
REPrune: Channel Pruning via Kernel Representative Selection
Mincheol Park1,3, Dongjin Kim2,3, Cheonjun Park1, Yuna Park3,

Gyeong Eun Gong4, Won Woo Ro1, and Suhyun Kim3*
1Yonsei University, Republic of Korea
2Korea University, Republic of Korea

3Korea Institute of Science and Technology, Republic of Korea
4Hyundai MOBIS, Republic of Korea

{mincheol.park, cheonjun.park, wro}@yonsei.ac.kr, npclinic3@korea.ac.kr
{qkrdbsdk0427, dr.suhyun kim}@gmail.com, gegong@mobis.co.kr

Abstract

Channel pruning is widely accepted to accelerate modern
convolutional neural networks (CNNs). The resulting pruned
model benefits from its immediate deployment on general-
purpose software and hardware resources. However, its large
pruning granularity, specifically at the unit of a convolution
filter, often leads to undesirable accuracy drops due to the in-
flexibility of deciding how and where to introduce sparsity to
the CNNs. In this paper, we propose REPrune, a novel chan-
nel pruning technique that emulates kernel pruning, fully ex-
ploiting the finer but structured granularity. REPrune identi-
fies similar kernels within each channel using agglomerative
clustering. Then, it selects filters that maximize the incorpora-
tion of kernel representatives while optimizing the maximum
cluster coverage problem. By integrating with a simultane-
ous training-pruning paradigm, REPrune promotes efficient,
progressive pruning throughout training CNNs, avoiding the
conventional train-prune-finetune sequence. Experimental re-
sults highlight that REPrune performs better in computer vi-
sion tasks than existing methods, effectively achieving a bal-
ance between acceleration ratio and performance retention.

Introduction
The growing utilization of convolutional layers in modern
CNN architectures presents substantial challenges for de-
ploying these models on low-power devices. As convolution
layers account for over 90% of the total computation vol-
ume, CNNs necessitate frequent memory accesses to handle
weights and feature maps, resulting in an increase in hard-
ware energy consumption (Chen, Emer, and Sze 2016). To
address these challenges, network pruning is being widely
explored as a viable solution for model compression, which
aims to deploy CNNs on energy-constrained devices.

Channel pruning (You et al. 2019; Chin et al. 2020; Sui
et al. 2021; Hou et al. 2022) in network pruning techniques
stands out as a practical approach. It discards redundant
channels—each corresponding to a convolution filter—in
the original CNNs, leading to a dense, narrow, and memory-
efficient architecture. Consequently, this pruned sub-model
is readily deployable on general-purpose hardware, circum-
venting the need for extra software optimizations (Han,

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

REPrune [ours]

Filter
selection

via
kernel

similarity
inspection

Cluster

Cluster

Cluster

Filter
#1

Filter
#2

Filter
#3

Small information loss
Dense-Narrow CNN è Rapid acceleration

Cluster

Cluster

Key-
Pattern

Key-
Pattern

Similar Similar
Key-

Pattern

sparsity : 66.7% sparsity : 66.7%

sparsity : 66.7%

Kernel Pruning

Small information loss
Sparse CNN è HW/SW co-optimization

Filter
#1

Filter
#2

Filter
#3

Kernel
#1

Kernel
#2

Kernel
#3

Key-
Pattern
Kernel

Key-
Pattern
Kernel

Key-
Pattern
Kernel

Channel Pruning

Large information loss
Dense-Narrow CNN è Rapid acceleration

Filter
#1

Filter
#2

Filter
#3

Kernel
#2

Kernel
#3

High-Importance Filter

Kernel
#1

Large magnitude weight
Small magnitude weight
Pruned weight
Pruning granularity

Figure 1: To accelerate CNN and minimize its information
loss simultaneously, REPrune intends to select filters associ-
ated with patterned key kernels targeted by kernel pruning.

Mao, and Dally 2016). Moreover, channel pruning enhances
pruning efficiency by adopting a concurrent training-pruning
pipeline. This method entails the incremental pruning of
low-ranked channels in training time.

However, pruning a channel (a filter unit), which exhibits
larger granularity, encounters greater challenges in preserv-
ing accuracy than the method with smaller granularity (Park
et al. 2023). This larger granularity often results in undesir-
able accuracy drops due to the inflexibility in how and where
to introduce sparsity into the original model (Zhong et al.
2022). Hence, an approach with a bit of fine-grained prun-
ing granularity, such as kernel pruning (Ma et al. 2020; Niu
et al. 2020) illustrated in Fig. 1, has been explored within the
structured pruning domain to overcome these limitations.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14545

This paper focuses on such a kernel, a slice of the 3D ten-
sor of a convolution filter, offering a more fine-grained gran-
ularity than an entire filter. Unlike filters, whose dimensions
vary a lot according to the layer depth, kernels in modern
CNN architectures have exact dimensions, typically 3×3 or
1 × 1, across all layers. This consistency allows for the fair
application of similarity decision criteria. However, naively
pruning non-critical kernels (Niu et al. 2020; Zhong et al.
2022) makes CNNs no longer dense. These sparse models
require the support of code regeneration or load-balancing
techniques to ensure parallel processing so as to accelerate
inference (Niu et al. 2020; Park et al. 2023).

Our goal is to develop a channel pruning technique that
implies fine-grained kernel inspection. We intend to identify
similar kernels and leave one between them. Fig.1 illustrates
an example of critical diagonal kernels being selected via
kernel pruning. These kernels may also display high simi-
larity with others in each channel, resulting in clusters (Li
et al. 2019) as shown in Fig.1. By fully exploiting the clus-
ters, we can obtain the effect of leaving diagonal kernels by
selecting the bottom filter, even if it is not kernel pruning.
It is worth noting that this selection is not always feasible,
but this way is essential to leave the best kernel to produce
a densely narrow CNN immediately. In this manner, we can
finally represent channel pruning emulating kernel pruning;
this is the first attempt to the best of our knowledge.

