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Abstract

Graph federated learning (FL) has emerged as a pivotal
paradigm enabling multiple agents to collaboratively train a
graph model while preserving local data privacy. Yet, cur-
rent efforts overlook a key issue: agents are self-interested
and would hesitant to share data without fair and satisfac-
tory incentives. This paper is the first endeavor to address this
issue by studying the incentive mechanism for graph feder-
ated learning. We identify a unique phenomenon in graph
federated learning: the presence of agents posing potential
harm to the federation and agents contributing with delays.
This stands in contrast to previous FL incentive mechanisms
that assume all agents contribute positively and in a timely
manner. In view of this, this paper presents a novel incen-
tive mechanism tailored for fair graph federated learning, in-
tegrating incentives derived from both model gradient and
payoff. To achieve this, we first introduce an agent valuation
function aimed at quantifying agent contributions through the
introduction of two criteria: gradient alignment and graph di-
versity. Moreover, due to the high heterogeneity in graph fed-
erated learning, striking a balance between accuracy and fair-
ness becomes particularly crucial. We introduce motif proto-
types to enhance accuracy, communicated between the server
and agents, enhancing global model aggregation and aiding
agents in local model optimization. Extensive experiments
show that our model achieves the best trade-off between ac-
curacy and the fairness of model gradient, as well as superior
payoff fairness.

1 Introduction

Graph data is ubiquitous, exhibiting diverse and generic con-
nectivity patterns, yet a notable portion is distributed or iso-
lated among distinct agents (e.g., companies, research insti-
tutions). Unlocking the potential of this “closed graph data”
represents a hidden gold mine in the era of big data. Recent
advances of graph federated learning offer opportunities for
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collaboration among multiple agents without compromising
data privacy, with each agent conducting local model train-
ing and sharing their updates/gradients with a global model
on a server (McMahan et al. 2017; Karimireddy et al. 2020;
Li et al. 2020; Zhao et al. 2018; Xie et al. 2021; Zhang et al.
2021b; Xie, Xiong, and Yang 2023; Gu et al. 2023; Zhang
et al. 2021a). For instance, financial companies with their
own transaction networks can join forces to enhance fraud
detection model by participating in a graph federation.

However, in reality, self-interested agents may lack coop-
eration if uniform models are given, despite differing con-
tributions. This implies that to achieve a competitive global
graph model, there is a strong need to establish a fair graph
federated learning framework that incentives agents to pro-
vide high-quality information. In view of this, several stud-
ies have explored incentive mechanisms for FL, with a pri-
mary focus on image domain (Xu and Lyu 2021; Xu et al.
2021; Deng et al. 2021; Gao et al. 2021).

These previous works almost assume that all agents con-
tribute positively and in a timely manner (as depicted in
Figure 1(a)). However, our observations in Figure 1(b) un-
cover substantial differences in graph federated learning,
even with honest participants: (1) Specific agents, like agent
4 and 5, negatively impact the entire federation; (2) Contri-
butions from agents like agent 1 may be delayed but even-
tually become significant. As the first contribution, we un-
veil a unique phenomenon in the context of graph federated
learning: the presence of agents posing potentially harm and
contributing with delays.

In light of the uniqueness of graph federated learning, we
believe that an ideal incentive mechanism for graph feder-
ated learning should simultaneously satisfy two criteria: the
capability of (1) rewarding contributing agents while penal-
izing those causing harm, and (2) offering post-hoc compen-
sation to agents with delayed contributions.

However, the primary challenge lies in designing a com-
prehensive incentive mechanism framework that satisfies
both criteria. Existing incentive mechanisms mainly fall into
two lines, each with inherent limitations to the desired one.
One line aims to allocate model gradients—the aggregated
parameter updates/gradients that agents download from the
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(a) FedAvg in image dataset CIFAR 10

diversity 6 5003 0.1633 0.1371 0.1102 0.0968

(b) FedAvg in graph dataset PROTEINS

diversity 0.2003 0.1633 0.1371 0.1102 0.0968

(c) Our model in graph dataset PROTEINS

Figure 1: The contribution of each agent in different communication rounds. Positive contributions are highlighted in red, while
negative contributions are indicated in blue. An agent’s contribution is measured by comparing the performance on a global
test set with and without the agent participating. In graph federated learning (Figure 1(b)), some agents initially have a negative
impact but become positive contributors over time. In contrast, in image federated learning (Figure 1(a)), all agents always

contribute positively.

