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Abstract

The ability to understand visual concepts and replicate and
compose these concepts from images is a central goal for
computer vision. Recent advances in text-to-image (T2I)
models have lead to high definition and realistic image qual-
ity generation by learning from large databases of images
and their descriptions. However, the evaluation of T2I models
has focused on photorealism and limited qualitative measures
of visual understanding. To quantify the ability of T2I mod-
els in learning and synthesizing novel visual concepts (a.k.a.
personalized T2I), we introduce CONCEPTBED, a large-scale
dataset that consists of 284 unique visual concepts, and 33K
composite text prompts. Along with the dataset, we propose
an evaluation metric, Concept Confidence Deviation (CCD),
that uses the confidence of oracle concept classifiers to mea-
sure the alignment between concepts generated by T2I gener-
ators and concepts contained in target images. We evaluate vi-
sual concepts that are either objects, attributes, or styles, and
also evaluate four dimensions of compositionality: counting,
attributes, relations, and actions. Our human study shows that
CCD is highly correlated with human understanding of con-
cepts. Our results point to a trade-off between learning the
concepts and preserving the compositionality which existing
approaches struggle to overcome. The data, code, and inter-
active demo is available at: https://conceptbed.github.io/

1 Introduction
Humans reason about the visual world by aggregating en-
tities that they see into “visual concepts”: both cats and
elephants are animals, and both palms and pines
are trees. We use natural language to describe images
and things that we see. Although this type of visual con-
cept learning is well-defined in human psychology (Murphy
2004), it remains elusive in the context of data-driven tech-
niques capable of learning and reasoning from images and
their natural language descriptions.

Text-to-Image (T2I) generative models are trained to
translate natural language phrases into images that corre-
spond to that input. High-quality T2I models, therefore,
serve as a link between human-level concepts (expressed in
natural language) and their visual representations and are
one way to reproduce visual concepts. On the other hand,
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Figure 1: Visual concept learners such as textual inversion
models learn to “invert” a set of images (about a concept c)
into a text embedding V∗, and then use this learned textual
concept in new text prompts to generate images of concept c
under different contexts and by performing novel compo-
sitions with other concepts. The proposed CONCEPTBED
dataset along with the evaluation metric CCD allows us to
comprehensively and quantifiably evaluate concept learning
abilities of text-to-image diffusion models.

this has also sparked interest in visual concept learning
(a.k.a. personalized T2I) through the procedure of “image
inversion” – to translate one or many images corresponding
to a visual concept into a latent representation of that visual
concept. While earlier methods primarily explored image
inversion using generative adversarial networks (Xia et al.
2022), methods such as Textual Inversion (Gal et al. 2022)
and Dreambooth (Ruiz et al. 2022) combine image inver-
sion with T2I – this has led to an effective way to quickly
learn concepts from a few images and reproduce them in
novel combinations and compositions with other concepts,
attributes, styles, etc. These methods aim to learn concepts
with minimal reference images by fine-tuning pre-trained
text-conditioned diffusion models (Figure 1). Therefore this
paradigm of T2I and image inversion is a powerful new way
of learning and reproducing concepts.

Within this paradigm of novel visual concept learning
via image inversion, two primary evaluation criteria have
emerged: (1) concept alignment, which assesses the corre-
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spondence between the generated images and the target con-
cept images, and (2) composition alignment, which evalu-
ates whether the generated images maintain compositional-
ity. Previous studies have been small scale, evaluating only
a small number of hand-picked concepts and compositions;
as such making generic claims via such findings is diffi-
cult. Furthermore, the established evaluation metrics such as
DINO-based cosine similarity (Ruiz et al. 2022) (for mea-
suring concept alignment), KID (Kumari et al. 2022) (for
measuring the amount of concept overfitting), and CLIP-
Score (Hessel et al. 2021) (for evaluating compositionality),
have encountered challenges in accurately capturing human
preferences. Consequently, there is a growing need for better
automated evaluations.

Therefore, we introduce CONCEPTBED, comprehensive
dataset and evaluation framework that is aligned with hu-
man preferences. The CONCEPTBED dataset comprises 284
distinct concepts and approximately 33,000 composite text
prompts, which can be further extended using the provided
automatic realistic dataset creation pipeline. The dataset fo-
cuses on four diverse concept learning evaluation tasks:
learning styles, learning objects, learning attributes, and
compositional reasoning. To gain a deeper understanding of
previous methodologies, we incorporate four composition
categories – action, attribution, counting, and relations.