This paper proposes a novel channel pruning technique
entitled “REPrune.” REPrune selects filters incorporating
the most representative kernels, as depicted in Fig. 2.
REPrune starts with agglomerative clustering on a kernel set
that generates features of the same input channel. Agglom-
erative clustering provides a consistent hierarchical linkage.
By the linkage sequence, we can get an extent of similarity
among kernels belonging to the same cluster. This consis-
tency allows for introducing linkage cut-offs to break the
clustering process when the similarity exceeds a certain de-
gree while the clustering process intertwines with a progres-
sive pruning framework (Hou et al. 2022). More specifically,
these cut-offs act as linkage thresholds, determined by the
layer-wise target channel sparsity inherent in this framework
to obtain per-channel clusters. Then, REPrune selects a fil-
ter that maximizes the coverage for kernel representatives
from all clusters in each layer while optimizing our proposed
maximum coverage problem. Our comprehensive evaluation
demonstrates that REPrune performs better in computer vi-
sion tasks than previous methods.

Our contributions can be summarized as three-fold:

• We present REPrune, a channel pruning method that
identifies similar kernels based on clustering and selects
filters covering their representatives to achieve immedi-
ate model acceleration on general-purpose hardware.

• We embed REPrune within a concurrent training-pruning
framework, enabling efficiently pruned model derivation
in just one training phase, circumventing the traditional
train-prune-finetune procedure.

• REPrune also emulates kernel pruning attributes, achiev-
ing a high acceleration ratio with well-maintaining per-
formance in computer vision tasks.

Related Work
Channel pruning Numerous techniques have been devel-
oped to retain a minimal, influential set of filters by iden-
tifying essential input channels during the training phase
of CNNs. Within this domain, training-based methods (Liu
et al. 2017; He, Zhang, and Sun 2017; You et al. 2019; Li
et al. 2020b) strive to identify critical filters by imposing
LASSO or group LASSO penalties on the channels. How-
ever, this regularization falls short of enforcing the exact
zeroing of filters. To induce complete zeros for filters, cer-
tain studies (Ye et al. 2018; Lin et al. 2019) resort to a
proxy problem with ISTA (Beck and Teboulle 2009). Other
importance-based approaches try to find optimal channels
through ranking (Lin et al. 2020), filter norm (He et al. 2018,
2019), or mutual independence (Sui et al. 2021), necessitat-
ing an additional fine-tuning process. To fully automate the
pruning procedure, sampling-based methods (Kang and Han
2020; Gao et al. 2020) approximate the channel removal pro-
cess. These methods automate the selection process of chan-
nels using differentiable parameters. In contrast, REPrune,
without relying on differentiable parameters, simplifies the
automated generation of pruned models through a progres-
sive channel pruning paradigm (Hou et al. 2022).

Clustering-based pruning Traditional techniques (Dug-
gal et al. 2019; Lee et al. 2020) exploit differences in filter
distributions across layers (He et al. 2019) to identify simi-
larities between channels. These methods group similar fil-
ters or representations, mapping them to a latent space, and
retain only the essential ones. Recent studies (Chang et al.
2022; Wu et al. 2022) during the training phase of CNNs
cluster analogous feature maps to group the corresponding
channels. Their aim is to ascertain the optimal channel count
for each layer, which aids in designing a pruned model.
REPrune uses clustering that is nothing too novel. In other
words, REPrune departs from the filter clustering but per-
forms kernel clustering in each input channel to ultimately
prune filters. This is a distinct aspect of REPrune.

Kernel pruning Most existing methods (Ma et al. 2020;
Niu et al. 2020) retain specific patterns within convolution
kernels, subsequently discarding entire connections associ-
ated with the least essential kernels. To improve kernel prun-
ing, previous studies (Yu et al. 2017; Zhang et al. 2022) have
initiated the process by grouping filters based on their simi-
larity. A recent work (Zhong et al. 2022) combines the Lot-
tery Ticket Hypothesis (Frankle and Carbin 2019) to group
cohesive filters early on, then optimizes kernel selection
through their specialized weight selection process. However,
such methodologies tend to produce sparse CNNs, which de-
mand dedicated solutions (Park et al. 2023) for efficient ex-
ecution. Diverging from this challenge, REPrune focuses on
selecting filters that best represent critical kernels, circum-
venting the need for extra post-optimization.

Methodology
Prerequisite We denote the number of input and output
channels of the l-th convolutional layer as nl and nl+1, re-
spectively, with kh × kw representing the kernel dimension

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14546

Layer #1

Layer #2

Layer #3

3.Clustered model

Layer #4

Clustered Layer #2

Clustered Layer #3

Clustered Layer #4

Channel #1

Layer #1

Layer #2

5. Pruned model

prune
Filter #4

Pruned Layer #2

Layer #1

Layer #2

Layer #3

1.Randomly-initialized model

Layer #4

#1 5

#2

#3

#4

#5

5

5

5

5

Filter Select

Channel #1 4. Selecting Filter Representative

...

3

0

2

3

4

Score Update

-1 -1

-1 -1 -1

-1

-1

-1

2

0

2

2

0

Filter Select & Score Update

-1 -1

-1 -1 -1

-1

-1

-1

-1

-1

Selected

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

#1 0

#2

#3

#4

#5

0

0

2

0

Filter Select & Score Update

-1 -1 -1

-1-1 -1

Selected

Selected

Selected

-1

1 52 3 4

Layer #1 Channel #1 Layer #1 Channel #2
2. Agglomerative Clustering

...

Layer #2 Channel #1

...

Layer #2 Channel #2

a 53 4

5ba

a c

5

3
1 2

4

1 52 3 4

a 2 3 4

a 2 b

a c

1

5

2

4

3

(𝐼 𝑎, 𝑐 > 𝒉𝟏)
è break

(𝐼 𝑎, 𝑏 > 𝒉𝟏)
è break

(𝐼 𝑎, 5 > 𝒉𝟏)
è break

(𝐼 𝑏, 5 > 𝒉𝟏)
è break

2

4

3

a

minimum
𝑰 𝟏, 𝟓

minimum
𝑰 𝟑, 𝟒

5

3 4
a

minimum

minimum

Figure 2: An overview of the REPrune methodology for identifying redundant kernels and selecting filters. Every channel
performs agglomerative clustering on its corresponding kernel set in each layer. Once clusters are formed in accordance with
the target channel sparsity, our proposed solver for the MCP starts its greedy filter selection until the target number of channels
is satisfied. This solver selects a filter that includes a representative kernel from each grouped cluster per channel.

of the l-th convolution filters. A filter set for the l-th layer are
represented as F l ∈ Rnl+1×nl×kh×kw . We define the j-th
set of kernels of F l asKl

j ∈ Rnl+1×kh×kw , where j refers to
the index of an input channel. Each individual kernel is de-
noted by κl

i,j ∈ Rkh×kw , resulting in Kl
j = {κl

i,j : ∀i ∈ I}.
Lastly, we define I = {1, ..., nl+1} and J = {1, ..., nl}.