Feature I: Feature 2:
reinforcement type ~ workflow phase
model gradient reward training-time

payoff reward & punishment post-hoc

Table 1: Features of our proposed incentive mechanism for
fair graph federated learning.

server—to reward contributing agents (Xu and Lyu 2021;
Xu et al. 2021). Yet, they cannot penalize agents that may
potentially do harm and compensate those with delayed con-
tributions. The other line focuses on the allocation of payoff
(such as monetary or computational resources) (Gao et al.
2021; Yu et al. 2020), but fails to provide training-time in-
centives during training, potentially diminishing agent mo-
tivation.

To address this challenge, we put forth a novel incen-
tive mechanism tailored for fair graph federated learning,
outlined in Table 1. This mechanism seamlessly integrates
the allocation of both model gradients and payoff, whereby
model gradients can function as rewards for contributing
agents and offer acknowledgment in a training-time man-
ner, while payoff serve a dual purpose by not only imposing
penalties on agents who may potentially do harm but com-
pensating agents with delayed contributions.

Within this framework, the subsequent challenge is how
to value an agent’s contribution/harm to graph federation,
such that the allocation can be conducted according to the
agent value. Previous works typically value agents on an
auxiliary validation set (Jia et al. 2019; Song, Tong, and
Wei 2019; Wang et al. 2020), but selecting a validation set
that is accessible and agreed upon by all agents poses chal-
lenges. To address this issue, we introduce an agent valua-
tion function, incorporating two criteria: gradient alignment
and graph diversity. Gradient alignment exploit the similar-
ity between local gradients and the server’s global gradients.
However, relying solely on gradient alignment could under-
estimate agents with delayed contributions. This is evident
in Figure 1(b), where agents with delayed contributions of-
ten exhibit high diversity. We therefore introduce an addi-
tional criterion: the graph diversity of agents’ local data.

The remaining challenge lies in how to enhance the
accuracy-fairness trade-off; this is critical especially in the
presence of agents potentially do harm in graph federated
learning. Previous endeavors have attempted to aggregate
the local gradients based on the agent value (McMahan et al.
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2017; Xu et al. 2021). However, this approach falls short of
ensuring the model quality in graph federated learning, due
to the high heterogeneity in graph data (Xie et al. 2021).
This paper introduces a novel concept of motif prototypes as
a reference coordinate between server and agents, facilitat-
ing not only the server’s role in global model aggregation
but also agents in optimizing their local models.

Our major contributions can be summairzed as follows:
Problem. To the best of our knowledge, we are the first
work to study the incentive mechanism for graph federated
learning. We unveil a unique phenomenon in the context
of graph federated learning: the presence of agents posing
potentially harm and contributing with delays.

Method. We propose a novel incentive mechanism tai-
lored for fair graph federated learning that provides both
model gradients and payoff for agents. Particularly, we
propose to value the agents based on gradient alignment
and graph diversity, and introduce motif prototypes to en-
hance accuracy-fairness trade-off.

Experiment. In-depth experiments conducted across var-
ious settings reveal that our model not only demonstrates
superiority in the allocation of model gradients and pay-
off, but also achieves the most favorable trade-off between
fairness and accuracy among state-of-the-art baselines.

2 Preliminary

Vanilla graph federated learning. Vanilla graph feder-
ated learning involves N honest agents, where each agent
¢ holds a local graph dataset denoted as D;, comprising a set
of graphs. The objective is to learn a shared global model,
typically a graph neural network (GNN), across all clients,
which can be formulated as

2N
)Z
=1

where wq; = wq - = wp, w; represents the model pa-
rameters of agent 4, L(w;; D;) is the loss function of graph
classification for local training in agent ¢, | D;| is the num-
ber of instances in client 4, and |D]| is the total number of
instances over all clients.

This objective is achieved through a two-step process: ag-
gregation and distribution. In the aggregation step, the gra-
dients uploaded by the individual agents, {uf, - - - ,u’;}, are

min (D)
(wi ;W2 WN

D]
L(wi; Dy),
|D|
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combined in the server to obtain the aggregated gradient ul}.
This aggregation is performed using a weighted average, and
the weights are proportional to the sizes of the local datasets:

= Dy
uly = Z |[;| ut. )
=1

In the distribution step, the aggregated gradient u'y; is sent
back to each agent, and each agent i receives the same gra-
dient u'y, as a reward in ¢-th communication round.