We use our large-scale dataset to evaluate concept learn-
ers, by developing a novel evaluation metric called Concept
Confidence Deviation (CCD). We conduct a human study
and find that relative evaluations of models in terms of CCD
are well aligned with human preferences. Therefore, CCD
combined with the CONCEPTBED dataset, offers an alterna-
tive to existing evaluation strategies, facilitating more effec-
tive large-scale evaluations. For each evaluation criteria, we
train supervised classifiers (oracles) to detect whether gen-
erated concept images are accurate. Subsequently, the con-
fidence scores from these oracles are utilized to calculate
the instance-level concept deviations of the generated con-
cept images in relation to the reference target ground truth
images using the proposed CCD metric. This approach en-
ables us to assess concept and composition alignment more
effectively. We further show that CCD calculated using a pre-
trained few-shot classifier also maintains a high correlation
with human preferences. This allows CCD to measure con-
cept alignment on unseen concepts.

We conduct extensive experiments on four recently pro-
posed concept learning methodologies. In total, we fine-tune
approximately 1100 models (one model per concept) and
generate over 500,000 concept-specific images. Our results
reveal a surprising trade-off between concept alignment and
composition alignment, wherein methods excelling at con-
cept alignment tend to fall short in preserving compositions
and vice versa. This suggests that previous concept learning
approaches are either highly overfitted or severely underfit-
ted. Furthermore, our experiments demonstrate that utilizing
a pre-trained CLIP (Radford et al. 2021) textual encoder aids
in maintaining compositionality, but it lacks the flexibility
required to learn complex concepts, such as sketch.

In summary, we make the following key contributions:
• We introduce CONCEPTBED, a comprehensive bench-

ConceptBed DatasetDomain
Art Painting

Cartoon
Photo
Sketch

4 concepts

Attributes

Yellow Wing
Orange Beak
Brown Eyes

112 attributes

Objects
Dogs
Cats
Monkeys

Aircraft
Boat
Bottle

Car
Clock
Fish

Fruit
Bird
…

80 concepts

ConceptBed Compositions
Relation

16902 Prompts

V* with fish
V* sitting in bucket
A horse beside V*

Attribute

18987 Prompts

V* with red beak
V*’s ears are up
A red V* eating

Action

8014 Prompts

V* is licking herself
V* is running
A red V* eating

Counting

1083 Prompts

Two V* sitting
A photo of three V*
Two V* with a cat

Total: 284 unique concepts

Figure 2: A summary of the CONCEPTBED dataset for large-
scale grounded evaluations of concept learners. The collec-
tion of concepts is categorized into three classes: (1) Do-
main, (2) Objects, and (3) Attributes. CONCEPTBED has 284
unique concepts and four compositional categories. Here,
V* is a learned concept.

mark for grounded quantitative evaluations of text-
conditioned concept learners.

• The Concept Confidence Deviation (CCD) evaluation met-
ric, measures the learners’ ability to preserve concepts and
compositions. We demonstrate a strong correlation be-
tween CCD and human preferences.

• Through extensive experiments with 1,100+ models, we
identify shortcomings in prior works and suggest future
research directions. CONCEPTBED sets a standard for
evaluating personalized text-to-image generative models.

2 Preliminaries
Prior studies on concept learning have focused on text-
conditioned diffusion models, such as Textual Inversion (Gal
et al. 2022), DreamBooth (Ruiz et al. 2022), and Custom
Diffusion (Kumari et al. 2022). These models operate within
the T2I paradigm, where a text prompt (y) serves as input
to generate the corresponding image (xgen) representing the
given prompt y. A popular approach within T2I is the La-
tent Diffusion Model (LDM) (Rombach et al. 2022), which
incorporates two key modules:

1. Textual Encoder (Cθ): This module generates embed-
dings corresponding to the input text prompt;

2. Generator (ϵϕ): The generator estimates the noise itera-
tively from the input randomly sampled matrix at times-
tamp t (zt), conditioned on the text.

Since T2I models solely consider text input, the target
concept (c) is represented in terms of text tokens. These to-
kens can subsequently be employed to generate images as-
sociated with concept c. Therefore, in Textual Inversion, the
concept learning task is approached as an image inversion
problem, aiming to map the target concept back to the text-
embedding space.