Preliminary: Agglomerative Clustering
Agglomerative clustering acts on ‘bottom-up’ hierarchical
clustering by starting with singleton clusters (i.e., separated
kernels) and then iteratively merging two clusters into one
until only one cluster remains.

Let a cluster set after the agglomerative clustering repeats
c-th merging process for the j-th kernel set Kl

j as ACc(Kl
j).

This process yields a sequence of intermediate cluster sets
AC0(Kl

j), ...,ACnl+1−1(Kl
j) where AC0(Kl

j) = {{κl
i,j} :

∀κl
i,j ∈ Kl

j} denotes the initial set of individual kernels, and
ACnl+1−1(Kl

j) = {Kl
j} is the root cluster that incorporates

all kernels in Kl
j . This clustering process can be typically

encapsulated in the following recurrence relationship:

ACc(Kl
j) = ACc−1(Kl

j) \ {Ac, Bc} ∪ {Ac ∪Bc}, (1)

where Ac and Bc denotes two arbitrary clusters from
ACc−1(Kl

j), which are the closest in the merging step c. The
distance between two clusters can be measured using the sin-
gle linkage, complete linkage, average linkage, and Ward’s
linkage distance (Witten and Frank 2002).

This paper exploits Ward’s method (Ward Jr 1963). First,
it prioritizes that kernels within two clusters are generally

not too dispersed in merging clusters (Murtagh and Legen-
dre 2014). In other words, Ward’s method can calculate the
dissimilarity of all combinations of the two clusters at each
merging step c. Thus, at each merging step c, a pair of clus-
ters to be grouped can be identified based on the maximum
similarity value, which represents the smallest relative dis-
tance compared to other distances. Ward’s linkage distance
defines I(Ac, Bc) = ∆(Ac ∪Bc)−∆(Ac)−∆(Bc) where
∆(·) is the sum of squared error. Then, the distance between
two clusters is defined as follows:

I(Ac, Bc) =
|Ac| |Bc|
|Ac|+ |Bc|

∥mAc −mBc∥2. (2)

where mAc
and mBc

are the centroid of each cluster and
|·| is the number of kernels in them. Hence, Ward’s linkage
distance starts at zero when every kernel is a singleton clus-
ter and grows as we merge clusters hierarchically. Second,
Ward’s method ensures this growth monotonically (Milli-
gan 1979). Let d(c;Kl

j), the minimum of Ward’s linkage
distances, be the linkage objective function in the c-th link-
age step: d(c;Kl

j) = min(Ac,Bc)∈ACc−1(Kl
j)
I(Ac, Bc), s.t.,

Ac ̸= Bc, ∀c ∈ {1, ..., nl+1 − 1} and d(0;Kl
j) = 0. Then,

d(c − 1;Kl
j) ≤ d(c;Kl

j). The non-decreasing property of
Ward’s linkage distance leads to a consistent linkage or-
der, although the clustering repeats. By the monotonicity of
Ward’s method, agglomerative clustering can even perform
until it reaches a cut-off height h as follows:

1c(h;Kl
j) =

{
ACc(Kl

j), h ≥ d(c;Kl
j),

ACc−1(Kl
j), otherwise,

(3)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14547

where 1c(·) is a linkage control function to perform agglom-
erative clustering in c-th merging step. The monotonicity of
Ward’s method allows for a direct mapping of Ward’s link-
age distance value to the height h, which can then be used
as a distance value. Therefore, Eq.3 can be used to gener-
ate available clusters until d(c;Kl

j) does not exceed h as the
desired cut-off parameter.

The following section will introduce how we set h as the
linkage cut-off to determine per-channel clusters, and then
REPrune makes the per-channel clusters through Eq. 3.

Foundation of Clusters Per Channel
This section introduces how to set a layer-specific linkage
cut-off, termed hl, and demonstrates the process to produce
clusters per channel using hl in each l-th convolutional layer.
Instead of applying a uniform h across all layers (Duggal
et al. 2019), our strategy employs a unique hl to break the
clustering process when necessary in each layer. This en-
sures that the distances between newly formed clusters re-
main out of a threshold so as to preserve an acceptable de-
gree of dispersion in each layer accordingly.

Our method begins with agglomerative clustering on each
kernel set Kl

j . Given the l-th layer’s channel sparsity sl ∈
[0, 1]1, kernel sets continue to cluster until ⌈(1 − sl)nl+1⌉
clusters form2. In other words, agglomerative clustering
needs to repeat ñl+1 (where ñl+1 = ⌈slnl+1⌉) merger
steps. In this paper, we make the cluster set per channel as
ACñl+1

(Kl
1) up to ACñl+1

(Kl
nl
).

At this merging step ñl+1, we collect Ward’s linkage dis-
tances, denoted as d(ñl+1;Kl

1) through d(ñl+1;Kl
nl
). Note

that kernel distributions can vary significantly across chan-
nels (Li et al. 2019). This means some channels may gener-
ate distances that are too close, reflecting the cohesiveness
of the kernels, while others may yield greater distances due
to the diversity of the kernels.

The diversity of kernels can lead to variations in the num-
ber of clusters for each channel. Furthermore, a smaller cut-
off height tends to increase this number of clusters, which in-
dicates a high preservation of kernel representation. To both
preserve the representation of each channel and ensure chan-
nel sparsity simultaneously, we set hl to the maximum value
among the collected distances as follows:

hl = maxj∈J d(ñl+1;Kl
j), l ∈ L. (4)

The linkage cut-off hl serves as a pivotal parameter in identi-
fying cluster sets in each channel based on the channel spar-
sity sl. This linkage cut-off hl aids in choosing suitable clus-
ter set AC∗(Kl

j) between ACñl+1−1(Kl
j) and ACñl+1

(Kl
j),

using the control function defined in Eq. 3:

AC∗(Kl
j) = 1ñl+1

(hl;Kl
j), j ∈ J , l ∈ L. (5)

Each cluster, derived from Eq. 5, indicates a group of similar
kernels, any of which can act as a representative within its
cluster. The following section provides insight into selecting
a filter that optimally surrounds these representatives.