Our current focus is solely on addressing fairness con-
cerns related to honest agents, without considering the ex-
amination of potential cheating behaviors among agents.

Shapely value. In the context of FL, the Shapley value can
be applied to assess the value of individual agents in the col-
laborative federation (Xu et al. 2021; Song, Tong, and Wei
2019). It provides a way to quantify the contribution of each
agent in improving the overall performance in federation.

The Shapley value, originally introduced in cooperative
game theory (Shapley 1997), is a widely used concept for
evaluating the contribution of individual players in a coali-
tion game. It measures the expected marginal value that a
player brings when joining different coalitions, considering
all possible permutations of players.

Definition 1 (Shapley Value). Let N denote the set of all
agents (i.e., the grand coalition), a coalition S C N is the
subset of N, Iy is the set of all possible permutation of
N. For a given permutation = € s, Sy ; represents the
coalition of agents preceding agent i in the permutation. The
gradient-based Shapley value of agent i € N is defined as

o ;:% S (S Ul (S, B

" welly

where v(S) represents the value function associated with
coalition S.

3 Methodology

This section introduces our incentive mechanism framework
for promoting fairness in graph federated learning; see Fig-
ure 2 for an overview. We first provide an overview of our
framework that encompasses the allocation of both model
gradients and payoff in § 3.1. To implement this framework,
we tackle two pivotal questions: how to assess an agent’s
contribution or potential harm within the graph federation
context in § 3.2, and how to ensure the accuracy of graph
federated learning in § 3.3.

3.1 Overview Framework

Our goal is to enhance fairness in graph federation by com-
bining model gradients and payoff allocation mechanisms
(Table 1) to reward contributing agents, penalize agents with
potential harm, and provide post-hoc compensation for de-
layed contributions.

Before introducing the whole framework, we define the
agent value, r!, which indicates the contribution of agent 7 in
the ¢-th communication round (details about the agent value
could be found in § 3.2). We proceed to elaborate on these
incentive mechanisms as below.
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Figure 2: The framework of fair graph federated learning.

Model gradients allocation. In the vanilla FL frame-
work, all agents download the same gradients from the
server (McMahan et al. 2017; Li et al. 2020), but this is un-
fair when dealing with agents with differing values/contribu-
tions. To address this issue, we propose that the server allo-
cates global gradients to each agent based on their individual
value, a mechanism termed model gradients allocation.

To achieve this, we employ a sparsifying gradient ap-
proach for model gradients allocation, drawing inspiration
from prior works like (Lyu et al. 2020; Xu and Lyu 2021; Xu
et al. 2021). This strategy entails rewarding agents who con-
tribute more with denser gradient rewards, while those with
less contributions receive sparser gradients. Agents who po-
tentially do harm, in turn, are assigned zero gradients.

Specifically, to differentiate the quality of the gradients
allocated to different agents, we can selectively sparsify the
server’s aggregated global gradient. The sparsifying trick
is achieved by a mask operation: when an agent’s value
is higher, we zero out fewer of the smaller components of
the global gradient, resulting in a higher-quality gradient re-
ward. The gradient downloaded by agent ¢ in ¢-th communi-
cation round with value 7} is

gradient} = mask(u’, | D tanh(Br!)/ max tanh(6r)]),
JE
“)

where the operator mask(u),,z) returns the largest
max (0, 2) components of u’,, D is the total number of com-
ponents in the global gradient. The hyper-parameter 5 > 1
controls the emphasis of fairness in FL: a smaller 5 indi-
cates a higher emphasis on fairness, as in this case agents
with lower values will receive gradients of lower quality. In
the extreme case of 8 = oo, we revert to the vanilla FL.
Note that in scenarios where an agent offers no contri-
bution or potentially do harm (i.e., r§ < 0), no gradient is
allocated to it. This policy is adopted due to the impractical-
ity of using model gradients to penalize harmful agents, for
example, by applying inverse gradients, as doing so would
contradict fundamental principles of federated learning.

Payoff allocation. To empower the framework’s ability to
penalize agents and compensate those with delayed contri-
butions, we propose a scheme to allocate payoff (e.g., money
or computation resources).

On one hand, agents whose actions may have a negative
impact on the federation, are subjected to penalties in payoff.
For agent i in the ¢-th round, if ! < 0, indicating that the
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agent is detrimental to the overall federation, we impose a
payoff punishment payofff = r! < 0 on the agent.

