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Abstract

There are a lot of real-world black-box optimization prob-
lems that need to optimize multiple criteria simultaneously.
However, in a multi-objective optimization (MOO) problem,
identifying the whole Pareto front requires the prohibitive
search cost, while in many practical scenarios, the decision
maker (DM) only needs a specific solution among the set
of the Pareto optimal solutions. We propose a Bayesian op-
timization (BO) approach to identifying the most preferred
solution in the MOO with expensive objective functions, in
which a Bayesian preference model of the DM is adaptively
estimated by an interactive manner based on the two types of
supervisions called the pairwise preference and improvement
request. To explore the most preferred solution, we define an
acquisition function in which the uncertainty both in the ob-
jective function and the DM preference is incorporated. Fur-
ther, to minimize the interaction cost with the DM, we also
propose an active learning strategy for the preference estima-
tion. We empirically demonstrate the effectiveness of our pro-
posed method through the benchmark function optimization
and the hyper-parameter optimization problems for machine
learning models.

1 Introduction
In many real-world problems, simultaneously optimizing
multiple expensive black-box functions f1(x), . . . , fL(x)
are often required. For example, considering an experimen-
tal design for developing novel drugs, there can be several
criteria to evaluate drug performance such as the efficacy of
the drug and the strength of side effects. If we pursue high
efficacy, the strength of side effects usually tends to deteri-
orate. Another example is in the hyper-parameter optimiza-
tion of a machine learning model, in which multiple different
criteria such as accuracy on different classes, computational
efficiency, and social fairness should be simultaneously op-
timized.

In general, multi-objective optimization (MOO) problems
have multiple optimal solutions (Figure 1 (a)), called Pareto
optimal solutions, and MOO solvers typically aim to find all
of the Pareto optimal solutions. However, the search cost of
this approach often becomes prohibitive because the number
of Pareto optimal solutions can be large even with small L.
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On the other hand, in many practical scenarios, a decision
maker (DM) only needs one of the optimal solutions that
matches their demands (e.g., a drug developer may choose
just one drug design considering the best balance between
the efficacy and side effects). Therefore, if we can incorpo-
rate the DM’s preference at the MOO stage, preferred solu-
tions for the DM can be efficiently identified without enu-
merating all Pareto solutions. However, for the DM, directly
defining their preference mathematically can be difficult.

We propose a Bayesian optimization (BO) method for
the preference-based MOO, optimizing x through an inter-
active (human-in-the-loop based) estimation of the prefer-
ence based on weak-supervisions provided by the DM. Let
U : RL → R be a utility function that quantifies the DM
preference. We assume that when the DM prefers f ∈ RL to
f ′ ∈ RL, the utility function values satisfy U(f) > U(f ′).
By using U , the optimization problem can be formulated as
maxx U(f(x)), where f(x) = (f1(x), . . . , fL(x))>. Our
proposed method is based on a Bayesian modeling of f(x)
and U , by which uncertainty of both the objective func-
tions and the DM preference can be incorporated. For f(x),
we use the Gaussian process (GP) regression, following the
standard convention of BO. For U , we employ a Cheby-
shev scalarization function (CSF) based parametrized utility
function because of its simplicity and capability of identify-
ing any Pareto optimal points depending on a setting of the
preference parameter w ∈ RL (Figure 1 (b)).

To estimate utility function U (i.e., to estimate the param-
eter w), we consider two types of weak supervisions pro-
vided by the interaction with the DM. First, we use the pair-
wise comparison (PC) over two vectors f ,f ′ ∈ RL. In this
supervision, the DM answers whether U(f) > U(f ′) holds
based on their preference. In the context of preference learn-
ing (e.g., Chu and Ghahramani 2005), this first type of super-
vision is widely known that the relative comparison is often
much easier to be provided by the DM than the exact value
of U(f). As the second preference information, we propose
to use improvement request (IR) for a given f ∈ RL. The
DM provides the index ` for which the DM hopes that the
`-th dimension of f , i.e., f`, is required to improve most
among all the L dimensions. To our knowledge, this way
of supervision has never been studied in preference learning
nevertheless it is obviously easy to provide and important
information for the DM. We show that IR can be formulated
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as a weak supervision of the gradient of the utility function.
We show that the well-known expected improvement (EI)

acquisition function of BO can be defined for the optimiza-
tion problem maxx U(f(x)). Here, the expectation is taken
over the both of U and f(x), by which exploration is per-
formed based on the current uncertainty for both of them.
Further, to reduce querying cost to the DM, we also propose
active learning that selects effective queries (PC or IR) to
estimate the preference parameter w. Our contributions can
be summarized as follows:

• We propose a preference-based MOO algorithm by com-
bining BO and preference learning in which both the
MOO objective f(x) and the DM preference (utility
function) are modeled by a Bayesian manner.