Let V* denote the text tokens corresponding to the learned
concept c. Once the optimal mapping from V* to the target
concept is determined, we can generate concept-specific im-
ages using the LDM by providing V* in the text prompt.
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Algorithm 1: Concept Confidence Deviation

Input: Concept fine-tuned models G ∈ {gc}, c ∈ CCONCEPTBED;
Oracles Ft ∈ {FPAC , FImagenet, FCUBS , FV QA};
Reference set of concept images Xref ∈ {xc};
Target set of prompts Y ∈ {yc};

Output: Estimated CCD
1: Initialize: score = []; preal = []
2: for c ∈ CCONCEPTBED do
3: preal = []
4: if t = V QA then
5: c = 3
6: for x = 1 . . .M do
7: preal ← Ft(xi, c)

8: p̄real = 1
M

∑M
i=1 p

real
i

9: for n = 1 . . . N do
10: xgen = gc(yc)
11: score← −1 ∗ (F (xgen, c)− p̄real) {// Eq. 3}
12: CCD = 1

NC

∑NC
i=1 scorei

Suppose we are provided with m images (X1:m) of the tar-
get concept c. Now, in order to learn the text tokens V* cor-
responding to the concept c from the set of images X1:m, the
Textual Inversion methodology aims to optimize V* by re-
constructing X1:m using the objective function of the LDM
with frozen parameters θ and ϕ:

V ∗ = argmin
v

E
x∈X1:m, t,

ϵ∼N (0,1), z∼E(x)

||ϵ− ϵϕ(zt, t, x, Cθ(y))||22 (1)

In the case of DreamBooth and Custom Diffusion, instead
of finding the optimal V*, it optimizes the model parameter
ϕ associated with the noise estimator (ϵϕ). This optimization
process enables the model to learn the mapping between ran-
domly initialized V* and the target concept c.

ϕ∗ = argmin
ϕ

E
x∈X1:m, t,

ϵ∼N (0,1), z∼E(x)

||ϵ− ϵθ(zt, t, x, Cϕ(y))||22 (2)

Once ϕ∗ is obtained, it can be used to generate images re-
lated to the target concept.1

Once the images are generated, in order to evaluate these
generated images, it is essential to verify whether they align
with the learned concepts while maintaining compositional-
ity.

3 CONCEPTBED
In this section, we introduce CONCEPTBED, a comprehen-
sive collection of concepts, designed to accurately estimate
concept and composition alignment by quantifying devia-
tions in the generated images. Later, we introduce the novel
evaluation framework associated with CONCEPTBED. 2

1DreamBooth and Custom-Diffusion use additional regularizer
to improve compositionally by using same objective function on a
diverse set of image-caption pairs.

2Please refer to the arxiv release for additional insights on the
proposed dataset and evaluation framework: https://arxiv.org/abs/
2306.04695.

A photo of a dog in the style of V*

Textual Inversion 
(LDM)

Textual Inversion 
(SD) DreamBooth Custom DiffusionInput Reference 

Concepts: V*

V* flying in the sky.

Two V* sitting on a tree branch.

V* is sitting in the grass.

Man driving V*.

Cat is in the V*.

Figure 3: Qualitative examples showcasing the effectiveness
of concept learners on the CONCEPTBED dataset. The left-
most column displays four instances of ground truth tar-
get concept images (V*). Subsequent columns exhibit target
concept-specific images generated by all baseline methods.

3.1 CONCEPTBED: Dataset Construction
CONCEPTBED incorporates existing datasets such as Ima-
geNet (Deng et al. 2009), PACS (Li et al. 2017), CUB (Wah
et al. 2011), and Visual Genome (Krishna et al. 2017), en-
abling the creation of a labeled dataset. Figure 2 provides an
overview of the CONCEPTBED dataset.
Learning Styles. We use styles from the PACS dataset: Art
Painting, Cartoon, Photo, and Sketch. Each style
contains images corresponding to seven categories. The con-
cept learner aims to use examples from one style as a refer-
ence and generate style-specific images for all seven entities.
Learning Objects. Extracting object-level concepts is ac-
complished through the utilization of the ImageNet dataset.
It comprises 1000 low-level concepts from the Word-
Net (Fellbaum 2010) hierarchy. However, due to the pres-
ence of noise in ImageNet images and the lack of relevance
to daily life for many concepts, we employ an automated
filtering pipeline to ensure the usefulness and quality of the
reference concept images. The pipeline involves extracting
a list of low-level concepts and their parent concepts from
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Concept Confidence Deviation (CCD)

Figure 4: Intuitive illustration of the Concept Confidence
Deviation (CCD) for the concept Art Painting. Blue
and Orange are the probability distributions of the real and
generated concept images.