On the other hand, agents with delayed contributions
are provided payoff compensation based on their perfor-
mance history. This ensures that agents who have faced de-
lays in their contributions are still acknowledged and re-
warded accordingly. By examining the agent values in pre-
vious rounds, we can estimate the agent’s delayed contribu-
tion. Specifically, we consider the agents, who have initially
lower values but catch up in value over time, as those experi-
encing delayed contribution. To compensate, we allocate the
payoff compensation for agent ¢ in the ¢-th round (denoted as
k) as the difference between the value in the current round
and the average value of the previous rounds:

1 t—1
pi = max(r; — r— i, 0).

m=1

&)

Given the agent value and the calculated payoff compen-
sation, the payoff to agent ¢ in ¢-th communication round is

t
t Ty, r, < 0
payoff; = { rt + put,  otherwise ’ ©
ff
payoff} « %B )

Doict payoffi ’

where B is the budget of payoff.

Given the overall framework above, two challenges re-
main to be solved: (1) how to define the agent value rf»;
(2) while the allocation mechanism contributes to fairness, it
should also guarantee the model accuracy. We will address

these two problems in the following two sections.

3.2 Agent Valuation Function

The value of an agent is typically determined by its accu-
racy on an auxiliary validation set (Jia et al. 2019; Song,
Tong, and Wei 2019; Wang et al. 2020). However, select-
ing a validation set that is accessible and agreed upon by all
agents can be challenging. To decouple the agent valuation
from validation, we introduce two criteria: gradient align-
ment and graph diversity.

Gradient alignment. Most approaches that utilize the
Shapley value in FL typically define the value function
based on an auxiliary validation set that is shared and agreed
upon by all agents. To overcome the challenge and inspired
from (Xu and Lyu 2021; Xu et al. 2021), we propose to
utilize the gradient information as the value function for
computing the Shapley value, namely gradient-based Shap-
ley value, instead of using an auxiliary validation set. The
gradient-based Shapley value is defined as that in Defini-
tion 1 by assigning the value function v to be

v(8) = cos(us, uy) = (us, ux) /([[us|| - [[url]), (8)

where v(S) is defined as the cosine similarity between the
gradient of coalition S (i.e., local gradient from agent), de-
noted as ug, and the gradient of the grand coalition N (i.e.,
global gradient in server), denoted as uys. The gradient-
based Shapley value measures the gradient contribution of
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each agent in the federation. A positive value indicates that
the agent makes a greater contribution, as its gradient is pos-
itively aligned with the global gradient. A negative value im-
plies that the agent’s gradient is in the opposite direction of
the global gradient. In this case, the agent is considered as
potentially detrimental to the federation.

However, calculating the exact gradient-based Shapley
value of an agent costs O(2%). To address this issue, we find
that cosine similarity between the agent’s local gradient and
the server’s global gradient could be used as an approxima-
tion. The error between approximated value and exact value
can be bounded, as illustrated in (Xu et al. 2021). Therefore,
the gradient-based Shapley value of agent ¢ in ¢-th commu-
nication round is approximated as

(€))

where u! is the local gradient that agent ¢ uploads to the
server in communication round ¢, and uy is the global gra-
dient in communication round ¢. The formal theorem and
proofs can be found in Appendix A.1.

;= cos(uj, i),

Graph diversity. Merely considering gradient alignment
is insufficient for two reasons. First, agents with delayed
contributions would face undervaluation if their assessment
were solely based on gradient alignment. This occurs be-
cause agents equipped with diverse graph data hold substan-
tial potential for delayed contributions, yet they may strug-
gle to attain perfectly aligned gradients initially (as depicted
in Figure 1(b)). Second, diverse graphs encompass a wide
range of structural patterns that can be universally shared
among agents, leading to better generalization (Tan et al.
2023). Consequently, to provide a more comprehensive val-
uation of agents, we additionally introduce the criterion of
graph diversity.

However, quantifying the diversity of graph data is not
straightforward due to the complex structure. Existing works
use the number of subgraphs, data size or heuristic measures
to quantify the diversity of graph (Yuan et al. 2021; Frasca
et al. 2021; Xu et al. 2023), but overlook the inherent struc-
tural patterns within graph. To address this issue, we pro-
pose the use of motifs as a means to represent the diversity
of graph data. Motifs are representative structural patterns in
graphs that can reveal important information about underly-
ing structure (Zhang et al. 2021c). Therefore, for each agent,
we define graph diversity as the volume of motifs contained
in agent’s local graph.