• Bayesian preference learning for the utility function is
proposed based on two types of weak supervisions, i.e.,
PC and IR. In particular, IR is a novel paradigm of pref-
erence learning.

• Active learning for PC and IR is also proposed. Our ap-
proach is based on BALD (Bayesian Active Learning by
Disagreement) (Houlsby et al. 2011), which uses mutual
information to measure the benefit of querying.

• Numerical experiments on several benchmark functions
and hyperparameter optimization of machine learning
models show superior performance of our framework
compared with baselines such as an MOO extension of
BO without preference information.

2 Problem Setting
We consider a multi-objective optimization (MOO) prob-
lem that maximizes L objective functions. Let f`(x) for
` ∈ [L] be a set of objective functions and f(x) =
(f1(x), . . . , fL(x))> be their vector representation, where
x ∈ Rd is an input vector. In general, an MOO problem
can have multiple optimal solutions, called the Pareto opti-
mal points. For example, in Figure 1 (a), all the green points
are optimal points. See MOO literature (e.g., Giagkiozis and
Fleming 2015) for the detailed definition of the Pareto opti-
mality.

Since the number of the Pareto optimal points can be large
even with small L (e.g., Ishibuchi, Tsukamoto, and Nojima
2008), identifying all the Pareto optimal points can be com-
putationally prohibitive. Instead, we consider optimizing a
utility function U : RL → R that satisfies U(f) > U(f ′)
when the DM prefers f to f ′, where f ,f ′ ∈ RL. The op-
timization problem that seeks the solution preferred by the
DM is represented as

max
x

U(f(x)). (1)

In our problem setting, both the functions f(x) and U(f)
are assumed to be unknown.

About the querying to the objective function f(x), we
follow the standard setting of BO. Let yi = f(xi) + ε be
a noisy observation of f(xi) where ε ∼ N (0, σ2I) is an
independent noise term with the variance σ2 and the identity
matrix I . Since observing yi requires high observation cost,
a sample efficient optimization strategy is required.

(a) (b)

Figure 1: (a) Illustration of Pareto optimal points. The green
points are Pareto optimal because, from each one of the
green points, no points can improve both objectives simul-
taneously. The dashed line is an underlying set of all the
Pareto optimal points, called the Pareto front. (b) Illustra-
tion of CSF (see § 3.2 for detail of CSF). The direction of
the red arrow corresponds to w. The red dashed lines are
the contour lines of CSF, by which the red star becomes the
optimal point.

On the other hand, directly observing the value of the util-
ity functionU(f(x)) is usually difficult because of difficulty
in defining a numerical score of the DM preference. Instead,
we assume that we can query to the DM about the following
two types of weak supervisions:

Pairwise Comparison (PC): PC indicates the relative pref-
erence over given two f and f ′, i.e., the DM provides
whether f is preferred than f ′ or not.

Improvement Request (IR): IR indicates the dimension `
in a given f that the DM considers improvement is re-
quired most among ` ∈ [L].

For the DM, these two types of information are much eas-
ier to provide than the exact value of U(f) itself. PC is a
well-known format of a supervision in the context of prefer-
ence learning (Chu and Ghahramani 2005) and dueling ban-
dit (Sui et al. 2018). On the other hand, it should be noted
that IR has not been studied in these contexts to our knowl-
edge, though it considers a practically quite common sce-
nario.

3 Proposed Method
In this section, we first describe the modeling of the MOO
objective functions f(x) in § 3.1. Next, in § 3.2, the model-
ing of the utility functions U that represents the DM prefer-
ence is described. In § 3.3, we show the acquisition functions
for BO ofU(f(x)) and active learning ofU . Then, the entire
algorithm of the proposed method is shown in § 3.4. Finally,
we discuss a variation of the utility function in § 3.5. Due to
the space limitation, some technical details are omitted. See
our extended pre-print (Ozaki et al. 2023) for further details.