ImageNet, followed by extracting text phrases from Visual
Genome containing the concept as a subject in the caption.
If an insufficient number of such captions exists (less than
10 in Visual Genome) or they cannot be found, the concepts
are discarded. This filtering process results in 80 concepts
such as (brambling, squirrel monkey, etc.). We se-
lect the top 100 high-quality images for each concept that
will be used to train the concept learning methodologies.
Learning Attributes. Since ImageNet dataset images are
not labeled based on the attributes present in the image,
it is necessary to rely on datasets that provide attribute-
level grounded labels. Therefore, we additionally employ
the CUB dataset, which offers attribute-level labels (such
as orange wing, blue forehead, etc.), enabling the
CONCEPTBED to perform evaluations and measure the
attribute-level performance of concept learners.
Compositional Reasoning. In addition to learning new con-
cepts, it is crucial to maintain prior knowledge and associate
the acquired concepts with it. To conduct these evaluations
holistically, we use Visual Genome to extract captions in
which the concept appears as the subject of the sentence.
These captions are categorized into four composition cat-
egories (actions, attributes, counting, and relation) through
few-shot classification using GPT3 (Brown et al. 2020). This
categorization allows us to measure the performance of the
baselines on each category, and an in-depth understanding
of the varying difficulty levels of different compositions.

3.2 CONCEPTBED: Dataset Statistics
The CONCEPTBED dataset consists of 284 unique concepts,
comprising 80 concepts from ImageNet, 200 concepts from
CUB, and 4 concepts from PACS. In total, the dataset con-
tains approximately 33,000 composite prompts for the eval-
uation of all 80 processed concepts from ImageNet, with
each composite prompt having up to two composition cat-
egories. Out of these composite prompts, 18987, 16902,
8014, and 1083 prompts contribute to the attribute, relation,
action, and counting categories, respectively.

Our dataset curation pipeline is flexible to be extended to
larger datasets such as OpenImages-v7 (Kuznetsova et al.

2020) and LAION-5B (Schuhmann et al. 2022). However, it
is important to note that this extension would significantly
increase the resource requirements. With the introduction
of this dataset, our primary objective is to provide a stan-
dardized and benchmarked evaluation framework for con-
cept learners, enhancing research in the field.

3.3 CCD: Concept Confidence Deviation
Problem Statement. Consider a pre-trained text-
conditioned diffusion model g(·), which can be further
fine-tuned on a specific concept c such that c ∈ CCONCEPTBED.
We assume the availability of concept-specific tar-
get images from the CONCEPTBED dataset, denoted
as Dreal

c ∈Dtest
CONCEPTBED. Denote the concept learner

g(·) fine-tuned on concept c using Dreal
c as gc(·).

First, we generate a collection of N images using the
learned concept c, and denote this set of images as
Dgen

c ={xgen
i =gc(p

i
c, s

i); ∀i ∈ [0, N ]}, where pic is the
concept-specific prompt and s is the random seed.

The alignment between two distributions (i.e., Dreal
c and

Dgen
c ) is typically computed by first extracting features

from the model m (i.e., freal=m(Dreal); fgen=m(Dgen))
and then employing a distance metric d (i.e., score =
d(freal, fgen)). Several combinations of models (m) and
distance measures (d) have been used in prior work. For
concept alignment, Ruiz et al. (2022) use m=DINO with
d=Cos and Kumari et al. (2022) use m=Inception with
d=KID. For composition alignment, all prior work utilizes
m=CLIP with d=Cos. However, these methods fail to ac-
curately capture the concept deviations within the generated
images; rendering them ineffective in comparing perfor-
mance across the methodologies (as shown in Section 4.2).