1The process for obtaining sl will be outlined in detail within
the overview of the entire pipeline in this section.

Filter Selection via Maximum Cluster Coverage
This section aims to identify a subset of the filter set F l

to yield the maximum coverage for kernel representatives
across all clusters within each l-th convolutional layer.

We frame this objective within the Maximum Coverage
Problem (MCP). In this formulation, each kernel in a filter
is directly mapped to a distinct cluster. Further, a coverage
score, either 0 or 1, is allocated to each kernel. This score in-
dicates whether the cluster corresponding to a given kernel
has already been represented as filters are selected. There-
fore, our primary strategy for optimizing the MCP involves
prioritizing the selection of filters that maximize the sum of
these coverage scores. This way, we approximate an entire
representation of all clusters within the reserved filters.

To define our MCP, we introduce a set of clusters U l

from the l-th convolutional layer. This set, denoted as
U l = {AC∗(Kl

1); · · · ;AC
∗(Kl

nl
)}, represents the clusters

that need to be covered. Given a filter setF l, each j-th kernel
κl
i,j of a filter corresponds to a cluster in the set AC∗(Kl

j),
where ∀i ∈ I and ∀j ∈ J . This way, we can view each filter
as a subset of U l. This perspective leads to the subsequent
set cover problem, which aims to approximate U l using an
optimal set F̃ l that contains only the necessary filters.

The objective of our proposed MCP can be cast as a mini-
mization problem that involves a subset of filters, denoted as
F̃ l ⊂ F l, where F̃ l ∈ R⌈(1−sl)nl+1⌉×nl×kh×kw represents
the group of filters in the l-th layer that are not pruned:

min

|U l| −
∑

Fl
r∈F̃l

∑
κl
r,j∈Fl

r

∑
j∈J

S(κl
r,j)

 ,

s.t., S(κl
r,j) ∈ {0, 1}, |F̃ l| = ⌈(1− sl)nl+1⌉,

(6)

where F l
r is a selected filter, and |U l| =

∑nl

j=1 |AC∗(Kl
j)|

is the sum of optimal coverage scores. Each kernel in F l
r

initially has a coverage score, denoted by S(κl
r,j), of one.

This score transitions to zero if the cluster from AC∗(Kl
j),

to which κl
r,j maps, is already covered.

As depicted in Fig. 2, we propose a greedy algorithm to
optimize Eq. 6. This algorithm selects filters encompassing
the maximum number of uncovered clusters as follows:

i = argmaxi∈I

∑
j∈J

S(κl
i,j), ∀κl

i,j ∈ F l
i . (7)

There may be several candidate filters, F l
i ,F l

i′ , ...,F l
i′′

(where i ̸= i′ ̸= · · · ̸= i′′), that share the maximum, identi-
cal coverage scores. Given that any filter among these can-
didates could be equally representative, we resort to random
sampling to select a filter F l

r from them.
Upon the selection and inclusion of a filter F l

r into F̃ l,
the coverage scores of each kernel in the remaining filters
from F l are updated accordingly. This update continues in
the repetition of the procedure specified in Eq. 7 until a total
of ⌈(1 − sl)nl+1⌉ filters have been selected. This thorough
process is detailed in Alg.1.

2The ceiling function is equal to ⌈x⌉ = min{n ∈ Z : n ≥ x}.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14548

Algorithm 1: Channel Selection in REPrune
Input: Filter set F l = {Kl

j : j ∈ J }, ∀l ∈ L
Output: Non-pruned filter set F̃ l, ∀l ∈ L1

Given: AC; Target channel sparsity sl, ∀l ∈ L
1: for layer l ∈ L do
2: for channel j from 1 to nl do
3: ACc(Kl

j) until merging step c becomes ñl+1

4: Get d(ñl+1;Kl
j) and then obtain a cut-off hl

5: Set clusters per channel AC∗(Kl
j) ▷ Eq. 5

6: end for
7: Define the optimal cluster coverage U l

8: Initialize F̃ l as an empty queue
9: while |F̃ l| < ⌈(1− sl)nl+1⌉ do

10: Select candidate filters in F l ▷ Eq. 7
11: Sample F l

r from the candidates and add to F̃ l

12: Update coverage scores of remaining kernels
13: end while
14: end for

Complete Pipeline of REPrune
We introduce REPrune, an efficient pruning pipeline en-
abling concurrent channel exploration within a CNN during
training. This approach is motivated by prior research (Liu
et al. 2017; Ye et al. 2018; Zhao et al. 2019), which lever-
ages the trainable scaling factors (γ) in Batch Normaliza-
tion layers to assess channel importance during the training
process. We define a set of scaling factors across all lay-
ers as Γ = {γl

i : (i, l) ∈ (I,L)}. A quantile function,
Q : [0, 1] 7−→ R, is applied to Γ using a global channel spar-
sity ratio s̄ ∈ [0, 1). This function determines a threshold
γ∗=Q(s̄; Γ), which is used to prune non-critical channels:

Q(s̄; Γ) = inf{γl
i ∈ Γ : F (γl

i) ≥ s̄, (i, l) ∈ (I,L)}, (8)
where F (·) denotes the cumulative distribution function.
The layer-wise channel sparsity sl can then be derived us-
ing this threshold as follows:

sl =
1

|I|
∑

i∈I
1(γl

i ≤ γ∗), l ∈ L, (9)

where the indicator function, 1(·), returns 0 if γl
j ≤ γ∗ is sat-

isfied and 1 otherwise. This allows channels in each layer to
be automatically pruned if their corresponding scaling fac-
tors are below γ∗.

In some cases, Eq.9 may result in sl being equal to one.
This indicates that all channels in the l-th layer must be
removed at specific training iterations, which consequently
prohibits agglomerative clustering. We incorporate the chan-
nel regrowth strategy (Hou et al. 2022) to tackle this prob-
lem. This strategy allows for restoring some channels pruned
in previous training iterations. In light of this auxiliary ap-
proach, REPrune seamlessly functions without interruption
during the training process.