3.1 Gaussian Process for Objective Functions
As a surrogate model of f(x), we employ the Gaussian
process (GP) regression. For simplicity, the L dimensional-
output of f(x) is modeled by the L independent GPs, each
one of which has k(x,x′) as a kernel function. When we
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(a) (b)

Figure 2: Illustrative examples of contour plots the linear
utility function U(f) =

∑L
`=1 w`f`, where w` ≥ 0. The

plots (a) and (b) have different coefficients. In (a), the blue
point is the optimal in a sense of U , while the red point is the
optimal in (b). On the other hand, the green point can never
be the optimal point by any selection of the coefficients.

observe a set of t observations DGP = {(xi,yi)}ti=1,
the predictive distribution can be obtained as the posterior
p(f(x) | DGP), for which the well-known analytical calcu-
lation is available (see e.g., Williams and Rasmussen 2006).
Although we here use the independent setting for the L out-
puts, incorporating correlation among them is also possible
by using the multi-output GP (Alvarez et al. 2012).

3.2 Bayesian Modeling for Utility Function
The simplest choice of the utility function is a linear func-
tion U(f) =

∑L
`=1 w`f` with a weight parameter w` ≥ 0.

However, in a linear utility function, depending of the shape
of the Pareto front, it is possible that: 1) there exists a Pareto
optimal solution that cannot be identified by any weight pa-
rameters, and 2) only one objective function with the highest
weight is exclusively optimized (Figure 2). To incorporate
the DM preference, variety of scalarization functions have
been studied (Bechikh et al. 2015). We here mainly consider
the following Chebyshev scalarization function (CSF) (Gi-
agkiozis and Fleming 2015):

U(f(x)) = min

(
f1(x)

w1
, . . . ,

fL(x)

wL

)
, (2)

wherew = (w1, . . . , wL)> is a preference vector that satis-
fies

∑
`∈[L] w` = 1 and w` > 0. Figure 1 (b) is an illustra-

tion of CSF. In the MOO literature (Giagkiozis and Fleming
2015), it is known that for any Pareto optimal solution f?,
there exist a weighting vectorw under which the maximizer
x of (2) derives f? = f(x). For further discussion on the
choice of the utility function, see § 3.5.

Likelihood for Pairwise Comparison We define the like-
lihood of PC, inspired by the existing work on preference
learning of a GP (Chu and Ghahramani 2005). Suppose that
the DM prefers f (i) to f (i′), for which we write f (i) �
f (i′). We assume that the preference observation is gener-
ated from the underlying true utility U contaminated with
the Gaussian noise as follows:

f (i) � f (i′) ⇔ U(f (i)) + εi > U(f (i′)) + ε′i,

Figure 3: Assume that the DM requests that the direction of
f2 should be improved than f1 at f (i). This indicates that
the utility function should have larger increase when f (i)

increases along with the axis of f2 (the direction of the black
arrow) compared with the axis of f1 (the white arrow).

where εi, ε′i ∼ N(0, σ2
PC) is the Gaussian noise having the

variance σ2
PC. For a given set of n preference observations

{f i � f ′i}ni=1, the likelihood is written as

p({f (i) � f (i′)}ni=1|w)=

n∏
i=1

Φ

(
U(f (i))− U(f (i′))√

2σPC

)
,

(3)

where Φ is the cumulative distribution function of the stan-
dard Gaussian distribution.

Likelihood for Improvement Request For a given f (i) =

(f
(i)
1 , . . . , f

(i)
L )>, if the DM considers f (i)

`i
has a higher pri-

ority to be improved more than other f (i)
`′i

, we write `i � `′i.
In IR, an observation is a dimension `i for which the DM
requires improvement most strongly among L dimensions.
This can be considered that we observe L − 1 relations
`i � `′i for `′i ∈ [L] \ `i.

The observation `i � `′i for f (i) can be interpreted that the
gradient of U(f (i)) with respect to f (i)

`i
is larger than those

of f (i)
`′i

. In other words, the direction of f (i)
`i

should improve

the preference U(f (i)) more rapidly than the direction of
f

(i)
`′i

(Figure 3). Let g`(f) = ∂U(f)
∂f` be the `-th dimension of

the gradient of U(f). Then, the event `i � `′i is character-
ized through the underlying gradient g`(f) as follows:

`i � `′i ⇔ g`i(f
(i))− g`′i(f

(i)) > ei

where ei ∼ N(0, σ2
IR) is the observation noise with the

variance σ2
IR. Suppose that we have m observations {`i �

`′i}mi=1 in total. The likelihood is

p({`i � `′i}mi=1 | w) =
m∏
i=1

Φ

(
g`i(f

(i)))− g`′i(f
(i))√

2σIR

)
.