Concept Confidence Deviation (CCD). To address the
above limitations, we propose training the oracle classifier
F , specifically for the concept detection task using the CON-
CEPTBED training dataset, Dtrain

CONCEPTBED. Then one can sim-
ply use m = F and d = Accuracy to verify whether xgen is
aligned with xreal. However, measuring accuracy does not
allow instance-level evaluations. By leveraging the output
probabilities of the oracle (concerning the concept label yc),
we can estimate the deviations associated with each gener-
ated image xgen w.r.t. the output probabilities of real target
images xreal. Concept Confidence Deviation is defined as:

CCD = −E
c

[
E

xgen

[
F (yc|xgen)− E

xreal

F (yc|xreal)
]]
. (3)

CCD first calculates the mean target probability on the
test ground truth images and then measures the difference
in probability of the generated images. CCD with negative
or close to 0.0 values indicates that the generated images
closely follow the distribution of the ground truth concept
images. A positive CCD value suggests that the generated
images deviate from the original distribution. Figure 4 shows
an intuitive example of CCD by calculating the distance be-
tween two probability densities corresponding to the real
and generated target concept.
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Model Concepts Fine-grainedCUB Composition
DomainPACS ObjectsImageNet Object-level Attribute-level

TI (LDM) 0.0478 0.0955 0.2289 0.1174 0.1906
TI (SD) 0.2456 0.0472 0.0859 0.0332 0.1090
DB 0.6825 0.0678 0.0963 0.0469 0.3527
CD 0.6206 0.2085 0.3934 0.1743 0.4916

Original 0.0000 0.0000 0.0000 0.000 0.0000

Table 1: Results of Concept Alignment Evaluation. The table shows the performance of concept learners evaluated using
the CCD (↓) metric for Concepts (DomainPACS, and ObjectImageNet), Fine-grainedCUB (Object-level, and Attribute-level), and
Composition. The best and worst performing models are indicated by bold and underlined numbers, respectively.

Models Relation Action Attribute Counting
CLIP VQA. CCD CLIP VQA CCD CLIP VQA. CCD CLIP VQA. CCD

TI (LDM) 0.6589 66.60% 0.2074 0.6523 68.69% 0.2098 0.6599 72.22% 0.1331 0.6515 65.78% 0.1231
TI (SD) 0.6294 70.09% 0.1735 0.6274 70.81% 0.1884 0.6360 74.75% 0.1091 0.6301 68.38% 0.1020
DB 0.7051 82.20% 0.0542 0.6995 84.61% 0.0496 0.6862 82.24% 0.0355 0.6924 78.90% -0.0016
CD 0.7065 82.94% 0.0471 0.7053 86.35% 0.0347 0.6940 84.20% 0.0163 0.6921 79.36% -0.0054
SD 0.7222 83.42% 0.0403 0.7178 87.39% 0.0256 0.7053 83.85% 0.0184 0.7085 81.07% -0.0206
Original 0.6626 87.45% 0.0000 0.6831 89.78% 0.0000 0.6306 85.79% 0.0000 0.6553 78.32% 0.0000

Table 2: Compositional Reasoning Evaluation Results. The table shows the performance of the prior works for Composition
Alignment. CLIP (↑) is the traditional image-text alignment metric. VQA (↑) is the accuracy of the ViLT VQA classifier on
generated boolean questions. And CCD (↓) is the composition deviations reported from the ViLT model with respect to its
performance on original images. The best-performing model is indicated by bold numbers, while the performance that is higher
than the original data is reported with underline.

3.4 Task Specific Evaluation Settings
To efficiently leverage the CONCEPTBED evaluation
pipeline, we trained separate oracles on the corresponding
CONCEPTBED datasets. Two different types of evaluations
are conducted, each with its respective set of oracles: 1) con-
cept alignment, measured by concept classifiers, and 2) com-
positional reasoning, measured by a VQA model.

Concept Alignment: Concept alignment evaluation was
performed on all tasks, including the generated concept im-
ages with different composite text prompts. To evaluate the
style, a ResNet18 (He et al. 2015) model is trained to dis-
tinguish the images between four style concepts. To eval-
uate the objects, a ConvNeXt (Liu et al. 2022) model is
fine-tuned on 80 classes from the CONCEPTBED using the
ImageNet training subset. The Concept Embedding Model
(CEM) (Zarlenga et al. 2022) was trained on CUB to de-
tect the concepts and attributes. Images corresponding to
the concepts were generated for each task by following the
prompts: “A photo of V*” for objects and “A photo of a
<entity-name> in the style of V*” for styles. Here, <entity-
name> belongs to the seven classes from PACS. The re-
maining task, composition, utilizes the same pre-trained
ConvNeXt model for concept alignment, as CONCEPTBED
compositions are specifically for 80 ImageNet concepts.