1The number of original in-channels nl of not pruned filters F̃ l

is not the same as the out-channel ⌈(1 − sl−1)nl⌉ of F̃ l−1. To
address this issue, we use a hard pruning method (He et al. 2018)
that adjusts the nl in-channels to match ⌈(1− sl−1)nl⌉ of F̃ l−1.

Algorithm 2: Overview of REPrune
Input: A CNN model M with convolution filters {F l :
∀l ∈ L}; agglomerative clustering algorithm AC; to-
tal number of channel pruning epochs Tprune; pruning
interval epoch ∆T ; global channel sparsity s̄; dataset D

Output: A pruned model with filters {F̃ l : ∀l ∈ L}
1: InitializeM
2: t← 1 ▷ t denotes epoch
3: whileM is not converged do
4: Draw mini-batch samples from D
5: Perform gradient descent onM
6: if t mod ∆T = 0 and t ≤ Tprune then
7: Compute channel sparsity {sl : ∀l ∈ L} ▷ Eq.9
8: Execute channel selection via REPrune2 ▷ Alg.1
9: Perform the channel regrowth process

10: end if
11: t← t+ 1
12: end while

This paper introduces an inexpensive framework to serve
REPrune while simultaneously training the CNN model.
The following section will demonstrate empirical evalua-
tions of how this proposed method, fully summarized in
Alg. 2, surpasses the performance of previous techniques.

Experiment
This section extensively evaluates REPrune across image
recognition and object detection tasks. We delve into case
studies investigating the cluster coverage ratio during our
proposed MCP optimization. Furthermore, we analyze the
impacts of agglomerative clustering with other monotonic
distances. We also present REPrune’s computational effi-
ciency in the training-pruning time and the image through-
put at test time on AI computing devices.

Datasets and models We evaluate image recognition on
CIFAR-10 and ImageNet (Deng et al. 2009) datasets and ob-
ject detection on COCO-2017 (Lin et al. 2014). For image
recognition, we use various ResNets (He et al. 2016), while
for object detection, we employ SSD300 (Liu et al. 2016).

Evaluation settings This paper evaluates the effectiveness
of REPrune using the PyTorch framework, building on the
generic training strategy from DeepLearningExample (Shen
et al. 2022). While evaluations are conducted on NVIDIA
RTX A6000 with 8 GPUs, for the CIFAR-10 dataset, we
utilize just a single GPU. Additionally, we employ NVIDIA
Jetson TX2 to assess the image throughput of our pruned
model with A6000. Comprehensive details regarding train-
ing hyper-parameters and pruning strategies for CNNs are
available in the Appendix. This paper computes FLOPs by
treating both multiplications and additions as a single oper-
ation, consistent with the approach (He et al. 2016).

2When the event where sl = 1 is encountered, indicating the
pruning of all channels in l-th convolutional layer, the sub-routine
of REPrune is exceptionally skipped.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14549

Method PT? FLOPs Top-1 Epochs
ResNet-18
Baseline - 1.81G 69.4 -
PFP (Liebenwein et al. 2020) ✓ 1.27G 67.4 270
SCOP-A (Tang et al. 2020) ✓ 1.10G 69.1 230
DMCP (Guo et al. 2020) ✗ 1.04G 69.0 150
SOSP (Nonnenmacher et al. 2022) ✗ 1.20G 68.7 128
REPrune ✗ 1.03G 69.2 250
ResNet-34
Baseline - 3.6G 73.3 -
GReg-1 (Wang et al. 2021) ✓ 2.7G 73.5 180
GReg-2 (Wang et al. 2021) ✓ 2.7G 73.6 180
DTP (Li et al. 2023) ✗ 2.7G 74.2 180
REPrune ✗ 2.7G 74.3 250
GFS (Ye et al. 2020) ✓ 2.1G 72.9 240
DMC (Gao et al. 2020) ✓ 2.1G 72.6 490
SCOP-A (Tang et al. 2020) ✓ 2.1G 72.9 230
SCOP-B (Tang et al. 2020) ✓ 2.0G 72.6 230
NPPM (Gao et al. 2021) ✓ 2.1G 73.0 390
CHEX (Hou et al. 2022) ✗ 2.0G 73.5 250
REPrune ✗ 2.0G 73.9 250
ResNet-50
Baseline - 4.1G 76.2 -
Hrank (Lin et al. 2020) ✓ 2.3G 75.0 570
HALP (Shen et al. 2022) ✓ 3.1G 77.2 180
GReg-1 (Wang et al. 2021) ✓ 2.7G 76.3 180
SOSP (Nonnenmacher et al. 2022) ✗ 2.4G 75.8 128
REPrune ✗ 2.3G 77.3 250
SCP (Kang and Han 2020) ✗ 1.9G 75.3 200
CHIP (Sui et al. 2021) ✓ 2.1G 76.2 180
CafeNet (Su et al. 2021) ✗ 2.0G 76.9 300
NPPM (Su et al. 2021) ✓ 1.8G 75.9 300
EKG (Lee and Song 2022) ✓ 2.2G 76.4 300
HALP (Shen et al. 2022) ✓ 2.0G 76.5 180
EKG+BYOL5 (Lee and Song 2022) ✓ 1.8G 76.6 300
DepGraph (Fang et al. 2023) ✓ 1.9G 75.8 -
REPrune ✗ 1.8G 77.0 250
DMCP (Guo et al. 2020) ✗ 1.1G 74.1 150
EagleEye (Li et al. 2020a) ✓ 1.0G 74.2 240
ResRep (Ding et al. 2021) ✓ 1.5G 75.3 270
GReg-2 (Wang et al. 2021) ✓ 1.3G 73.9 180
DSNet (Li et al. 2021) ✓ 1.2G 74.6 150
CHIP (Sui et al. 2021) ✓ 1.0G 73.3 180
CafeNet (Su et al. 2021) ✗ 1.0G 75.3 300
HALP+EagleEye (Shen et al. 2022) ✓ 1.2G 74.5 180
SOSP (Nonnenmacher et al. 2022) ✗ 1.1G 73.3 128
HALP (Shen et al. 2022) ✓ 1.0G 74.3 180
DTP (Li et al. 2023) ✗ 1.7G 75.5 180
DTP (Li et al. 2023) ✗ 1.3G 74.2 180
REPrune ✗ 1.0G 75.7 250

Table 1: Top-1 accuracy comparison with channel pruning
methods on the ImageNet dataset. ‘PT?’ indicates whether a
method necessitates pre-training the original CNN. ‘Epochs’
represent the sum of training and fine-tuning time or the en-
tire training time for methods without pre-training CNN.

