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Abstract

Very few methods for hybrid federated learning, where clients
only hold subsets of both features and samples, exist. Yet,
this scenario is extremely important in practical settings. We
provide a fast, robust algorithm for hybrid federated learn-
ing that hinges on Fenchel Duality. We prove the conver-
gence of the algorithm to the same solution as if the model
is trained centrally in a variety of practical regimes. Fur-
thermore, we provide experimental results that demonstrate
the performance improvements of the algorithm over a com-
monly used method in federated learning, FedAvg, and an ex-
isting hybrid FL algorithm, HyFEM. We also provide privacy
considerations and necessary steps to protect client data.

1 Introduction
Federated learning (FL) has quickly become a top choice
for privacy-aware machine learning (Li et al. 2020a). The
basic premise of federated learning is that a group of ex-
ternal nodes called clients hold parts of the data and a cen-
tral server coordinates the training of a model representa-
tive of these data but without directly accessing the data
itself. This requires the clients to train local models, then
pass some information (such as model weights) to the server
where the server aggregates the clients’ contributions to up-
date its global model. The goal of FL is to build algorithms
that result in convergence to a similar objective value as the
centralized case, as if the server had access to all data di-
rectly, and perform well over various problem settings with
minimal communication overhead.

Federated learning can be classified based on how the data
are gathered on the clients. In horizontal FL, each client
holds a subset of the samples that contain all of their fea-
tures. In vertical FL, each client holds all of the samples but
only a subset of each sample’s features. These are both spe-
cial cases of hybrid FL where each client contains a subset
of the samples and a subset of the features.

Hybrid FL is less studied than the case of horizontal and
vertical FL, but it is still extremely important in practice. An
example of hybrid FL is the case where multiple hospitals
wish to build a central model but cannot directly share data
between hospitals due to privacy laws. Each hospital has a
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subset of all of the patients, and since each patient may have
visited multiple hospitals, the patient’s features are split be-
tween many hospitals. The same situation exists in banking
for fraud detection with explainable convex models (Lv et al.
2021).

Another example is in telecommunication where each
tower collects data from cell devices that ping the tower.
Each cell tower has different specifications and thus collects
different measurements than other towers. Therefore, each
tower collects different features, and since not every user
connects to every tower and most users interact with multi-
ple different towers, the samples are also split across towers.

We introduce a primal-dual algorithm, Hybrid Federated
Dual Coordinate Ascent (HyFDCA), that solves convex
problems in the hybrid FL setting. This algorithm extends
CoCoA, a primal-dual distributed optimization algorithm in-
troduced by Jaggi et al. (2014) and Smith et al. (2017), to the
case where both samples and features are partitioned across
clients. We provide privacy considerations that ensure that
client data cannot be reconstructed by the server. Next, we
provide proofs of convergence under various problem set-
tings including special cases where only subsets of clients
are available for participation in each iteration. The algo-
rithm and associated proofs can also be utilized in the dis-
tributed optimization setting where both samples and fea-
tures are distributed. As far as we know, this is the only
algorithm in the doubly distributed case that has guaran-
teed convergence outside of block-splitting ADMM devel-
oped by (Parikh and Boyd 2014). ADMM has not been de-
signed with FL in mind, but the algorithm has no data shar-
ing. On the down side, block-splitting ADMM requires full
client participation which makes it much more restrictive
than HyFDCA and essentially impractical for FL. HyFDCA
is also the only known hybrid FL algorithm that converges to
the same solution as if the model is trained centrally. Finally,
we provide extensive experimental results that demonstrate
the performance improvements of HyFDCA over FedAvg, a
commonly-used FL algorithm (McMahan et al. 2017), and
HyFEM, a hybrid FL algorithm (Zhang et al. 2020).

Our main contributions in this work are as follows:

1. Provide HyFDCA, a provably convergent primal-dual al-
gorithm for hybrid FL. The proofs cover a variety of FL
problem settings such as incomplete client participation.
Furthermore, the convergence rates provided for the spe-
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cial cases of horizontal and vertical FL match or exceed
the rates of popular FL algorithms designed for those par-
ticular settings.

2. Provide the privacy steps that ensure privacy of client
data in the primal-dual setting. These principles apply to
future efforts in developing primal-dual algorithms for
FL.

3. Demonstrate that HyFDCA empirically outperforms
both FedAvg and HyFEM in the loss function value and
validation accuracy across a multitude of problem set-
tings and datasets. We also introduce a hyperparameter
selection framework for FL with competing metrics us-
ing ideas from multiobjective optimization.