Compositional Reasoning: To measure the image-text
alignment with respect to the input prompts, the concept-
specific token (V*) was removed and replaced with the
corresponding ground truth label (i.e., dogs, cats, etc.).
The image-text similarity was then measured. Unlike previ-

ous works, CLIP was not used due to its inability to cap-
ture compositions (Thrush et al. 2022). Instead, taking af-
ter (Cho, Zala, and Bansal 2022), we propose to use a pre-
trained ViLT (Kim, Son, and Kim 2021) as a VQA model
for composition evaluations. Specifically, from each com-
posite prompt, the boolean questions with positive answers
are generated (Banerjee et al. 2021). As ViLT is essentially
a classifier, the CCD can be calculated with respect to the
confidence of the model associated with a “yes” answer.

4 Experiments & Results
In this section, we benchmark four state-of-the-art concept
learning methodologies. We first explain the experimen-
tal setup and report the evaluation results using the CON-
CEPTBED framework along with human preferences. 3

4.1 Experimental Setup
In our experiments, we study four text-conditioned diffusion
modeling-based concept learning strategies: Textual Inver-
sion (TI) on LDM and SD, DreamBooth (DB) (Ruiz et al.
2022), and Custom Diffusion (CD) (Kumari et al. 2022). We
generate N = 100 images for all concepts to measure the
concept alignment and N = 3 images for 33K composite
text prompts. For a total of 284 concepts, we train all four
baselines. This leads to 1100+ concept-specific fine-tuned
models and we generate a total of 500, 000 images for eval-

3The arxiv release contains additional details about the experi-
mental setup, results, and human evaluations: https://arxiv.org/abs/
2306.04695
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Models DomainPACS ObjectsImageNet Compositional Reasoning
DINO (↑) KID (↓) CCD (↓) H.S. (↑) DINO (↑) KID (↓) CCD (↓) H.S. (↑) CLIP (↑) CCD (↓) H.S. (↑)

TI (LDM) 0.5073 0.0117 0.0478 4.028 0.4708 0.0552 0.0955 4.069 0.6611 0.1684 2.851
TI (SD) 0.4104 0.0422 0.2456 4.084 0.4457 0.0294 0.0472 4.159 0.6309 0.1432 3.694
DB 0.3925 0.1101 0.6825 3.083 0.4525 0.0290 0.0678 4.075 0.6919 0.0344 3.556
CD 0.3956 0.0593 0.6206 3.164 0.4450 0.0492 0.2085 3.803 0.6968 0.0232 4.178

Correlation 0.6557 -0.8252 -0.9515 1.000 0.2787 -0.5347 -0.9892 1.000 0.3486 -0.7342 1.000

Table 3: Human Evaluations. Comparison of prior quantitative metrics and CCD metric with Human evaluations. DINO based
pairwise cosine similarity is the prior evaluation metric (Ruiz et al. 2022). KID was used to measure the overfitting by (Kumari
et al. 2022). CLIP (CLIPScore) is the traditional reference-free image-text similarity metric. CCD is our presented concept
deviation-aware evaluation metric. H.S. denotes the corresponding Human Score. Here, DomainPACS and ObjectImageNet evalu-
ations are for concept alignment and composition alignment is for image-text similarity. A high negative correlation between
CCD and human ratings implies strong alignment, as lower CCD and higher human ratings correspond to better performance.

Model PACS ImageNet
Domain Object Composition

TI (LDM) 72.84 64.53 58.28
TI (SD) 52.25 70.79 65.42
DB 24.71 67.45 39.42
CD 20.12 52.06 26.31

Table 4: Recall. Percentage of generated images highly
aligned (CCD <= 0.0) with the target concept images.

uations. To show the stability of CCD, we report the mean
performance across the three seeds of oracle training.

4.2 Results
Concept Alignment. Table 1 shows the overall perfor-
mance of the baselines in terms of CCD, where lower score
indicates better performance. First, we can observe that
CCD for concept alignment is low for the original images;
suggesting that the oracle is certain about its predictions.
Second, it can be inferred that Custom Diffusion performs
poorly, while Textual Inversion (SD) outperforms the other
methodologies except for the case of the learning styles.
We attribute this behavior to differences in textual encoders.
LDM trains the BERT-style textual encoder from scratch
while SD uses pre-trained CLIP to condition the diffusion
model. CLIP contains vast image-text knowledge leading to
better performance on learning objects but less flexibility to
learn different styles as a concept. Surprisingly, if we com-
pare the concept alignment performance with and without
composite prompts, we observe that the performance fur-
ther drops significantly for all baseline methodologies when
composite prompts are used. This shows that existing con-
cept learning methodologies find it difficult to maintain the
concepts whenever the prompt contains the composition.