(4)

Prior and Posterior We employ the Dirichlet distribution
p(w) = 1

B(α)

∏L
i=1 w

αi−1
i as a prior distribution of w be-

cause it has the constraint ‖w‖1 = 1, where B is the beta
function andα = [α1, . . . , αL]> is a parameter. LetDpre be
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BO

DM

p(w | Dpre) p(w | D ′
pre)

Figure 4: A schematic illustration of the procedure of the
proposed framework. x(t) is the selected x at the t-th itera-
tion of BO. The DM can add the preference information at
any time point. A pair in a PC observation is represented by
the two triangles with the same color (e.g., for the orange-
colored N and H, N � H). Each black arrow represents the
direction that the DM requests to improve. In D′pre, the DM
newly adds the request for the improvement on the horizon-
tal direction.

a set of PC and IR observations. The posterior distribution
of w is written as

p(w | Dpre) ∝ p(w)

× p({f (i) � f (i′)}ni=1 | w) p({`j � `′j}mj=1 | w).
(5)

3.3 Acquisition Functions
Bayesian Optimization of Utility Function Our purpose
is to identify x that maximizes U(f(x)), for which we em-
ploy the well-known expected improvement (EI) criterion of
Bayesian optimization. Let xbest = argmaxx∈Θ U(f(x))
be the best x in the set Θ consisting of xi contained in the
observed set DGP. The acquisition function that selects the
next x is defined by

αEI(x) = Ef(x),w [max {U (f(x))− U (f(xbest)) , 0}] .
(6)

Unlike the standard EI in BO, the expectation is jointly taken
over f(x) and w, and the current best term U(f(xbest))
is also random variable. Therefore, the analytical calcula-
tion of (6) is difficult and we employ the Monte Carlo (MC)
method to evaluate (6). The objective function f(x) can be
easily sampled because it is represented by the GPs The
parameter of utility function w is sampled from the poste-
rior (5), for which we use the standard Markov chain MC
(MCMC) sampling. Note that since both of f and U are
represented as Bayesian models, uncertainty with respect to
both the objective functions and the user preference are in-
corporated in our acquisition function.

Active Learning for Utility Function Estimation We
also propose an active learning (AL) acquisition function for
efficiently estimating the utility function U . Since PC- and
IR- observations require interactions with the DM, accurate
preference estimation with the minimum observations is de-
sired. Our AL acquisition function is based on the Bayesian
active learning framework called BALD (Bayesian Active
Learning by Disagreement) (Houlsby et al. 2011). BALD is
an information theoretic approach in which the next query

is selected by maximizing mutual information (MI) between
an observation and a model parameter.

We here describe the case of PC only because for IR, al-
most the same procedure is derived. We need to select a pair
f and f ′ that efficiently reduces the uncertainty ofw. Let

zPC =

{
1 if f � f ′,
0 if f ′ � f

be the indicator of the preference given by the DM. Our AL
acquisition function is defined by the MI between zPC and
w:

MI(zPC;w) = H[zPC]− Ew[H[zPC | w]], (7)

whereH represents the entropy. Houlsby et al. (2011) clarify
that this difference of the entropy representation results in a
simpler computation than other equivalent representations of
MI.

For the first term of (7), since zPC follows the Bernoulli
distribution, we have

H[zPC] =
∑

zPC∈{1,0}
p(zPC) log p(zPC).

Unfortunately, p(zPC), in which w is marginalized, is dif-
ficult to evaluate analytically. On the other hand, the condi-
tional distribution p(zPC | w) is easy to evaluate as shown in
(3). Therefore, we employ a sampling based approximation

p(zPC) ≈
∑
w∈W

p(zPC | w)/|W|,

whereW is a set ofw generated from the posterior (5) (e.g.,
by using the MCMC sampling). For the second term of (7),
the same sample setW can be used as

Ew[H[zPC | w]]

≈
∑
w∈W

∑
zPC∈{1,0}

p(zPC | w) log p(zPC | w)

|W| .

