
FedLF: Layer-Wise Fair Federated Learning
Zibin Pan1,2, Chi Li1,4, Fangchen Yu1, Shuyi Wang1,2, Haijin Wang1,

Xiaoying Tang∗1,2,3, Junhua Zhao*1,2

1 The School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
2 The Shenzhen Institute of Artificial Intelligence and Robotics for Society

3 The Guangdong Provincial Key Laboratory of Future Networks of Intelligence
4 Shenzhen Research Institute of Big Data

zibinpan@link.cuhk.edu.cn, chili@link.cuhk.edu.cn, fangchenyu@link.cuhk.edu.cn, shuyiwang@link.cuhk.edu.cn,
haijinwang@link.cuhk.edu.cn, tangxiaoying@cuhk.edu.cn, zhaojunhua@cuhk.edu.cn

Abstract

Fairness has become an important concern in Federated
Learning (FL). An unfair model that performs well for some
clients while performing poorly for others can reduce the
willingness of clients to participate. In this work, we identify
a direct cause of unfairness in FL - the use of an unfair di-
rection to update the global model, which favors some clients
while conflicting with other clients’ gradients at the model
and layer levels. To address these issues, we propose a layer-
wise fair Federated Learning algorithm (FedLF). Firstly, we
formulate a multi-objective optimization problem with an ef-
fective fair-driven objective for FL. A layer-wise fair direc-
tion is then calculated to mitigate the model and layer-level
gradient conflicts and reduce the improvement bias. We fur-
ther provide the theoretical analysis on how FedLF can im-
prove fairness and guarantee convergence. Extensive exper-
iments on different learning tasks and models demonstrate
that FedLF outperforms the SOTA FL algorithms in terms
of accuracy and fairness. The source code is available at
https://github.com/zibinpan/FedLF.

1 Introduction
Federated Learning (FL) is a popular machine learning
paradigm that allows clients to collaboratively train a global
model without sharing data. It is a promising methodology
to address data island and privacy issues (Yu et al. 2022),
where clients are able to obtain a more generalized model
than local learning. However, due to many factors such as
data heterogeneity, intermittent client participation, client
dropout, etc., the global FL model is prone to be unfair since
it favors part of clients and may perform poorly on some
others (Li et al. 2020b; Kairouz et al. 2021), which would
reduce their willingness to participate in FL.

Improving fairness in FL has drawn increased attention
recently (Shi, Yu, and Leung 2021; Zhou et al. 2021; Pan
et al. 2023). (Mohri, Sivek, and Suresh 2019) proposed AFL,
aiming to prevent the overfitting of certain clients at the
expense of others. Recent studies have explored proactive
ways to enhance fairness by mitigating model-level gradient
conflicts among clients (Wang et al. 2021; Hu et al. 2022).
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Figure 1: A demo of two clients. (a) shows gradients and
directions. Obtained by previous algorithms, direction d̄t

conflicts with client 2. dt and d̃t are directions obtained by
FedLF with/without the fair-driven objective. (b) describes
several objective vectors of the models updated by different
directions. F (ωt) depicts clients’ objectives at round t.

(Pan et al. 2023) developed this approach and proposed Fed-
MDFG to calculate a fair-descent direction for the model up-
date that doesn’t conflict with clients’ gradient in the model
level, which made progress in enhancing FL fairness.

In this work, we extend this proactive way to improve fair-
ness in FL. We observe that in addition to the model-level
gradient conflict, there are also layer-level gradient conflicts
that should be mitigated when determining a fair direction
for the model update. In conclusion, we summarize that
there exist three primary challenges when computing a fair
direction: model-level gradient conflicts, improvement bias,
and layer-level gradient conflicts.

Challenge 1: Model-level gradient conflict. Due to the
data heterogeneity of clients, clients’ gradients easily con-
flict with each other (Wang et al. 2021), i.e., at round t,
there exist clients i, j whose gradients gti and gtj satisfy
gti · gtj < 0. When updating the model, a simple-aggregated
direction d̄t will easily conflict with some clients’ gradients,
i.e., d̄t · gti > 0, thus it will reduce the model’s performance
on those clients and harm fairness (see Fig. 1).

Challenge 2: Improvement bias. It is not enough to
enhance fairness only by addressing the above challenge.
Because despite a direction that doesn’t conflict with each
client’s gradient can improve the model performance on
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Figure 2: A demo of three clients. (a) shows the model. (b)
and (c) describe clients’ gradients that conflict at layer l and
k. gti,l, g

t
i,k∈R3 denote client i’s gradient fragments at layer

l and k. d̄t is a conflicting direction obtained by previous
methods. d̄tl and d̄tk in (b) and (c) are two fragments of d̄t at
layer l and k, which conflict with client 2 and 3 at these lay-
ers, i.e., d̄tl ·gt2,l>0, d̄tl ·gt3,l>0, d̄tk·gt2,k>0, and d̄tk·gt3,k>0. dt

is the direction obtained by FedLF, with fragments dtl and dtk
lying in the yellow area, which depicts all feasible directions
that do not conflict with clients’ gradients at these layers.

each client, this improvement may be substantial for some
clients but just marginal for others. Fig. 1 illustrates this is-
sue, where d̃t is a common descent direction that reduces
each client’s local objective. However, the reduction in client
1’s objective is much larger than that of client 2, resulting in
a model that favors client 1, thereby reducing fairness.