Image Recognition
Comparison with channel pruning methods Table 1
shows the performance of REPrune when applied to ResNet-
18, ResNet-34, and ResNet-50 on the ImageNet dataset.
REPrune demonstrates notable efficiency, with only a slight

Method PT? FLOPs
reduction

Baseline
Top-1

Pruned
Top-1 Epochs

ResNet-56 (FLOPs: 127M)
CUP (Duggal et al. 2019) ✗ 52.83% 93.67 93.36 360
LSC (Lee et al. 2020)6 ✓ 55.45% 93.39 93.16 1160
ACP (Chang et al. 2022) ✓ 54.42% 93.18 93.39 530
REPrune ✗ 60.38% 93.39 93.40 160
ResNet-18 (FLOPs: 1.81G)
CUP (Duggal et al. 2019) ✗ 43.09% 69.87 67.37 180
ACP (Chang et al. 2022) ✓ 34.17% 70.02 67.82 280
REPrune ✗ 43.09% 69.40 69.20 250
ResNet-50 (FLOPs: 4.1G)
CUP (Duggal et al. 2019) ✗ 54.63% 75.87 74.34 180
ACP (Chang et al. 2022) ✓ 46.82% 75.94 75.53 280
REPrune ✗ 56.09% 76.20 77.04 250

Table 2: Comparison with clustering-based channel pruning
methods, including analysis using ResNet-56 on CIFAR-10.

Method PT? FLOPs
reduction

Baseline
Top-1

Pruned
Top-1 Epochs

ResNet-56 (FLOPs: 127M)
GKP (Zhong et al. 2022) ✗ 43.23% 93.78 94.00 300
REPrune ✗ 47.57% 93.39 94.00 160
ResNet-50 (FLOPs: 4.1G)
GKP (Zhong et al. 2022) ✗ 33.74% 76.15 75.53 90
REPrune ✗ 56.09% 76.20 77.04 250

Table 3: Comparison with a recent kernel pruning method.

decrease or increase in accuracy at the smallest FLOPs
compared to the baseline. Specifically, the accuracy drop is
only 0.2% and 0.5% for ResNet-18 and ResNet-50 models,
concerning FLOPs of 1.03G and 1.0G, respectively. More-
over, the accuracy of ResNet-34 improves by 0.6% when
its FLOPs reach 2.0G. Beyond this, REPrune’s accuracy not
only surpasses the achievements of contemporary influen-
tial channel pruning techniques but also exhibits standout re-
sults, particularly for the 2.7G FLOPs of ResNet-34 and the
2.3G and 1.8G FLOPs of ResNet-50–all of which display
about 1.0% improvements in accuracy over their baselines.

Comparison with clustering-based methods As shown
in Table 2, REPrune stands out with FLOPs reduction rates
of 60.38% for ResNet-56 and 56.09% for ResNet-50. Each
accuracy is compelling, with a slight increase of 0.01% for
ResNet-56 and a distinctive gain of 0.84% over the base-
line for ResNet-50. At these acceleration rates, REPrune’s
accuracy of 93.40% (ResNet-56) and 77.04% (ResNet-50)
surpass those achieved by prior clustering-based methods,
even at their lower acceleration rates.

Comparison with kernel pruning method Table 3 shows
that REPrune excels by achieving a FLOPs reduction rate of
56.09% for ResNet-50 on ImageNet. In this FLOPs gain,
REPrune even records a 0.84% accuracy improvement to
the baseline. This stands out when compared to GKP. On
CIFAR-10, REPrune achieves greater FLOPs reduction than
GKP while maintaining the same level of performance.

5BYOL (Grill et al. 2020) is a self-supervised learning method.
6There is no reported accuracy on the ImageNet dataset.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14550

Method FLOPs
reduction mAP AP50 AP75 APS APM APL

SSD300 object detection
Baseline 0% 25.2 42.7 25.8 7.3 27.1 40.8
DMCP (Guo et al. 2020) 50% 24.1 41.2 24.7 6.7 25.6 39.2
REPrune 50% 25.0 42.3 25.9 7.4 26.8 40.4

Table 4: Evaluation of SSD300 with ResNet-50 the back-
bone on COCO-2017. Performance is assessed using bound-
ing box AP. FLOPs reduction refers solely to the backbone.

Linkage method Single Complete Average Ward
FLOPs reduction 60.70% 64.04% 63.96% 60.38%
Top-1 accuracy 92.74% 92.67% 92.87% 93.40%

Table 5: Comparison of linkage methods for ResNet-56 on
CIFAR-10, using the same global channel sparsity, s̄=0.55.

FLOPs reduction 0% 43% 56% 75%
Training time (hours) 43.75 40.62 38.75 35.69

Table 6: Training time comparison for ResNet-50 using the
REPrune on ImageNet. The ‘1 hour’ is equivalent to training
with 8 RTX A6000 GPUs with 16 worker processes.

Object Detection
Table 4 presents that, even with a FLOPs reduction of 50% in
the ResNet-50 backbone, REPrune surpasses DMCP by 0.9
in mAP, a minor decrease of 0.2 compared to the baseline.

Case Study
Impact of other monotonic linkage distance Agglomer-
ative clustering is available with other linkage methods, in-
cluding single, complete, and average, each of which sat-
isfies monotonicity for bottom-up clustering. As shown in
Table 5, when Ward’s linkage method is replaced with any
of these alternatives, accuracy retention appears limited, es-
pecially when imposing the same channel sparsity of 55%.
In the context of the FLOPs reduction with the same chan-
nel sparsity, we conjecture that using these alternatives in
REPrune tends to favor removing channels from the front
layers compared to Ward’s method. These layers have more
massive FLOPs and are more information-sensitive (Li et al.
2017). While each technique reduces a relatively high num-
ber of FLOPs, they may also suffer from maintaining accu-
racy due to removing these sensitive channels.

Cluster coverage rate of selected filters Fig. 3 illustrates
how coverage rates change over time, aggregating selected
filter scores relative to the sum of optimal coverage scores.
Initially, clusters from subsequent layers predominate those
from the front layers. As learning continues, REPrune pro-
gressively focuses on enlarging the channel sparsity of front
layers. This dynamic, when coupled with our greedy algo-
rithm’s thorough optimization of the MCP across all layers,
results in a steady increase in coverage rates, reducing the
potential for coverage failures.