3.4 Algorithm
The procedure of the proposed framework is shown in Fig-
ure 4 and Algorithm 1 (MBO-APL: Multi-objective BO
with Active Preference Learning). Note that although Al-
gorithm 1 also only considers the case of PC, the procedure
for IR is almost the same. BO and the preference learning
can be in parallel because the training of the GPs and w are
independent. When the DM adds the preference data (PC
and/or IR) into Dpre, the posterior of w is updated. The up-
dated posterior can be immediately used in the next acqui-
sition function calculation of BO (in Figure 4, for example,
p(w | D′pre) can be used to determine x(t+2)).

3.5 Selection on Utility Function
Although we mainly focus on (2) as a simple example of the
utility function, different utility functions can be used in our
framework. For example, in MOO literature, the following
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Algorithm 1: Proposed Method

1: procedure MBO-APL
2: Run ACTIVE-PREF-LEARNING in background
3: for t = 1, . . . do
4: Fit GPs to DGP = {(xi,yi)}ti=1
5: xt+1 ← argmaxx αEI(x)

using current p(w | Dpref)
6: Observe (xt+1,yt+1)

and DGP ← DGP ∪ (xt+1,yt+1)
7: end for
8: end procedure
9: procedure ACTIVE-PREF-LEARNING

10: for t = 1, . . . do
11: Update p(w | Dpref) with the current Dpref

12: f ,f ′ ← argmaxf ,f ′ MI(zPC;w)
13: Query zPC to the DM and add the result toDpref

14: end for
15: end procedure

augmented CSF is often used (Bechikh et al. 2015; Hakanen
and Knowles 2017):

U(f(x)) = min
`∈[L]

f`(x)− f ref
`

w`
+ ρ

∑
`∈[L]

f`(x)− f ref
`

w`
,

where ρ > 0 is an augmentation coefficient (usually a small
constant) and f ref

` is a reference point. If the DM can di-
rectly provide the reference point, f ref

` is a fixed constant,
while it is also possible that we estimate f ref

` as a random
variable from PC and IR. The second term avoids weakly
Pareto optimal solutions. Using the augmented CSF in our
framework is easy because the posterior ofw (and f ref

` ) can
be derived by the same manner described in § 3.2.

Instead of parametric models such as CSF, nonparametric
approaches are also applicable to defining the utility func-
tion. Since our problem setting is the maximization of f(x),
the utility function U should be monotonically increasing.
Therefore, for example, the GP regression with the mono-
tonicity constraint (Riihimäki and Vehtari 2010) can be used
to build a utility function with high flexibility. However, be-
cause of its high flexibility, the GP model may require a
larger number of observations to estimate the DM prefer-
ence accurately. In this sense, the simple CSF-based and the
GP-based approaches are expected to have trade-off relation
about their flexibility and complexity of the estimation.

4 Related Work
In the MOO literature, incorporating the DM preferences
into exploration algorithms have been studied. For exam-
ple, a hyper-rectangle or a vector are often used to repre-
sent the preference of the DM in the objective function space
(e.g., Hakanen and Knowles 2017; Palar et al. 2018; He et al.
2020; Paria, Kandasamy, and Póczos 2020). Another exam-
ple is that Abdolshah et al. (2019) represent the DM pref-
erence by the order of importance for the objective func-
tions. In particular, Paria, Kandasamy, and Póczos (2020)
use a similar formulation to our approach in which CSF with
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Figure 5: Estimation error of w.

the random parameters can be used for the utility function.
These approaches do not estimate a model of the DM prefer-
ence, by which the DM needs to directly specify the detailed
requirement of the performance though it is often difficult
in practice. For example, in the case of the hyper-rectangle,
there may not exist any solutions in the specified region by
the DM.

The interactive preference estimation with MOO has also
been studied mainly in the context of evolutionary algo-
rithms (Hakanen et al. 2016). For example, Taylor et al.
(2021) combine preference learning with the multi-objective
evolutionary algorithm. On the other hand, to our knowl-
edge, combining an interactively estimated Bayesian pref-
erence model and the multi-objective BO has not been stud-
ied, though multi-objective extension of BO has been widely
studied (e.g., Emmerich 2005; Hernández-Lobato, Hoffman,
and Ghahramani 2014). Astudillo and Frazier (2020) and
Jerry Lin et al. (2022) consider a different preference based
BO in which the DM can have an arbitrary preference over
the multi-dimensional output space, meaning that the prob-
lem setting is not MOO anymore (in the case of MOO,
the preference should be monotonically increasing). Further,
these studies do not discuss the IR-type supervision.