Definition 2 (Graph Diversity). The graph diversity d; of
agent i is defined as the ratio of the number of unique motifs
categories in the agent’s local graph data k; to the number
of unique motifs categories in the entire data contributed by
all agents K, which can be formulated as d; =

e
Note that the motif information necessary for computing
graph diversity (i.e., the motif prototypes elaborated in § 3.3)
will be communicated between the agents and the server,
rather than transmitting the actual graph diversity values.
Another advantage of introducing graph diversity is that it
can help prevent agents from falling into the trap of converg-
ing to similar models. This is because, from the perspective
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of game theory, if only model gradients are allocated, agents
might fall into this trap.

Agent value updates. Finally, the value of agent is defined
by considering two aspects: (1) the incorporation of graph
alignment and graph diversity, and (2) the consideration of
both the current round’s assessment and the historical as-
sessment. First, the graph alignment ¢! and graph diversity
d; are combined by weight. Then, to better assess the agent
value, both the historical assessment and the value on cur-
rent round should be considered. Specifically, the server up-
dates the agent value in round ¢ via a moving average of the
current value and the historical value 7";&_1. To ensure that
the values of all agents sum up to 1 in ¢-th round, the server
normalizes the agent values in the last step. In summary, the
update of agent value could be decomposed as:

= rffl + a1 (@h + agd;), vt 1t/ Z ré,

JEN
where «; can be viewed as a trade-off of the value from
current round and the historical rounds, o> denotes a trade-
off parameter between graph alignment and graph diversity,
and r{ = 1/N is the initial value of the agent.

t
T

(10)

3.3 Model Quality Enhancement

In graph federated learning, achieving both fairness and ac-
curacy is essential, particularly when dealing with diverse
graph data that may affect performance. A reference coordi-
nate for server-agent communication is key to a better feder-
ated model, guiding agents to enhance their local models in
line with the server’s directives for betterment.

This section first introduces a concept of motif prototype
as such a reference coordinate, then presents how the server
and agents utilize motif prototype for self enhancement.

Motif prototypes. Graph federated learning’s struggle
with accuracy stems from the difficulty in transferring
knowledge between agents’ diverse graph data. Traditional
FL methods, which mostly aggregate local model gradients
on a server, are insufficient to overcome this hurdle. To ad-
dress this, we leverage motifs—sub-structures rich in struc-
tural information (Milo et al. 2002). Since a motif repre-
sents similar structural patterns across different graphs, they
can act as transferable elements among agents with hetero-
geneous data distributions. Incorporating these transferable
patterns, we present motif prototypes that aid in knowledge
transfer between agents, thus boosting accuracy. We for-
mally define the motif prototypes as follows:

Definition 3 (Motif Prototypes). For agent i, suppose that
the agent’s local data involve K; unique motifs. For the k-
motif in agent i, we define the corresponding motif prototype
as the mean of the embedding vectors of the graph instances

containing k-th motif, i.e.,
3 1u(G),

GEDi,k

C;

Y

L1
" D
where D, 1. is the subset of D; that is comprised of graph
instances that contain k-th motif, f.,:(G) and w! are the em-

bedding of graph instance G and the parameter of embed-
ding layers of agent 1 in t-th round, respectively.

14503

In each communication round, agents and the server ex-
change motif prototypes along with model gradients to en-
hance model accuracy. Agents send their local prototypes to
the server, which aggregates them into global prototypes and
redistributes them to the agents.

It is noteworthy that the communication of prototypes
would not entail much privacy leakage. This is because mo-
tif prototypes are 1D-vectors derived via the computation of
average statistics from the low-dimensional representations
of graph instances, which is an irreversible process (Michieli
and Ozay 2021; Tan et al. 2022).

Value-based global model aggregation. To ensure the
quality of the global model, we propose a value-based global
model aggregation approach. This approach aims to aggre-
gate both the introduced motif prototypes and the gradients
of agents based on their value 7!. Specifically, we assign
higher weights to agents with higher agent values, while
excluding agents with negative values to prevent potential
harm to the global model.

We first introduce the aggregation process for motif proto-
types at the server. Suppose that there are K unique motifs
in total. We aggregate the local motif prototypes from the
agents based on their values r!. Specifically, the global mo-
tif prototype of k-th motif in ¢-th round is defined as

e, ReLU(r)) - ¢
ZiGNk RCLU(’I"f) ’
where N}, denotes the set of agents that have motif k.
A similar strategy is employed when aggregating model
gradients. The global gradient in the server for the ¢-th com-
munication round, denoted as u’, can be aggregated as
ot — ot ReLU(rf) - ul
M X ReLU(r])
where the ReLU function plays a crucial role in the aggre-

gation process by excluding agents with negative effects on
the federation.