In Section 2, we discuss work that has been done in the
vertical and horizontal settings and the lack of algorithms
that exist for the hybrid setting. We then highlight the im-
provements that HyFDCA provides in theory and practice.
In Section 3, we introduce HyFDCA and privacy consid-
erations that protect client data. In Section 4, we analyze
convergence of HyFDCA and provide convergence results
in a variety of practical FL problem settings. In Section 5,
we present experimental results on three separate data sets
and compare the performance of HyFDCA with FedAvg and
HyFEM.

2 Related Work
There has been significant work in developing primal-dual
algorithms using Fenchel Duality for distributed optimiza-
tion where samples are distributed. One of the leading
frameworks on this front is CoCoA. However, these algo-
rithms do not properly handle data that is distributed over
both samples and features. This extension from partitioning
data over a single axis direction to both directions is not triv-
ial, especially in the primal-dual case where now multiple
clients share different copies of the same dual variables and
primal weights. D3CA is the first algorithm to extend Co-
CoA to the case where data are distributed over samples and
features (Nathan and Klabjan 2017). However, D3CA has
no convergence analysis and has convergence problems in
practice with small regularization constant. HyFDCA fixes
these issues with D3CA and is altered to ensure that the pri-
vacy requirements for FL are met. Block-splitting ADMM is
the only other algorithm that can handle distributed samples
and features. However, as (Nathan and Klabjan 2017) show,
the empirical performance of block-splitting ADMM is poor
and full client participation is needed. HyFDCA and the as-
sociated proofs, while focused on the federated setting, can
also be utilized in the distributed optimization setting where
both samples and features are distributed.

There has been substantial work in horizontal FL where
samples are distributed across clients but each sample con-
tains the full set of features. One of the most commonly
used algorithms is FedAvg which, in essence, computes
model weights on each client using stochastic gradient de-
scent (SGD), then averages together these model weights in
an iterative fashion. FedAvg can be naively extended to the
hybrid FL case by computing client weights locally, as be-
fore, then concatenating the model weights and averaging

at the overlaps. From now on, this modified version of Fed-
Avg is what is meant when referencing FedAvg in the hy-
brid FL setting. Empirical results in Section 5 demonstrate
that this naive extension is not satisfactory, and focused algo-
rithms with satisfactory performance specifically for hybrid
FL must be developed. The convergence rate of HyFDCA
matches FedAvg (Li et al. 2020b) in the special case of hor-
izontal FL. Furthermore, HyFDCA does not require smooth
loss functions unlike FedAvg, making the convergence re-
sults more flexible.

FedDCD is an approach for using dual methods for FL,
but is limited to the regime of horizontal FL (Fan, Fang, and
Friedlander 2022). The extension to hybrid FL is not clear as
now multiple clients hold copies of the same dual variables
and the local coordinate descent that FedDCD performs is no
longer valid. Furthermore, the proof results given for Fed-
DCD require smooth loss functions which eliminate many
common loss functions such as hinge loss. Our convergence
results do not require smoothness of the loss functions. Fed-
DCD does not mention privacy considerations in the case
that the mapping between primal and dual variables can be
inverted to reveal information about the data held on clients.
We address these privacy concerns with suitable homomor-
phic encryption steps in HyFDCA. We note that to the best
of our knowledge, HyFDCA is the only primal-dual algo-
rithm that can handle vertical FL.

There has been substantially less work in vertical FL
where each client has all of the samples but only a subset of
the features. Some approaches exist such as FedSGD (ver-
tical variant) and FedBCD which rely on communicating
relevant information between clients to compute stochastic
gradients despite only holding a portion of the features (Liu
et al. 2022). However, these algorithms do not work in the
hybrid FL case we are exploring. Furthermore, they require
communication of this gradient information between clients
instead of just passing information through the server. In
addition, the convergence rate of HyFDCA in the special
case of vertical FL is faster than FedBCD, demonstrating
that while HyFDCA is designed to handle hybrid FL, it also
enjoys improvements over existing methods in the special
cases of horizontal and vertical FL.

To the best of our knowledge, there is only one other al-
gorithm that focuses on hybrid FL, HyFEM. This algorithm
uses a feature matching formulation that balances clients
building accurate local models and the server learning an
accurate global model. This requires a matching regularizer
constant that must be tuned based on user goals and results
in disparate local and global models. Furthermore, the con-
vergence results provided for HyFEM only claim conver-
gence of the matching formulation not of the original global
problem and require complete client participation. In other
words, though HyFEM can converge to a solution, it may
be substantially worse or simply divergent with incomplete
client participation than if the same data are used to train a
model centrally as we show in Section 5.2. This work is sub-
stantially different than our approach which uses data on lo-
cal clients to build a global model that converges to the same
solution as if the model is trained centrally. Properly tun-
ing the matching constant takes significant computational re-
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sources which is not a problem for HyFDCA. Furthermore,
due to HyFEM not solving the original optimization prob-
lem, we show that the empirical results for convex problems
are significantly worse than HyFDCA.