5 Experiments

We perform two types of experiments. First, in § 5.1, we
evaluate the performance of our MI-based active learning
(described in § 3.3) that efficiently learns the preference
model (2). Next, in § 5.2, we evaluate the performance of
the entire framework of our proposed method, for which
we used a benchmark function and two settings of hyper-
parameter optimization of machine learning models. In all
experiments, the true utility function (the underlying true
DM preference) is defined by (2) with the parameter wtrue,
determined through the sampling from the Dirichlet distri-
bution (α = (2, . . . , 2)>). GPs for f(x) employs the RBF
kernel. Preference observations are generated with the noise
variance σPC = σIR = 0.1. Due to the space limitation,
some experimental details are omitted. See our extended
pre-print (Ozaki et al. 2023) for further details and additional
results.
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Figure 6: Simple regret on benchmark functions.

5.1 Preference Learning with Active Query
Selection

We evaluate estimation accuracy of the preference parameter
w. Our MI-based acquisition function and the random query
selection were compared. We iteratively added the prefer-
ence information of the DM. At each iteration, a PC obser-
vation and an IR observation are provided.

Figure 5 shows the results. In each plot, the horizon-
tal axis is the iteration and the vertical axis is werror =
1
T

∑T
t=1 ‖wtrue − wt‖2, where w1, . . . ,wT are sampled

from the posterior (T = 1000). The results are the average of
10 runs. We can see that the error rapidly decreases, and fur-
ther, active learning obviously improves the accuracy. Even
when L = 10, werror decreased to around 0.1 only with a
few tens of iterations. Since werror becomes 0 only when
the posterior generates the exact wtrue T times, we consider
werror ≈ 0.1 is sufficiently small to accelerate our prefer-
ence based BO (note that ‖wt‖1 = 1).

5.2 Utility Function Optimization
We evaluate efficiency of the proposed method by evaluating
the simple regret on the true utility function Uwtrue

:

max
x

Uwtrue
(f(x))− max

x∈Θs

Uwtrue
(f(x)),

where Θs is a set of x already observed. This evaluates the
difference of the utility function values between the true op-
timal (the first term) and the current best value (the second
term). The true parameterwtrue was determined through the

sampling from the Dirichlet distribution. We assume that
a PC- and an IR- observation are obtained when the DM
provides the preference information. The results are shown
in the average and the standard error of 10 runs. The per-
formance was compared with the three methods: random
selection (Random), a random scalarization-based multi-
objective BO, called MOBO-RS (Paria, Kandasamy, and
Póczos 2020), and multi-attribute BO with preference-based
expected improvement acquisition function, called EI-UU
(Astudillo and Frazier 2020). In hyper-parameter optimiza-
tion experiments, we also compare our proposed methods
with two other multi-objective BO methods, Expected Hy-
pervolume Improvement (EHI) (Emmerich and Klinkenberg
2008) and Max-value Entropy Search for Multi-objective
Bayesian Optimization (MESMO) (Belakaria, Deshwal, and
Doppa 2019). Further, we evaluate the performance of EI (6)
with the fixed ground-truth preference vectorwtrue, referred
to as EI with True Preference (EI-TP). We interpret EI-TP as
a best possible baseline for our proposed method, because it
has a complete DM preference from the beginning.

We used benchmark functions and two problem set-
tings of hyper-parameter optimization for machine learning
models (cost-sensitive learning and fairness-aware machine
learning).

Benchmark Function We use well-known MOO bench-
mark functions, called DTLZ1 and DTLZ3 (Deb et al.
2005). In both the functions, the input and output dimen-
sions are d = 3 and L = 3. In addition, we use bench-
mark functions called Kursawe (Kursawe 1990), and Schaf-
fer2 (Schaffer et al. 1985), in which (d, L) = (3, 2) and
(d, L) = (1, 2), respectively. We prepare 1000 input candi-
dates by taking grid points in each input dimension. At every
iterations, a PC- and an IR- observation are selected by ac-
tive learning, and the posterior of w is updated.

The results are shown in Figure 6. We see that our pro-
posed method can efficiently reduce simple regret compared
with Random, MOBO-RS (which seeks the entire Pareto
front), and EI-UU. On the other hand, the proposed method
and EI-TP show similar performance, which indicates that
the posterior of w provides sufficiently useful information
for the efficient exploration.

We further provide results on other benchmark functions,
sensitivity evaluation to the number of samplings in EI, and
ablation study on PC and IR in Appendix E.2, F.3, and F.1,
respectively, in Ozaki et al. (2023).