To handle the above two challenges, FedMDFG applied
the multiple gradient descent algorithm to a designed multi-
objective optimization problem with a dynamic objective
(see Equ.5 on its paper). But it would drive the model out
of the fairer area in some cases and thus requires a neces-
sary hyperparameter to determine the activation of the dy-
namic objective, which makes it difficult to prove the con-
vergence (while FedMDFG only gave the convergence proof
without considering the hyperparameter). We discuss this in
more detail in Section 3.1. Differently, we propose a simpler
but more effective fair-driven objective and give theoretical
analysis on the convergence and convergence rate.

Challenge 3: Layer-level gradient conflict. In deep
learning, different layers of a neural network can have dif-
ferent utilities (Yu et al. 2018; Ma et al. 2022; Lee, Zhang,
and Avestimehr 2023). For instance, shallow layers primar-
ily hone in on local feature extraction, while deeper layers
focus on extracting global features. Therefore, simply aggre-
gating or only mitigating gradient conflicts at the model level
cannot prevent the obtained direction from favoring parts
of clients at some layers, while drifting away from others,
which would reduce the layer utility for those clients. Fig. 2
shows a demo of three clients, where their gradients conflict
with each other at layers l and k. Then, the direction d̄t ob-
tained by previous FL methods favors client 1 while conflict-
ing with clients 2 and 3 at layers k and l. This will cause the
new model’s parameters at these two layers to favor client
1 while drifting away from the others. In the experimental
results of Table 2 and Table 3, we verify the existence of
layer-level gradient conflicts and show that mitigating layer-

level gradient conflicts can help improve FL fairness.
In this paper, we propose a layer-wise Fair Federated

Learning (FedLF) algorithm that can compute a layer-wise
fair direction to enhance fairness. First, we formulate a
multi-objective optimization problem for FL, incorporating
an effective fair-driven objective. Then, we design a layer-
wise multiple gradient descent algorithm (LMGDA) to ob-
tain such a direction that mitigates both the model and layer-
level gradient conflicts. To the best of our knowledge, FedLF
is the first one capable of identifying a layer-wise fair direc-
tion that does not conflict with clients’ gradients at layers.

Our contributions are summarized as follows.

• We identify the layer-level gradient conflict that would
impair the FL fairness. A layer-level conflicting direc-
tion would drift away from some clients and diminish
the model layer utility on these clients.

• We formulate a multi-objective optimization problem
with an effective fair-driven objective to improve the
model performance on each client and enhance fairness.

• We propose FedLF that establishes a layer-wise fair di-
rection to drive the FL model fairer. We theoretically an-
alyze that it can mitigate the gradient conflicts among
clients at both the model and the layer levels, and reduce
the improvement bias.

• We conduct extensive experiments on multiple FL sce-
narios, validating that FedLF outperforms the SOTA ap-
proaches in terms of accuracy and fairness.

2 Background & Related Work
2.1 Background of Federated Learning
The traditional FL (McMahan et al. 2017) allows clients to
collaboratively train a global model ω∈Rn with the goal of
minimizing the weighted average objective of clients:

min
ω

∑m

i=1
piFi(ω), (1)

where pi ≥ 0,
∑m
i=1 pi = 1, and m is the number of clients.

Fi(ω) represents the local objective of client i, which is
usually defined by a specific loss function such as cross-
entropy loss and calculated across Ni samples by Fi(ω) =∑Ni

j=1
1
Ni
Fij (ω). Fij (ω) is the loss on the jth sample.

However, traditional FL easily suffers from performance
degradation in heterogeneous settings since a simple aggre-
gated direction for model updating may conflict with the
gradients of some clients (Wang et al. 2021) while favor-
ing other clients, and thus the model would be more unfair.
So there is another way to consider FL as a multi-objective
optimization problem (MOP) (Hu et al. 2022):

min
ω

(F1(ω), F2(ω), · · · , Fm(ω)). (2)

One typical gradient-based method to solve Problem (2)
is Multiple Gradient Descent Algorithm (MGDA) (Désidéri
2012; Gebken, Peitz, and Dellnitz 2019). It updates the
model at each round t by ωt+1=ωt+ηtdt with a step size
ηt and a common descent direction dt, which is computed
by solving Problem (3) and satisfies dt·gti<0, ∀i, so that it
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can drive to reduce the local objectives. gti is the local gradi-
ent of the model ω on data samples of client i, which is cal-
culated by gti=∇Fi(ωt)=

∑Ni

j=1
1
Ni
∇Fij (ωt). MGDA stops

when ωt reaches the Pareto stationarity (Désidéri 2012).