Compositional Reasoning. Previously, we discussed con-
cept alignment on composite prompts. Table 2 summarizes
the evaluations on composition tasks. Here, we observe the
complete opposite trend in results. Custom Diffusion out-
performs the other approaches across the composition cat-
egories. This result shows the trade-off between learning
concepts and at the same time maintaining compositionality

in recent concept learning methodologies. Moreover, CLIP-
Score estimates the better performance of the baselines com-
pared to the original image-text pairs which are inaccurate.

Qualitative Results. Figure 3 provides the qualitative ex-
amples of the concept learning. It can be inferred that Tex-
tual Inversion (LDM) learns the sketch concept very well
(the first row), while DreamBooth and Custom Diffusion
struggle to learn it. All baselines perform comparatively well
in reproducing the learned concept (the second row). In-
terestingly, in the case of compositions, DreamBooth and
Custom Diffusion perform well with the cost of losing the
concept alignment (the last two rows). At the same time,
textual inversion approaches cannot reproduce the composi-
tions (like, “Two V*”) but they maintain concept alignment.
Overall, these qualitative examples align with our quantita-
tive results and strengthen our evaluation framework.

Human Evaluations. We perform Human Evaluations us-
ing Amazon Mechanical Turk for both types of evaluations:
1) concept alignment – to measure the alignment between
generated images and ground truth reference images on
DomainPACS and ObjectImageNet, and 2) compositional rea-
soning – to measure the image-text alignment. For concept
alignment, we ask human annotators to rate the likelihood of
the target image the same as three reference images. While
for compositional reasoning we simply ask the annotators
to rate the likelihood alignment of the image and the corre-
sponding caption. Table 3 summarizes the performance of
prior and proposed (CCD) quantitative metrics w.r.t. the Hu-
man Score. KID performs better for domains than objects as
image dynamics varies a lot in domains. (Kumari et al. 2022)
proposed to use KID with LAION-retrieved concept images
as a reference instead of ground truth due to the scarcity
of reference images. However, CONCEPTBED alleviates this
limitation. Therefore, we use actual ground truth images to
report KID which is more accurate. It can be inferred that
the CCD is strongly correlated with human preferences and
outperforms the prior evaluation metrics by a large amount.

Percentage of highly aligned instances. Using CCD, we
can further measure the recall of the concept learning mod-
els. DINO and KID metrics do not allow us to measure
the recall. Hence, it becomes hard to investigate the actual
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Models ConvNeXt Inception ViT Few-Shot
TI (LDM) 0.0955 0.0773 0.1165 0.0823
TI (SD) 0.0472 0.0201 0.0599 0.0489
DB 0.0678 0.0485 0.0786 0.0596
CD 0.2085 0.1845 0.2286 0.1384

Correlation -0.9892 -0.9888 -0.9816 -0.9763

Table 5: Ablation. Effect of different oracle models to mea-
sure concept alignment using CCD.

quality of the generated images. Table 4 shows the recall
( sample with CCD<=0.0

total samples ∗100) for the concept alignment shown
in Table 1. It can be inferred that Custom-Diffusion can work
once in every four generation attempts. While Textual Inver-
sion will work at least once in every two attempts. At the
same time, when composition prompts are provided, Tex-
tual Inversion consistently maintains the concept alignment
at the cost of achieving the composition alignment.
Generalization. Fine-tuned oracles cannot be generalized to
unseen concepts; making CCD unreliable on OOD concepts.
Hence, we propose to utilize a few-shot classifier (5-way 5-
shot) instead, which can allow the generalization to unseen
concepts while maintaining a high correlation (shown in Ta-
ble 5). This shows the effectiveness of using confidence and
CCD as the alternative to the DINO, KID, and CLIP.