Hyper-parameter Optimization for Cost-sensitive
Learning In many real-world applications of multi-class
classification, a DM may have different preferences over
each type of misclassifications (Elkan 2001; Li et al. 2021).
For example, in a disease diagnosis, the miss-classification
cost for the disease class can be higher than those of the
healthy class. In learning algorithms, the cost balance
are often controlled by hyper-parameters. In this section,
we consider a hyper-parameter optimization problem for
L-class classification models considering the importance of
each class.

For the hyper-parameter optimization of cost-sensitive
learning, we used LightGBM (Ke et al. 2017) and neural net-
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Figure 7: Simple regret on the hyper-parameter optimization
for cost-sensitive learning.
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Figure 8: Simple regret on the hyper-parameter optimization
for fairness-aware learning.

works. For LightGBM, x is defined by the L-dimensional
‘class weight’ parameters, which controls the importance
of each class. In the case of neural networks, the weighted
cross-entropy loss

∑L
i=1−λiyi log ŷi was used, where λi >

0 is the class weight, yi ∈ {0, 1} is one-hot encoding of the
label and ŷi is the corresponding class predicted probability.
In this case, x consists of λ1, . . . , λL. The objective func-
tions f(x) are defined by recall of each class on the valida-
tion set (e.g. f1 represents recall of the first class, f2 repre-
sents recall of the second class, ...). The datasets for the clas-
sifiers are Waveform-5000 (L = 3) and CIFAR-10 (L = 10)
(Krizhevsky, Hinton et al. 2009). For Waveform-5000, we
used LightGBM. For CIFAR-10, we used Resnet18 (He
et al. 2016) pre-trained by Imagenet (Deng et al. 2009). The
input dimension (dimension of hyper-parameters) equals to
the number of classes, i.e., d = L.

Figure 7 shows the results. Overall, we see that the same
tendency with the case of benchmark function optimiza-
tion. The proposed method outperformed MOBO-RS, EHI,
MESMO, and EI-UU, and was comparable with EI-TP. In
the CIFIR-10 dataset, which has the highest output dimen-
sion (10), EI-TP was better than the proposed method. When
the output dimension is high, the preference estimation can

be more difficult, but we still obviously see that the pro-
posed method drastically accelerates the exploration com-
pared with searching the entire Pareto front. Note that EHI
is not applied to the CIFAR-10 dataset because it is difficult
to calculate the acquisition function values due to the high
output dimension.

Hyper-parameter Optimization for Fair Classification
As another example of preference-aware hyper-parameter
optimization, we consider the fairness in classification prob-
lem. Although specific sensitive attributes (e.g. gender, race)
should not affect the prediction results for fairness, gener-
ally high fairness degrades the classification accuracy (Za-
far et al. 2017). Zafar et al. (2017) propose the classifica-
tion method which maximizes fairness under accuracy con-
straints, and it has a hyper-parameter named γ to control
trade-off between fairness and accuracy.

We consider the hyper-parameter optimization with 2-
dimensional objective functions consisting of the level of
fairness (p%-rule (Biddle 2006)) and accuracy of the classi-
fication. We use the logistic regression classifier proposed in
Zafar et al. (2017) and the hyper-parameter γ which control
trade-off between fairness and accuracy is equivalent to x
(d = 1). For two datasets, Adult (Becker and Kohavi 1996)
and Bank (Moro, Rita, and Cortez 2012), we prepare 201
candidates of x by taking grid points in [0, 1]. The data pre-
processing and some other settings comply with Zafar et al.
(2017).

Figure 8 shows the results. The proposed method finds a
better or the best solution in short iteration compared with
other methods, especially for the Adult dataset.

6 Conclusion
We proposed a multi-objective Bayesian optimization (BO)
method in which the preference of the decision maker (DM)
is adaptively estimated through a human-in-the-loop man-
ner. The DM’s preference is represented by a Chebyshev
scalarization based utility function, for which we assume
that pairwise comparison (PC) and improvement request
(IR) are provided as weak supervisions by a decision maker
(DM). Our acquisition function is based on the well-known
expected improvement by which uncertainty of both the
original objective functions and the preference model can
be incorporated. We further proposed a mutual information
based active learning strategy that reduces the interaction
cost with the DM. Empirical evaluation indicated that our
proposed method accelerates the optimization on several
benchmark functions, and applications to hyper-parameter
optimization of machine learning models are also shown.
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