(dt, αt) = arg min
dt∈Rn,αt∈R

αt + 1
2‖d

t‖2,

s.t. gti · dt ≤ αt, i = 1, · · · ,m
(3)

Definition 1 (Pareto Stationarity): ω∗ is called Pareto sta-
tionary iff ∃ξi ≥ 0,

∑
i ξi = 1, such that

∑
i ξigi = 0.

Pan et al. (2023) successfully applied MGDA in FL,
proposing FedMDFG by adding a dynamic objective to
Problem (3), which firstly ensured obtaining a common de-
scent direction that doesn’t conflict with each client’s gradi-
ent in the model level. But the layer-level gradient conflict
still remains a significant challenge, which brings the layer-
wise bias that reduces the layer’s capability on some clients.

2.2 Fair Federated Learning
Our work follows the definition of the FL fairness summa-
rized by (Li et al. 2021), where a model ω1 is fairer than ω2

if the standard deviation of ω1’s performance (e.g., test ac-
curacy or local objective) across clients is smaller than that
of ω2. A general goal of fair FL is to train a model with bet-
ter average and more uniform performance across clients (Li
et al. 2020b; Wang et al. 2021; Pan et al. 2023).

Increasing fairness has attracted great interest in recent
years. (1) Some previous works tried reweighting aggrega-
tion methods (Li et al. 2020b; Huang et al. 2020; Zhao and
Joshi 2022a; Li et al. 2023). (2) Li et al. (2020a) reduced the
update bias across clients to alleviate the negative impact
of client drift in heterogeneous settings, and thus it may en-
hance fairness in a way. (4) The works of (Huang et al. 2022;
Salazar et al. 2022) use momentum approaches. (5) Re-
cently, the works of FedFV (Wang et al. 2021), FedMGDA+
(Hu et al. 2022) and FedMDFG (Pan et al. 2023) explore a
proactive way of fair FL by trying to mitigate clients’ model-
level gradient conflicts. Our method also aims to mitigate
this kind of conflict. But differently, we further mitigate the
layer-level gradient conflicts among clients.

2.3 Layer-wise Federated Learning
Several previous works designed layer-wise approaches for
FL. For example, (Lee, Zhang, and Avestimehr 2023) used a
layer-wise model aggregation method to reduce the commu-
nication cost in FL; (Son, Kim, and Chung 2022) regularized
parts of layers during FL training; Some works (Mei et al.
2021; Ma et al. 2022) employed the layer-wise aggregation
to build personalized models in personalized FL. Contrary
to these methods, we design a novel method to calculate a
layer-wise fair direction to enhance fairness in FL.

3 The Proposed Approach
Our proposed FedLF aims to handle the challenges men-
tioned in Section 1 to obtain layer-wise fair directions to
drive the FL model fairer. Algorithm 1 demonstrates the
steps of FedLF. In each communication round t, after re-
ceiving the local gradient gti and the training loss Fi(ωt) of

Algorithm 1: Layer-wise Fair Federated Learning (FedLF)

Input: Initialize model parameters ω0, learning rate η.
1: for t = 0, 1, · · · , T − 1 do
2: St ← The set of online clients.
3: Broadcast ωt to all client i, i ∈ St, i /∈ St−1.
4: Server receives the gradient gti and the loss Fi(ωt)

from each client i ∈ St, where gti = (ωt−ωti)/η and
ωti is updated by client i.

5: Calculate gtP by Equ. (5).
6: for each layer l ∈ L in parallel do
7: dtl← Calculate the direction fragment by Equ.(7).
8: end for
9: while ∃ l that dtl = ~0 do

10: l← Combine layer l with its later/previous layer.
11: Recompute dtl .
12: end while
13: dt ← concatenate all layer-wise directions dtl .
14: Stop if ‖dt‖ = 0.
15: Rescale dt by dt ← dt/‖dt‖ · ‖ 1

|St|
∑|St|
i gti‖, and

then broadcast it to all online clients.
16: Both of the server and online clients update model

parameters by ωt+1 ← ωt + ηdt .
17: end for
Output: Model parameters ωt.

each online client i (Alg. 1, Line 4), the server computes
the gradient gtP of the fair-driven objective. Direction frag-
ments dtl for each layer l are then calculated in parallel to
produce the layer-wise fair direction dt (Alg. 1, Lines 6-13).
Finally, after sending dt to clients, the model is updated by
ωt+1←ωt+ηdt both on the server and online clients.