Ch i = (12)

13)

Local model training. The global motif prototype serves as
an instruction to guide the agents in updating their models
in a desired direction. This also encourages non-rewarded
agents to proactively identify and rectify their local issues
before uploading gradients with the server. For example,
agents with initially lower values 7! have the opportunity
to increase their value by following the guidance provided
by the global motif prototype.

In order to facilitate this process, we introduce a regular-
ization term that encourages the local motif prototype c; &

to approach the global motif prototype cj\ﬁ & associated with

motif k. Accordingly, the local loss on agent ¢ can be formu-
lated as follows:

L(wi7Di) = LS(F(D7)5Y) + Azd(cg,kvcﬁ\/,k)v (14)
k

where Lg is the supervised loss that measures the discrep-
ancy between the model predictions F'(D;) and the ground
truth Y on the local data of agent ¢, A is the trade-off parame-
ter between the supervised loss L g and the motif prototypes-
based regularization, and d is the L2 distance metric.
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4 Experiments

In the experiments, we evaluate our model in graph classifi-
cation task. We report the personalized accuracy and the ac-
curacy of global model. Besides, we evaluate the model gra-
dient fairness and payoff allocation fairness. Other results,
such as ablation study of our model and parameter sensitiv-
ity, can be found in Appendix A.3.

4.1 Experimental Setup

Datasets. We use three graph classification datasets:
PROTEINS, DD, and IMDB-BINARY. The first two are
molecule datasets, while the last one is social network, each
containing a set of graphs. We retain 10% of all the graphs
as the global test set for the server, and the remaining graphs
are distributed to 10 agents. In each agent, we randomly split
90% for training and 10% for testing. In addition, for the
payoff fairness, we introduce another setting using perturbed
graph dataset. Specifically, for the graphs in each agent, we
add varying ratio of perturbations to the structure. We des-
ignate 3 agents as low-quality, 3 agents as medium-quality,
and 4 agents as high-quality by flipping ratios of [0.7,1),
[0.3,0.7), and [0,0.3) of the total number of edges, respec-
tively.

Baselines. We compare with two kinds of baselines: FL
methods and payoff allocation approaches. For FL methods,
we compare against (1) Self-train, where the agents train
their models only on their local datasets; (2) two commonly
used FL baselines FedAvg (McMabhan et al. 2017) and Fed-
Prox (Li et al. 2020), (3) FedSage (Zhang et al. 2021b), a
graph FL framework that adopts FedAvg with GraphSage
encoder (Hamilton, Ying, and Leskovec 2017); (4) GCFL
and GCFL+ (Xie et al. 2021), two methods that utilize graph
clustering to improve the effectiveness of graph FL; (5) DW
and EU (Xu et al. 2021), incentive mechanisms that allocate
model gradient using sparsifying gradient approach based on
local data sizes and distance between local and global gradi-
ent respectively; (6) (Xu et al. 2021) and CFFL (Xu and Lyu
2021), incentive-based FL. models in image domain (here we
adapt them to our setting by substituting the encoder with the
GNN used in our model).

For the payoff allocation approaches, follow (Gao et al.
2021), we set the volume-based payoff function of agent i as
&(i) = log(1 + | D;|), and compare against classical base-
lines such as (1) equal incentive (Yang et al. 2017), where
participants get equal payoff, i.e., &(i) = 1/N; (2) union in-
centive (Gollapudi et al. 2017), where the payoff proportion
of agent i is $(N) — &(N\{i}); (3) individual incentive
(Yang et al. 2017), where the payoff proportion of agent  is
&(i); and (4) Shapley incentive (Shapley 1997), where the
payoff proportion of agent 7 is served as Eq. (3), where the
value function v is substituted with ¢(i). The actual payoff

(]
for each agent can be calculated as %B, where B
i=1 ¥\

is the budget for federated learning.

Metrics. We evaluate our model’s performance on the clas-
sification accuracy, as well as the fairness among agents. For
graph classification accuracy, we consider personalized ac-
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curacy and global accuracy. Personalized accuracy is the av-
erage accuracy of the agents on the testing sets of their local
graph. Global accuracy is measured on the global test set.