Training-pruning time efficiency Table 6 shows the
training (forward and backward) time efficiency of REPrune

Th
e

nu
m

be
r o

f c
lu

st
er

s

EpochLayer index

0

500

1000

1500

2000

2500

3000

3500

4000

2 10 18 25 33 41 48 56

2-Epoch
50-Epoch
96-Epoch

C
ov

er
ag

e
ra

te

Epoch

0
100
200
300
400
500

2 14 26 38 50 62 74 86

Covered Total

Layer 15

0
600

1200
1800
2400
3000

2 14 26 38 50 62 74 86

Covered Total

Layer 28

Th
e

nu
m

be
r o

f c
lu

st
er

s

Figure 3: The illustration of coverage rates for ResNet-56
on CIFAR-10 during the optimization of our proposed MCP.
Each box contains the coverage rates from all pruned convo-
lutional layers throughout the training epoch.

(a) RTX A6000 (b) Jetson TX2

0

400

800

1200

1600

2000

0% 43% 56% 75%

Th
ro

ug
hp

ut
 (i
mg

/s
)

FLOPs reduction

Batch size: 128
Batch size: 256
Batch size: 512

0
10
20
30
40
50
60
70
80

0% 43% 56% 75%

Th
ro

ug
hp

ut
 (i
mg

/s
)

FLOPs reduction

Batch size: 8
Batch size: 16
Batch size: 64

Figure 4: Computing throughput (img/s) on image infer-
ence using ResNet-50 on the ImageNet validation dataset.

applied to ResNet-50 on the ImageNet dataset. REPrune re-
sults in time savings of 3.13, 5.00, and 8.06 hours for FLOPs
reductions of 43%, 56%, and 75%, respectively. This indi-
cates that it can reduce training time effectively in practice.

Test-time image throughput Fig. 4 demonstrates the im-
age throughput of pruned ResNet-50 models on both a sin-
gle RTX A6000 and a low-power Jetson TX2 GPU in real-
istic acceleration. These models were theoretically reduced
by 43%, 56%, and 75% in FLOPs and were executed in var-
ious batch sizes. Discrepancies between theoretical and ac-
tual performance may arise from I/O delay, frequent context
switching, and the number of CUDA and tensor cores.

Conclusion
Channel pruning techniques suffer from large pruning gran-
ularity. To overcome this limitation, we introduce REPrune,
a new approach that aggressively exploits the similarity be-
tween kernels. This method identifies filters that contain rep-
resentative kernels and maximizes the coverage of kernels in
each layer. REPrune takes advantage of both kernel pruning
and channel pruning during the training of CNNs, and it can
preserve performance even when acceleration rates are high.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14551

Acknowledgements
This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2021-0-
00456, Development of Ultra-high Speech Quality Technol-
ogy for remote Multi-speaker Conference System), and by
the Korea Institute of Science and Technology (KIST) Insti-
tutional Program.

References
Beck, A.; and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences.
Chang, J.; Lu, Y.; Xue, P.; Xu, Y.; and Wei, Z. 2022. Automatic
channel pruning via clustering and swarm intelligence optimization
for CNN. Applied Intelligence.
Chen, Y.-H.; Emer, J.; and Sze, V. 2016. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural net-
works. ACM SIGARCH Computer Architecture News.
Chin, T.-W.; Ding, R.; Zhang, C.; and Marculescu, D. 2020. To-
wards efficient model compression via learned global ranking. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition.
Ding, X.; Hao, T.; Tan, J.; Liu, J.; Han, J.; Guo, Y.; and Ding, G.
2021. Resrep: Lossless cnn pruning via decoupling remembering
and forgetting. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision.
Duggal, R.; Xiao, C.; Vuduc, R. W.; and Sun, J. 2019. Cup: Cluster
pruning for compressing deep neural networks. 2021 IEEE Inter-
national Conference on Big Data.
Fang, G.; Ma, X.; Song, M.; Mi, M. B.; and Wang, X. 2023.
Depgraph: Towards any structural pruning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion.
Frankle, J.; and Carbin, M. 2019. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In International Confer-
ence on Learning Representations.
Gao, S.; Huang, F.; Cai, W.; and Huang, H. 2021. Network pruning
via performance maximization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Gao, S.; Huang, F.; Pei, J.; and Huang, H. 2020. Discrete model
compression with resource constraint for deep neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.;
Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Ghesh-
laghi Azar, M.; et al. 2020. Bootstrap your own latent-a new ap-
proach to self-supervised learning. In Advances in Neural Infor-
mation Processing Systems.
Guo, S.; Wang, Y.; Li, Q.; and Yan, J. 2020. Dmcp: Differentiable
markov channel pruning for neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion.
Han, S.; Mao, H.; and Dally, W. J. 2016. Deep compression: com-
pressing deep neural network with pruning, trained quantization
and Huffman coding. In International Conference on Learning
Representations.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.
He, Y.; Kang, G.; Dong, X.; Fu, Y.; and Yang, Y. 2018. Soft filter
pruning for accelerating deep convolutional neural networks. In
Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence.
He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019. Filter prun-
ing via geometric median for deep convolutional neural networks
acceleration. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for acceler-
ating very deep neural networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision.
Hou, Z.; Qin, M.; Sun, F.; Ma, X.; Yuan, K.; Xu, Y.; Chen, Y.-K.;
Jin, R.; Xie, Y.; and Kung, S.-Y. 2022. Chex: Channel exploration
for CNN model compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Kang, M.; and Han, B. 2020. Operation-aware soft channel prun-
ing using differentiable masks. In International Conference on Ma-
chine Learning.
Lee, S.; Heo, B.; Ha, J.-W.; and Song, B. C. 2020. Filter pruning
and re-initialization via latent space clustering. IEEE Access.
Lee, S.; and Song, B. C. 2022. Ensemble knowledge guided sub-
network search and fine-tuning for filter pruning. In Proceedings
of the European Conference on Computer Vision.
Li, B.; Wu, B.; Su, J.; and Wang, G. 2020a. Eagleeye: Fast sub-net
evaluation for efficient neural network pruning. In Proceedings of
the European Conference on Computer Vision.
Li, C.; Wang, G.; Wang, B.; Liang, X.; Li, Z.; and Chang, X. 2021.
Dynamic slimmable network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P. 2017.
Pruning filters for efficient convnets. In International Conference
on Learning Representations.
Li, Y.; Gu, S.; Mayer, C.; Gool, L. V.; and Timofte, R. 2020b.
Group sparsity: The hinge between filter pruning and decompo-
sition for network compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Li, Y.; Lin, S.; Zhang, B.; Liu, J.; Doermann, D.; Wu, Y.; Huang,
F.; and Ji, R. 2019. Exploiting kernel sparsity and entropy for in-
terpretable CNN compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Li, Y.; van Gemert, J. C.; Hoefler, T.; Moons, B.; Eleftheriou, E.;
and Verhoef, B.-E. 2023. Differentiable transportation pruning. In
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision.
Liebenwein, L.; Baykal, C.; Lang, H.; Feldman, D.; and Rus, D.
2020. Provable filter pruning for efficient neural networks. In In-
ternational Conference on Learning Representations.
Lin, M.; Ji, R.; Wang, Y.; Zhang, Y.; Zhang, B.; Tian, Y.; and Shao,
L. 2020. Hrank: Filter pruning using high-rank feature map. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.; and
Doermann, D. 2019. Towards optimal structured cnn pruning via
generative adversarial learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan,
D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft coco: Common
objects in context. In Proceedings of the European Conference on
Computer Vision.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14552