3.1 Problem Formulation
We follow the idea of considering FL as a multi-objective
optimization problem (Hu et al. 2022; Pan et al. 2023),
which is shown in Problem (2). However, it cannot avoid
the improvement bias among objectives. For example, there
are two clients whose local objectives are F1(ωt) = 4 and
F2(ωt) = 5. After updating the model, F1(ωt+1) = 1 but
F2(ωt+1) = 4, thus there is a greater disparity between the
objectives, which decreases fairness.

Toward this end, FedMDFG (Pan et al. 2023) added a dy-
namic objective minω F (ω)Tht to Problem (2) (see Equ.5
in their paper), where ht denotes an opposite normalized
vector of the projection of ~1 on the normal plane of L(ωt).
They called it a fair-driven objective. However, this objec-
tive doesn’t directly drive the model fairer, it would drive the
model out of the fairer area if the local objectives are quite
close. To handle it, they ran a step size line search to search
for a smaller step size, which would bring extra communica-
tion costs. Besides, a hyperparameter was added to control
whether to use the added objective, making it hard to guaran-
tee the convergence, while they only proved the convergence
without considering the effect of the hyperparameter.

Differently, we design a more effective fair-driven objec-
tive: minω P (ω) = −cos(~1, F (ω)), which aims to increase
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the cosine similarity between the vector ~1 and the objec-
tive vector F (ω)=(F1(ω),· · · ,Fm(ω)). Hence, it can reduce
the difference among the objectives. Therefore, the goal of
FedLF is to optimize the following MOP instead of Problem
(2) to render ω Pareto stationary.

min
ω

(F1(ω), F2(ω), · · · , Fm(ω), P (ω)). (4)

Compared with the dynamic objective proposed in Fed-
MDFG, our fair-driven objective retains the formulation as
a static optimization problem, and thus we can easily an-
alyze the convergence and the convergence rate (see Sec-
tion 3.4). Note that for a non-Pareto stationary solution ωt
of Problem (2), there always exists a direction dt, such that
gti · dt < 0, ∀i ∈ {1, · · · ,m} and gtP · dt < 0, where gtP is
the gradient of the fair-driven objective obtained by Equ.(5),
gt = concat(gt1, · · · , gtm). It indicates that the added fair-
driven objective doesn’t affect the convergence of FL. We
provide the proof in detail in Appendix A.1.

gtP =
gt

‖F (ωt)‖2 · (
F (ωt)T~1F (ωt)

‖~1‖‖F (ωt)‖
−

~1‖F (ωt)‖
‖~1‖

). (5)

In Fig. 1, we show that without the fair-driven objective,
the obtained direction d̃t cannot prevent the objective vector
of the updated model from being far away from ~1 and thus
decrease fairness, even though d̃t is common descent.

3.2 Layer-wise Fair Direction
In FedLF, we solve Problem (4) by iterating ωt+1 = ωt +
ηtdt, where dt is a layer-wise fair direction at tth round.
In this section, we discuss how to compute such a direction.
We start by defining model-level gradient conflicts following
(Wang et al. 2021) and layer-level gradient conflicts.

Definition 2 (Model-level Gradient Conflict): The gra-
dients of client i and j conflict with each other iff gi ·gj < 0.

Besides, given that a deep learning model with multiple
layers often exhibits distinct utility at each layer (Ma et al.
2022), such as data feature extraction, classification, etc., the
heterogeneity of data across clients often leads to substantial
variance in the gradient fragments at different layers. Conse-
quently, they may easily come into conflict with one another.

Definition 3 (Layer-level Gradient Conflict): Let nl be
the dimension of the model parameters at layer l.

∑
l∈L nl =

n. L is a set of all l. Client i’s gradient gi∈Rn conflicts with
client j’s gradient gj∈Rn at layer l iff gi,l · gj,l < 0, where
gi,l∈Rnl is the fragment of client i’s gradient at layer l.

It is worth noting that the model/layer-level gradient con-
flicts also exist in the case of partial client participation or
client dropout. We discuss more about it in Section 3.3.

Existing fair FL algorithms focus on model-level aggrega-
tion. They cannot prevent the direction fragment dtl , which
is used to update the model parameters at layer l, from fa-
voring some clients while conflicting with the others at some
layers l, i.e., dtl · gti,l > 0, where gti,l denotes a fragment of
client i’s gradient (gti ) at the layer l in round t.

To mitigate the layer-level gradient conflicts, we need to
ensure that the obtained direction dt satisfies dtl · gti,l < 0, ∀
client i and layer l. To achieve this, we can solve the follow-
ing problem (6) to obtain dtl for each layer l, where gtP,l is

the fragment of gtP at layer l, and then concatenate all dtl to
obtain dt. Different from the MGDA formula (3), it is done
by layers, and it contains a constraint gtP,l·dtl<0 that is used
to reduce the fair-driven objective.