5 Related Work
Concept Learning. Concept learning encompasses var-
ious problem statements and approaches, depending on
the perspective adopted. Concept Bottleneck Models
(CBMs) (Koh et al. 2020) and Concept Embedding Models
(CEMs) (Zarlenga et al. 2022) treat object attributes as con-
cepts and propose classification strategies to identify these
concepts. Neuro Symbolic Concept Learner (NS-CL) (Mao
et al. 2019) aims to learn visual concepts by associating
them with language semantics, enabling the model to per-
form visual question answering. Image Inversion Style Con-
cept Learning (Xia et al. 2022), takes a different approach.
Its objective is to invert a given concept image back into
the latent space of a pre-trained model. However, text-based
concept composition is not possible for such models.
Text-to-Image Generative Models. With advances in vec-
tor quantization (Van Den Oord, Vinyals et al. 2017) and dif-
fusion modeling (Rombach et al. 2022), text-to-image gen-
eration has improved its performance. Notable works such
as DALL-E (Ramesh et al. 2021) train transformer models.
While current state-of-the-art, diffusion-based text-to-image
models such as GLIDE (Nichol et al. 2022), LDM (Rom-
bach et al. 2022), and Imagen (Saharia et al. 2022), have
surpassed prior approaches (such as StackGAN (Zhang et al.
2017), StackGAN++ (Zhang et al. 2018), TReCS (Koh et al.
2021), and DALL-E (Ramesh et al. 2021)) and achieved
superior performance. Pixart-α (Chen et al. 2023) and
ECLIPSE (Patel et al. 2023) further enhances T2I meth-
ods without depending on heavy compute. Additionally, as
shown by (Saxon and Wang 2023), these T2I models also
have multilingual concept understanding to a certain extent.

Text-to-Image Concept Learning. Text-conditioned diffu-
sion models, such as LDM, have demonstrated their poten-
tial for learning novel visual concepts with only a few refer-
ence images. Textual Inversion (Gal et al. 2022) proposes
learning the embedding corresponding to the placeholder
(V*) through optimization. DreamBooth (Ruiz et al. 2022)
suggests optimizing the UNet parameters instead of optimiz-
ing the placeholder embedding. Custom Diffusion (Kumari
et al. 2022) combines both approaches by optimizing the
placeholder and key/value weights from the cross-attention
layers for faster concept learning. These concept learners
are essentially text-conditioned diffusion models and inherit
the same limitations of diffusion models. One limitation is
the overfitting of concepts and language drift. By optimiz-
ing model parameters on a handful of reference images, it is
highly likely that the model might overfit the given concept
and cannot maintain compositionality. Therefore, in this pa-
per, we propose CONCEPTBED for systematic evaluations.

Text-to-Image Generative Model Evaluations. Evaluating
generative models is not widely studied. The FID (Heusel
et al. 2017) score is commonly used to measure gener-
ated image quality. CLIPScore (Hessel et al. 2021) is an-
other popular evaluation metric for reference-free image-
text alignment. Another study focuses on compositional
evaluations of text-to-image models on small subsets (CU-
Birds and Oxford-Flowers) (Park et al. 2021). DALL-Eval
(Cho, Zala, and Bansal 2022) evaluates reasoning skills on
synthetic datasets and social biases of text-to-image gener-
ative models. DALL-Eval, VISOR (Gokhale et al. 2022),
LAYOUTBENCH (Cho et al. 2023) evaluates spatial rea-
soning abilities. Parallel work T2I CompBench (Huang et al.
2023) also adopts the idea of VQA for accurate composition
evaluations. Although text-to-image model evaluations are
well-explored, they lack concept-specific assessments and
cannot be used for evaluating concept learning. Therefore,
CONCEPTBED attempts to overcome this gap in evaluations
of novel visual concept learning abilities.

6 Conclusion
In this paper, we introduce a novel benchmark called CON-
CEPTBED designed to assess the efficacy of text-conditioned
diffusion models in learning new concepts (a.k.a. person-
alized T2I). The CONCEPTBED benchmark encompasses
an end-to-end evaluation pipeline, a comprehensive concept
library, and a novel Concept Confidence Deviation (CCD)
evaluation metric. We conduct evaluations based on two
key criteria: concept alignment and composition alignment.
Through extensive experiments, we demonstrate that exist-
ing text-conditioned diffusion model-based concept learn-
ers exhibit significant limitations in their performance. We
perform human evaluations to validate the effectiveness of
our proposed evaluation metric (CCD), which showcases a
strong correlation with human preferences. This finding po-
sitions CCD as a viable alternative to human judgments,
enabling large-scale and comprehensive evaluations. CON-
CEPTBED represents the first large-scale concept-learning
dataset that facilitates precise and accurate evaluations of
personalized text-to-image generative models.
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