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-
Y.; and Berg, A. C. 2016. Ssd: Single shot multibox detector. In
Proceedings of the European Conference on Computer Vision.
Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang, C. 2017.
Learning efficient convolutional networks through network slim-
ming. In Proceedings of the IEEE/CVF International Conference
on Computer Vision.
Ma, X.; Guo, F.-M.; Niu, W.; Lin, X.; Tang, J.; Ma, K.; Ren, B.;
and Wang, Y. 2020. Pconv: The missing but desirable sparsity in
dnn weight pruning for real-time execution on mobile devices. In
Proceedings of the AAAI Conference on Artificial Intelligence.
Milligan, G. W. 1979. Ultrametric hierarchical clustering algo-
rithms. Psychometrika.
Murtagh, F.; and Legendre, P. 2014. Ward’s hierarchical agglom-
erative clustering method: which algorithms implement ward’s cri-
terion? Journal of Classification.
Niu, W.; Ma, X.; Lin, S.; Wang, S.; Qian, X.; Lin, X.; Wang, Y.;
and Ren, B. 2020. Patdnn: Achieving real-time dnn execution on
mobile devices with pattern-based weight pruning. In Proceedings
of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems.
Nonnenmacher, M.; Pfeil, T.; Steinwart, I.; and Reeb, D. 2022.
Sosp: Efficiently capturing global correlations by second-order
structured pruning. In International Conference on Learning Rep-
resentations.
Park, C.; Park, M.; Oh, H. J.; Kim, M.; Yoon, M. K.; Kim, S.; and
Ro, W. W. 2023. Balanced column-wise block pruning for maxi-
mizing GPU parallelism. In Proceedings of the AAAI Conference
on Artificial Intelligence.
Shen, M.; Yin, H.; Molchanov, P.; Mao, L.; Liu, J.; and Alvarez,
J. M. 2022. Structural pruning via latency-saliency knapsack. In
Advances in Neural Information Processing Systems.
Su, X.; You, S.; Huang, T.; Wang, F.; Qian, C.; Zhang, C.; and Xu,
C. 2021. Locally Free Weight Sharing for Network Width Search.
In International Conference on Learning Representations.
Sui, Y.; Yin, M.; Xie, Y.; Phan, H.; Aliari Zonouz, S.; and Yuan,
B. 2021. Chip: Channel independence-based pruning for compact
neural networks. In Advances in Neural Information Processing
Systems.
Tang, Y.; Wang, Y.; Xu, Y.; Tao, D.; Xu, C.; Xu, C.; and Xu, C.
2020. Scop: Scientific control for reliable neural network pruning.
In Advances in Neural Information Processing Systems.
Wang, H.; Qin, C.; Zhang, Y.; and Fu, Y. 2021. Neural pruning via
growing regularization. In International Conference on Learning
Representations.
Ward Jr, J. H. 1963. Hierarchical grouping to optimize an objective
function. Journal of the American Statistical Association.
Witten, I. H.; and Frank, E. 2002. Data mining: Practical machine
learning tools and techniques with Java implementations. ACM
Sigmod Record.
Wu, Z.; Li, F.; Zhu, Y.; Lu, K.; Wu, M.; and Zhang, C. 2022. A filter
pruning method of CNN models based on feature maps clustering.
Applied Sciences.
Ye, J.; Lu, X.; Lin, Z.; and Wang, J. Z. 2018. Rethinking the
smaller-norm-less-informative assumption in channel pruning of
convolution layers. In International Conference on Learning Rep-
resentations.
Ye, M.; Gong, C.; Nie, L.; Zhou, D.; Klivans, A.; and Liu, Q. 2020.
Good subnetworks provably exist: Pruning via greedy forward se-
lection. In International Conference on Machine Learning.

You, Z.; Yan, K.; Ye, J.; Ma, M.; and Wang, P. 2019. Gate dec-
orator: Global filter pruning method for accelerating deep convo-
lutional neural networks. In Advances in Neural Information Pro-
cessing Systems.
Yu, N.; Qiu, S.; Hu, X.; and Li, J. 2017. Accelerating convolu-
tional neural networks by group-wise 2D-filter pruning. Interna-
tional Joint Conference on Neural Networks.
Zhang, G.; Xu, S.; Li, J.; and Guo, A. J. X. 2022. Group-based net-
work pruning via nonlinear relationship between convolution fil-
ters. Applied Intelligence.
Zhao, C.; Ni, B.; Zhang, J.; Zhao, Q.; Zhang, W.; and Tian, Q.
2019. Variational convolutional neural network pruning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition.
Zhong, S.; Zhang, G.; Huang, N.; and Xu, S. 2022. Revisit kernel
pruning with lottery regulated grouped convolutions. In Interna-
tional Conference on Learning Representations.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14553