(dtl , α
t
l) = arg min

dtl∈R
nl ,αt

l∈R
αtl + 1

2‖d
t
l‖2,

s.t. gti,l · dtl ≤ αtl , ∀ i = 1, · · · ,m,
gtP,l · dtl ≤ αtl .

(6)

Scalable Method to obtain dtl . Problem (6) itself does
not scale well for the high dimensional decision space, be-
cause some layer l often contains millions of parameters.
Thus, solving Problem (6) in this scale would be extremely
slow. Inspired by (Fliege and Svaiter 2000; Pan et al. 2023)
we achieve dtl in another way. Based on the KKT conditions:

dtl = −
(∑m

i=1
λig

t
i,l + µgtP,l

)
,
∑m

i=1
λi + µ = 1, (7)

where λ1, · · · , λm, µ ≥ 0 is the optimal solution of the
dual problem of Problem (6):

max
λi,µ
− 1

2‖
∑m
i=1 λig

t
i,l + µgtP,l‖2

s.t.
∑m
i=1 λi + µ = 1,

λi, µ ≥ 0, ∀i = 1, 2, · · · ,m.
(8)

Therefore, we only need to solve a simple quadratic op-
timization problem (8) in (m + 1)-dimension, which is not
time-consuming. We report the actual computation time of
FedLF in Appendix B.3.

Combine Layers. Inspired by (Gebken, Peitz, and Dell-
nitz 2019), the obtained dtl satisfies:

1. If ∃ ξ ∈ Rm+1 ≥ ~0,
∑
i ξi = 1, such that

∑m
i=1 g

t
i,lξi +

gtP,lξm+1 = ~0, then dtl = ~0.

2. Otherwise, gti,l · dtl < 0, i = 1, · · · ,m, and gtP,l · dtl < 0.

If dtl=~0 is satisfied for all layer l∈L, then dt=~0 and
thus the model ωt reaches to Pareto stationarity. However,
if dtl=~0 is satisfied only for part of l∈L, the parameters in
these layers will stay in stagnation and stop updating. This
case would happen if rank(gt1,l, · · · , gtm,l, gtP,l) < m. When
nl≥m, from a probabilistic point of view, it would have al-
most probability 1 that rank(gt1,l, · · · , gtm,l, gtP,l) = m. But
when some layers have only few parameters, nl<m may
be satisfied and thus rank(gt1,l, · · · , gtm,l, gtP,l) < m, making
dtl = ~0 and leading to the stagnation of parameters at layer
l. To handle this, when dtl = ~0, we combine layer l with its
next layer (if there is no next layer, combine it with the pre-
vious layer) and then recompute dtl . If dtl is still ~0, repeat the
layer-combination until dtl 6= ~0 or all layers are combined.

After calculating dtl , ∀l ∈ L, we combine them to build
the direction dt for the model update: dt=concat({dtl , ∀l ∈
L}). Ultimately, since optimizing Problem (8) can make the
norm of dt smaller, to prevent the step size from being af-
fected by ‖dt‖, we scale dt by dt = dt/‖dt‖·‖d̄‖, where
d̄=− 1

m

∑m
i=1 g

t
i is a simple aggregated direction.

The obtained direction dt satisfies:
1. If ωt is Pareto stationary, then dt = ~0.
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2. If ωt is not Pareto stationary, then gti · dt < 0, i =
1, · · · ,m, and gtP · dt < 0,

where gtP ·dt<0 indicates that dt can drive to reduce the fair-
driven objective. gti ·dt<0 implies that dt is a common de-
scent direction that doesn’t conflict with clients’ gradients
in model-level. Since dtl · gti,l < 0, in conclusion, dt is a fair
direction that can mitigate the model and layer-level gradient
conflicts and reduce the improvement bias.

3.3 Improving Absent Client Fairness
Due to various factors, including partial client participa-
tion and intermittent client availability, etc., sometimes only
parts of clients can participate in FL at each communication
round (Abay et al. 2020; Cho et al. 2020). Given that the
model update direction may conflict with the gradients of
those absent clients if they were online. This could cause the
model to perform significantly worse on these clients when
they return (Wang et al. 2021) and thus harm fairness.

To mitigate the gradient conflicts in this regard, Fed-
MDFG takes into account those who were online at the last
communication round when calculating the update direc-
tion. In other words, it operates as if these clients are still
online, using their historical gradients in the direction cal-
culation. But this would still ignore those clients who have
been absent for not too long, but more than one round.

Differently, we take into account those absent clients who
were online from t − τ to t − 1 communication rounds
when calculating the direction. τ = M/|St| is the expected
length of time for each of the recorded clients to participate
in FL one more time, where M is the number of recorded
clients that have already joined in FL, and St is a set of on-
line clients. These absent clients can be considered as tem-
porarily absent. We follow (Wang et al. 2021) to estimate
these absent clients’ gradients according to their last gradi-
ents during round t−τ to t−1, and treat them as if they were
still online to compute the update direction. This allows us
to obtain a layer-wise fair direction dt that does not conflict
with the online clients’ gradients and the absent clients’ es-
timated gradients. In the ablation experiments (Section 4.3),
we show that this strategy outperforms that of FedMDFG,
since FedMDFG only considers those clients who have been
absent for only one round (see M7). We also observe that
we cannot consider all absent clients, since it is easily influ-
enced by clients with long absences (see M8).