To evaluate the fairness of our allocation, we consider
two perspectives: model gradient and payoff. To measure
the fairness of model gradient, we calculate the Pearson
correlation coefficient p(€, 1)) between the test accuracies
& achieved through self-training and that 1 achieved by
agents when collaborating in FL, following (Xu et al. 2021).
To measure the fairness of payoff, the allocation approach
could be assessed based on the agents with constructed low,
medium, and high-quality data. If agents with high-quality
data receive a larger payoff, it indicates a better payoff allo-
cation approach.

Implementation details. Following the settings in (Xie
et al. 2021), we evaluate on the federated graph classifica-
tion task. We set the parameters o; and a9 in Eq. (10) as
0.05 and 1, the parameter A in Eq. (14) as 0.1, 8 in Eq. (4)
as 1, and the budget B of payoff as 1 (the budget B in pay-
off allocation baselines is also set as 1). We utilized a three-
layer GIN network with a hidden size of 64 and a dropout
rate of 0.5 for both the server and agent models. An Adam
optimizer with a learning rate of 0.001 and weight decay
of 5e~* is employed. The communication round is 200, the
epoch of local training on agents is 1 and the batch size is
128. Besides, we utilized the motif extraction method in (Yu
and Gao 2022). See more details in Appendix A.2.

4.2 Experimental Results

Accuracy and model gradient fairness. Table 2 present
the accuracy and model gradient fairness on clean and per-
turbed graph datasets, respectively. Our model demonstrates
the best performance in terms of model gradient fairness
and global accuracy, indicating a significant advantage in
fairness without compromising overall performance. Tradi-
tional FL methods like FedAvg and FedProx do not per-
form well in both classification accuracy and model gradient
fairness in most cases. This emphasizes the need of a dedi-
cated design encompassing both the graph federated learn-
ing model and the graph incentive mechanism. Graph FL
methods like GCFL, GCFL+, FedSage and FedStar obtain
either unsatisfactory accuracy and fairness, or good accuracy
but with compromised fairness. This deficiency stems from
the absence of an incentive mechanism within these models.
The results of incentive-based federated learning methods
such as DW, EU, (Xu et al. 2021) and CFFL are also non-
ideal, as they are not specifically designed for graph FL. We
also note the presence of a trade-off between model gradient
fairness and personalized accuracy, which has also been ob-
served and recognized in previous research (Gu et al. 2022;
Ezzeldin et al. 2023); in the subsequent experiments, we pro-
ceed to further evaluate this trade-off.

Trade-off between personalized accuracy and model gra-
dient fairness. We evaluate the trade-off between model
gradient fairness and personalized accuracy by presenting
the results of various algorithms in Figure 3(a). The ideal
algorithm should be situated in the upper right corner of
the figure, similar to where our algorithm is positioned, sig-
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PROTEINS DD IMDB-BINARY
Dataset mode! gradient global personalized mode! gradient global personalized modfj gradient global personalized
fairness accuracy accuracy fairness accuracy accuracy fairness accuracy accuracy
Self-train - | - 0.712+£0.011 - | - 0.587+0.016 - | - 0.779+0.018
FedAvg 0.700+0.153 :O.748:|:0.006 0.750+0.007 | 0.259+0.209 :0.668:|:0.032 0.657+0.029| 0.780+0.143 :O.779:|:0.007 0.782+0.018
FedProx 0.7174+0.173 ,0.7314£0.017 0.746+0.007| 0.28340.186 0.633£0.025 0.672+0.020| 0.842+0.093 0.775+0.018 0.7564+0.017
FedSage 0.770+0.048 :0.740i0.024 0.7414+0.025| 0.360+0.159 :0.671i04021 0.663+0.023| 0.87040.086 10.76310.004 0.768+0.003
GCFL 0.725+£0.185 - 0.772£0.019| 0.439+0.094 | - 0.698+0.013 | 0.874=£0.040 , - 0.830-£0.009
GCFL+ 0.734+0.146 : - 0.775+0.019| 0.379+0.190 : - 0.692+0.013 | 0.825+0.094 : - 0.819+0.007
FedStar 0.7631+0.043 | - 0.717+0.138| 0.335+0.034 | - 0.665+0.109| 0.795+0.071 , - 0.776+0.086
DW 0.702+0.014 :0.723:|:0.014 0.730+0.014| 0.305+0.326 :0.672:i:04031 0.669+0.033| 0.72340.089 :O.751:t0.011 0.76240.009
EU 0.733£0.016 ,0.725+0.048 0.715£0.141| 0.381£0.081 ,0.668+0.010 0.6584+0.382| 0.74740.010 ,0.75540.023 0.759+0.069
CFFL 0.690+£0.117 '0.735+0.037 0.713£0.103| 0.402+0.141 '0.658+0.053 0.658+0.112| 0.7954+0.100 '0.7414+0.037 0.752+0.034
(Xu et al. 2021)| 0.75040.040 :0.745i0.022 0.737+0.025| 0.384+0.123 :0.682i04011 0.659+0.013| 0.79640.085 10.78110.014 0.778+0.019
Ours 0.78740.052 '0.753::0.018 0.751+:0.017| 0.479:£0.067 '0.692-:0.017 0.680£0.017| 0.9070.018 '0.801+0.013 0.794=:0.005

