAF slightly outperforms VHAF w/

DT, which indicates the advantage of adaptive thresholds
based on feature distribution. In addition, DT, as a two-stage
method, makes the training process more complicated, so
our method is more cost-effective.

Visualization
We use t-SNE (Van der Maaten and Hinton 2008) to visu-
alize the extracted feature embeddings and aggregated dis-
tributions. We randomly select 5 aspects from the test set of
FewAsp (multi) and then sample 20 times of 5-way 5-shot
meta-tasks for these aspects. Each meta-task has 5 query in-
stances per aspect. Therefore, with a total of 500 support
instances and 500 query instances, Figure 3 shows the visu-
alization result of feature embeddings obtained from VHAF
w/o HA&VDI and VHAF w/o VDI, and distribution obtained
from VHAF. Data points with the same color represent in-
stances of the same aspect.

In Figure 3 a, without hybrid attention, the extracted em-
beddings of different aspects are lumped together, which
means that the noise from irrelevant aspects cannot be ef-
fectively eliminated. In contrast, hybrid attention facilitates
VHAF w/o VDI (Figure 3 b) to a better embedding separat-
ing effect. For ease of presentation, we only use the mean
vector to represent the individual distribution of each em-
bedding in Figure 3 c. By using both HA and VDI, VHAF
produces well-separated and more distinguishable aspect-
specific distribution to deal with the bias from scarce data.

Conclusion
In this paper, we propose a variational hybrid-attention
framework (VHAF) for multi-label few-shot aspect cate-
gory detection. Different from the recent point estimation
methods based on the prototypical network, our VHAF de-
vises a variational distribution inference approach that can
obtain more robust estimates under limited data. To better
capture discriminative embeddings to promote distribution
approximation, we utilize aspect-wise attention and cross-
instance attention to alleviate the noise of irrelevant aspects
and highlight highly consistent features. Moreover, we fur-
ther leverage an adaptive threshold estimation to achieve
better multi-label inference. Extensive experimental results
on three datasets demonstrate the effectiveness of our VHAF
over state-of-the-art methods. In future work, we hope to
generalize our VHAF to more multi-label few-shot tasks.
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