3.4 Convergence Analysis
We analyze the convergence of FedLF. Assume that all
clients are online, according to Theorem 1, which is inspired
by (Bertsekas 1999; Fliege and Svaiter 2000), the global
model ω can converge to the Pareto stationarity.

Theorem 1. Suppose client i’s objective Fi(ω) is Lips-
chitz smooth. ∀i, Li denotes the corresponding Lipschitz
constant. Let L be a set containing all Li, ∀i, which is the
Lipschitz constant of the fair-driven objective. If the model
is updated by ωt+1 = ωt + ηtdt with a non-zero direction
dt calculated by FedLF and the step size ηt in the bound:

0 < ηt ≤ 2 · min
Li∈L

|gti · dt|
Li‖dt‖2

, (9)

then FedLF converges to a Pareto stationary point sublin-
early. If the local objective Fi(ω) is strongly convex, then
FedLF converges linearly to a Pareto stationary point. The
detailed proof can be seen in Appendix A.2.

4 Experiments
To evaluate fairness, we follow (Pan et al. 2023) to
utilize a scale-invariant metric as the fairness indicator:
arccos( A(ω)·~1

‖A(ω)‖‖~1‖ ). It is the inverse cosine value of the co-

sine similarity between A(ω) and ~1, i.e., the angle between
A(ω) and ~1, where A(ω) denotes a vector that contains the
test accuracy of the global model on each client. A lower
value of the fairness indicator means that A(ω) is closer to
~1, meaning that the model has a higher fairness capability.

Baselines. We first consider well-known FL approaches,
such as FedAvg, FedProx (Li et al. 2020a), and some fair
FL methods, including qFedAvg (Li et al. 2020b), AFL
(Mohri, Sivek, and Suresh 2019), Ditto (Li et al. 2021),
FedFV (Wang et al. 2021), DRFL (Zhao and Joshi 2022b),
FedFa (Huang et al. 2022), FedGini (Li et al. 2023), and Fed-
MGDA+ (Hu et al. 2022). Moreover, we consider FedCKA
(Son, Kim, and Chung 2022) and FedMDFG (Pan et al.
2023), which are relevant to ours. We directly rewrite the
code of baselines based on the authors’ open-source code.

Hyper-parameters. We follow the settings of (Wang
et al. 2021; Pan et al. 2023) that all clients use Stochastic
Gradient Descent (SGD) on local datasets with local epoch
E = 1. We set the learning rate η ∈ {0.01, 0.05, 0.1} decay
of 0.999 per round and choose the best performance of each
method in comparison. We take the average of results in 5
runs with different random seeds.

Datasets and Models. We evaluate the performance of
algorithms on the public datasets Fashion MNIST (FM-
NIST) (Xiao, Rasul, and Vollgraf 2017) and CIFAR-10/100
(Krizhevsky and Hinton 2009), where the training and test-
ing data have already been split. To simulate heterogeneous
clients in FL, we consider three scenarios: (1) Dir(α): We
follow (Hsu, Qi, and Brown 2019) to simulate m clients in
Dirichlet heterogeneous partition. When α < 1, most of the
training/testing data of one specific class are probably as-
signed to a small portion of clients, and the sizes of clients’
data are different. (2) Pat-2: We follow (McMahan et al.
2017) to build pathological non-IID data that each client has
the data of two classes. (3) Pat-1: It constructs a difficult
data-island scenario where each client only has the data of
one class. We adopt Multilayer perceptron (MLP) (Popescu
et al. 2009) for FMNIST, CNN (Wang et al. 2021) with
two convolutional layers for CIFAR-10, and NFResNet-18
(Brock, De, and Smith 2021) for CIFAR-100.

4.1 Performance and Fairness
We first evaluate the average test accuracy and the fairness
indicator on FMNIST, CIFAR-10, and CIFAR-100. Table 1
lists the comparison results, revealing that FedLF outper-
forms the previous FL methods in terms of the mean test
accuracy and fairness. The results of FedMDFG verify that
mitigating model-level gradient conflicts can boost both the
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FMNIST CIFAR-10 CIFAR-100