Table 2: Accuracy and fairness performance on three clean graph datasets. We report the average test accuracy of all agents
(denoted as personalized), the accuracy of global models on the global test dataset (denoted as global) and the performance

dients based on the similarity between local gradients and
global gradients. Another line of works introduce payoff-
sharing schemes, where (Yu et al. 2020) dynamically allo-
cates payoff by optimizing collective utility while minimiz-
ing inequality and (Gao et al. 2021) considers the malicious
agents. However, none of them have considered the unique-
ness in graph federated learning.

fairness. “-”” means these methods do not have a single global model on the server.
(@ b
0800 G + | 020[=Tnion
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Figure 3: (a) The trade-off between model gradient fairness
and personalized accuracy. (b) The average payoff per round
for agents with varying data qualities.

nifying both high accuracy and excellent fairness. This re-
sults effectively demonstrate the most remarkable trade-off
achieved by our algorithm between personalized accuracy
and model gradient fairness.

Payoff fairness. To evaluate the payoff fairness of our
model, we compare it with different payoff allocation ap-
proaches, analyzing payoffs for agents of varying data qual-
ity. Figure 3(b) presents the average payoffs per round
through histograms. Our mechanism outperforms others in
fairness, rewarding high-quality data agents more and pe-
nalizing those with low-quality data, while other methods
falter in ensuring fair payoff in FL.

5 Related Works

Incentive mechanism. Data value in FL is primarily as-
sessed from two dimensions: data quantity and data qual-
ity. Concerning data quantity, existing works use data size
to measure agent contribution (Zhan et al. 2020b,a). As for
data quality, most works evaluate the contribution of agents
with the Shapley Value (Shapley 1997), and a validation set
on the server that is agreed by all agents is needed to de-
termine the value function (Jia et al. 2019; Song, Tong, and
Wei 2019; Wang et al. 2020).

Built upon the notion of data value, incentive mechanisms
are established for FL to allocate model gradients or pay-
off. (Xu et al. 2021; Xu and Lyu 2021) allocate model gra-
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Graph federated learning. Graph federated learning is di-
vided into graph-level, subgraph-level and node-level (He
et al. 2021a). In subgraph-level graph FL, each agent has a
subgraph of a large entire graph (Zhang et al. 2021b; Wu
et al. 2021). In node-level graph FL, each agent possesses
the ego-networks of one or multiple nodes (Meng, Ramb-
hatla, and Liu 2021; Wang et al. 2022; Zheng et al. 2021).
Our work belongs to graph-level graph FL, where each agent
holds a set of graphs. In this context, (Xie et al. 2021) in-
troduces a clustered FL to deal with feature and structure
heterogeneity. (Tan et al. 2023) separates the graph struc-
ture and features, sharing only the structural information
across agents while retaining features for local training by
each agent. (Gu et al. 2023) introduces a dynamic approach
for selecting clients and model gradients to enhance effi-
ciency and accuracy. (He et al. 2021b) proposes a multi-task
learning framework that eliminates the necessity for a cen-
tral server. However, none of them consider the fairness in
graph federated learning.

6 Conclusion

In this paper, we begin by uncovering a unique phenomenon
in graph federated learning: the presence of agents caus-
ing potential harm and agents contributing with delays. In
light of this, we presents a novel incentive mechanism for
fair graph federated learning framework, combining incen-
tives from both model gradients and payoff. To achieve the
framework, we introduce a agent valuation function consid-
ering both gradient alignment and graph diversity, and then
we enhance the accuracy-fairness trade-off by introducing
a novel concept of motif prototypes. Extensive experiments
demonstrate our superiority in both accuracy and fairness.
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