Algorithm Dir(0.1) Pat-1 Pat-2 Dir(0.1) Pat-1 Pat-2 Dir(0.1) Pat-1 Pat-2

FedAvg .861(.116) .828(.170) .838(.135) .690(.214) .575(.341) .681(.276) .343(.201) .199(.667) .222(.604)
qFedAvg .847(.133) .831(.161) .813(.118) .681(.204) .565(.301) .661(.267) .344(.196) .183(.690) .238(.529)
FedProx .825(.121) .834(.142) .836(.105) .544(.242) .572(.205) .566(.212) .197(.291) .207(.617) .201(.538)
AFL .865(.109) .829(.204) .854(.137) .679(.201) .561(.251) .685(.202) .382(.181) .177(.753) .261(.509)
Ditto .820(.129) .749(.278) .815(.124) .598(.216) .463(.240) .553(.251) .301(.241) .070(1.08) .114(.784)
FedFV .850(.132) .836(.165) .853(.135) .682(.208) .568(.376) .681(.204) .339(.198) .191(.664) .229(.558)
DRFL .861(.109) .855(.136) .847(.157) .692(.190) .578(.307) .684(.270) .341(.201) .193(.644) .228(.540)
FedFa .844(.174) .815(.205) .836(.116) .653(.244) .482(.297) .695(.232) .387(.189) .114(1.09) .222(.776)
FedGini .867(.115) .839(.160) .837(.134) .698(.195) .587(.315) .672(.246) .349(.191) .203(.621) .198(.666)
FedCKA .861(.117) .816(.227) .840(.129) .690(.205) .575(.341) .674(.211) .344(.201) .190(.691) .222(.575)
FedMGDA+ .809(.161) .750(.305) .815(.221) .531(.264) .440(.314) .569(.282) .173(.358) .035(1.15) .080(.839)
FedMDFG .873(.089) .863(.101) .874(.084) .729(.176) .744(.142) .714(.153) .387(.181) .278(.485) .332(.387)

FedLF .892(.084) .894(.089) .898(.074) .766(.140) .765(.126) .761(.127) .420(.158) .409(.347) .413(.305)

Table 1: The average test accuracy of all clients (and the fairness indicator) in Dir(0.1), Pat-1, and Pat-2 on FMNIST, CIFAR-10,
and CIFAR-100 with batch size 50 over 3000 communication rounds. 10% of 100 clients are online per round.

Acc(Fair) MC LC1 LC2 LC3 LC4 LC5

FedAvg .440(.282) 2.4 2.7 2.6 2.5 2.3 3.4
qFedAvg .488(.248) 1.4 2.6 2.7 2.4 1.6 2.9
FedProx .479(.230) 1.7 2.4 2.2 1.7 1.3 3.1
AFL .398(.203) 4.7 4.5 4.5 4.4 4.5 4.7
Ditto .465(.340) 1.5 2.6 2.9 2.6 1.8 3.2
FedFV .418(.468) 1.9 2.7 2.7 1.9 2.6 4.3
DRFL .383(.393) 2.9 3.1 3.1 3.0 2.7 3.6
FedFa .357(.581) 4.3 4.4 4.8 4.7 4.5 4.4
FedGini .408(.490) 2.2 2.6 2.4 2.3 2.5 3.5
FedCKA .385(.393) 2.2 2.5 2.5 2.3 3.5 3.5
FedMGDA+ .429(.456) 2.2 2.5 2.4 2.2 2.3 3.4
FedMDFG .723(.158) 0.0 3.0 2.5 1.7 2.8 3.8

FedLF .752(.086) 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Mean test acc. (and fairness indicator); the average
number of online clients whose gradients conflict with the
model update direction on the model level (MC), layer 1
(LC1), ..., layer 5 (LC5) at each round on CIFAR-10 Pat-1
with batch size 200. 10% of 100 clients are online per round.

model’s average performance and fairness. Compared with
FedMDFG, FedLF showcases marked improvement, espe-
cially in CIFAR-100, Pat-1, where the average test accuracy
of FedLF increases by 47.1%. In Appendix B.1, we present
the complete experimental results, including the worst 5%
and the best 5% of the model test accuracy across clients.

To elucidate the adverse impact of the conflicting direc-
tion on performance and fairness, we report the mean test
acc., fairness indicator, and the average number of clients
whose gradients conflict with the update direction in the
model level and at each layer. Table 2 lists the experimental
results, verifying that mitigating model-level gradient con-
flicts can achieve notable progress in the model performance
and fairness (see FedMDFG’s results). In comparison, the
update directions of FedLF don’t conflict with clients in the
model and layer levels, revealing that mitigating the layer-

Figure 3: The test accuracy of 10 clients in (a) Pat-1 and (b)
Pat-2 on CIFAR-10 with batch size 200 over 3000 commu-
nication rounds. 100% of ten clients are online per round.

level gradient conflict can further improve model fairness.
We further visualize the model’s test accuracy of each

client in Fig. 3, depicting that some previous methods suffer
significant performance reduction on some clients while fa-
voring others. In comparison, FedLF obtains a fairer model
with more uniform and higher accuracy across clients.

4.2 Accuracy and Efficiency
We compare the convergent efficiency of algorithms. Fig. 4
partially visualizes the curves for the mean test accuracy and
the fairness indicator over communication rounds. All meth-
ods are tuned to their best performance, while the methods
with poor performance are excluded. Full results are avail-
able in Appendix B.1. We unveil that FedLF converges sub-
stantially faster, reaches dramatically higher mean test accu-
racy, and keeps the model fairer compared to previous meth-
ods. Furthermore, the fairness indicator of FedLF decreases
more stably than most of the previous methods. Besides,
some previous methods such as FedFa and FedFV suffer
from performance vibration during the training. If we tune a
lower learning rate to stabilize them, it will result in a slower
convergence and a lower test accuracy (see Appendix B.1).
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Figure 4: The mean test accuracy of 100 clients (left) and the fairness indicator (right) in Pat-1 on (a) CIFAR-10 and (b)
CIFAR-100 with batch size 200 and E = 1. 100% clients are online per round.

FMNIST CIFAR-10 CIFAR-100

FedLF .896(.052) .766(.106) .418(.321)
M1 .849(.104) .679(.201) .259(.563)
M2 .880(.062) .736(.117) .378(.398)
M3 .882(.061) .738(.115) .384(.414)
M4 .878(.061) .741(.136) .377(.462)
M5 .890(.055) .757(.123) .389(.388)
M6 .874(.091) .672(.186) .229(.533)
M7 .884(.058) .735(.132) .321(.440)
M8 .887(.064) .750(.126) .391(.361)

Table 3: The average test accuracy (and the fairness indi-
cator) in the ablation experiments on FMNIST, CIFAR-10,
and CIFAR-100 in the partition of Pat-2 with 100 clients.
The batch size is 200, and 10% clients are online per round.

4.3 Ablation Experiments
In Table 3, we evaluate several variants of FedLF (M1 to
M8) to study the effect of each part.

M1: Replace the layer-wise fair direction dt with the
simple-aggregated direction d̄=− 1

|St|
∑|St|
i=1 g

t
i , which eas-

ily conflicts with clients’ gradients. The results demonstrate
that such a direction would make the model much more un-
fair and have much poorer mean test accuracy.

M2: Combine all layers together to compute a model-
level fair direction, i.e., do not mitigate layer-level gradient
conflicts. As a result, the average test accuracy and fairness
of M2 are inferior to those of FedLF, because it cannot mit-
igate the layer-level gradient conflicts in FL.

M3: When calculating the update direction, do not sep-
arate the gradient by layers, but separate the gradient by
parameters into several fragments (if the obtained direction
fragment is ~0, combine the fragments with its neighbor, just
like what we do in combining layers), so that the obtained di-
rection does not conflict with these gradient fragments. The
results imply that it is preferable to separate the gradient by
layers to calculate a layer-wise fair direction. Because each
layer of a model often has its utility (Ma et al. 2022), it’s
meaningful to calculate a layer-wise fair direction.

M4: Remove the added fair-driven objective in Problem
(4). Compared to FedLF, both the mean test accuracy and
fairness are much worse in M4, verifying that it’s not enough
to enhance fairness by mitigating the gradient conflicts since
it cannot prevent the improvement bias among clients.

M5: Replace the fair-driven objective minω P (ω) =

−cos(~1, F (ω)) of FedLF to the dynamic objective
minω F (ω)Tht utilized in FedMDFG (Pan et al. 2023). Both
the average model performance and fairness deteriorated.
We discussed its limitation in Section 3.1.

M6: Do not handle the absent client fairness mentioned in
Section 3.3. Its results are much worse than FedLF, revealing
that when only part of the clients join in FL in each commu-
nication round, the model is prone to being unfair since the
directions easily conflict with absent clients.

M7: When handling absent client fairness, follow Fed-
MDFG to consider only those who were online at the last
communication round when calculating the update direc-
tion. M7 outperforms M6, because M6 ignores all absent
clients. However, M7 significantly lags behind FedLF, since
it ignores those who have not been absent for too long.

M8: Consider the historical gradients of all absent clients
when handling the absent client fairness, regardless of how
long they have been absent. The results get worse, mainly
because it is easily influenced by clients with long absences,
where their historical gradients can significantly deviate
from what they would be if they were online.

5 Conclusion and Future Work

In this work, we identify three significant challenges that ex-
ist in computing a fair direction to drive the FL model fairer:
model-level gradient conflicts, improvement bias, and layer-
level gradient conflicts. To address these challenges, we pro-
pose FedLF, which achieves a layer-wise fair direction. Ex-
tensive experiments verify that FedLF outperforms SOTA
methods in terms of performance and fairness. A number of
interesting topics warrant future exploration, such as mak-
ing more precise predictions about the gradients of absent
clients to better enhance absent client fairness and designing
privacy-protection techniques for FL.
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