3 The Primal-Dual Algorithm
The goal is to solve the following minimization problem that
consists of a strongly convex, L2 regularizer and a sum of
convex loss functions

min
w∈RM

P (w) =
λ

2
||w||2 + 1

N

N∑
i=1

li(w
Txi) (1)

where w are the weights of the model, M is the total number
of features, N is the total number of samples, λ is the reg-
ularization parameter that influences the relative importance
of regularization, xi is the i-th sample, and li are sample
specific loss functions. This class of problems encompasses
many important models in machine learning including logis-
tic regression and support vector machines (SVM).

Our approach takes advantage of the Fenchel Dual of this
problem, which is defined as

max
α∈RN

D(α) = −λ

2
|| 1

λN

N∑
i=1

αixi||2−
1

N

N∑
i=1

l∗i (−αi) (2)

where α are the dual variables and l∗ is the convex conju-
gate of l. There is a convenient relationship between opti-
mal primal, w∗, and dual variables, α∗, defined by w∗ =
1

λN

∑N
i=1 α

∗
i xi. When li are convex, we have that P (w∗) =

D(α∗).

3.1 The HyFDCA Algorithm
The main idea of HyFDCA, shown in Algorithm 1, is that
each client performs a local dual coordinate ascent to find
updates to the dual variables. This local method utilizes the
inner product of the primal weights and the data, and thus a
secure way of finding this inner product across clients that
contain sections of each sample is provided in Algorithm 2.
The details of the local dual method are shown in Algorithm
3. These dual updates from clients are averaged together and
then used to update the global dual variables held on the
server. These updated dual variables are then sent back to
the clients where they each compute their local contribution
of the primal weights. These are then sent back to the server
and aggregated. The steps to compute these global primal
weights are shown in Algorithm 4. A diagram of HyFDCA
that demonstrates each step is shown in Figure 1.

We introduce some additional notation. Set Bn is the set
of clients that contain sample n; Ik is the set of samples
available on client k; Mk is the set of features available to
client k; and Km is the set of clients that contain feature m.
Furthermore, xk,i is the subset of sample i available to client
k, and xk,i,m is the value of feature m of sample i located
on client k.

Due to the mapping between primal and dual variables,
w = 1

λN

∑N
i=1 αixi = Aα, care needs to be taken to pre-

vent the reconstruction of A from iterates of w and α. The

Algorithm 1: HyFDCA

Initialize α0 = 0, w0 = 0, and ŵ0 = 0.
Set ipk,i = 0 for every client k and i ∈ Ik.
for t=1,2,...T do

Given Kt, the subset of clients available in the given
iteration
Find Kt = {k : k ∈ Kt and k /∈ Kt−1}
Send enc(αt

0) to clients k ∈ Kt

PrimalAggregation(Kt)
SecureInnerProduct(Kt)
for all clients k ∈ Kt do

∆αt
k=LocalDualMethod(αt−1

k , wt−1
k , xT

i w
t−1
0 )

Send all enc( γt

|Bn|∆αt
k) to server

end for
for n=1,2,...,N do

enc(αt
0,n) = enc(αt−1

0,n ) +
∑

b∈Bn
enc( γt

|Bn|∆αt
b,n)

end for
Send enc(αt

0) to clients k ∈ Kt and clients decrypt
PrimalAggregation(Kt)
SecureInnerProduct(Kt)

end for

server could collect wt and αt for many t and construct a
system of linear equations W = AA where W collects it-
erates of w in its columns and A collects iterates of α in
its columns. This would allow for the solution of A or the
approximate solution using least-squares if A is not square.
For this reason, either α or w should be encrypted to prevent
this reconstruction of data. Because w is used by the central
model for inference on new data, we choose to encrypt α
using homomorphic encryption. All aggregations are done
on the server, and the server knows the sample IDs of each
client through private set intersection (Lu and Ding 2020).

Homomorphic encryption is a technique for encrypting
data and preserving certain arithmetic operations in the
encrypted form (Gentry 2009). For example, in additive
homomorphic encryption the following holds: enc(X) +
enc(Y ) = enc(X + Y ). There are numerous algorithms
for homomorphic encryption and new, faster algorithms are
invented frequently. For example, the Paillier cryptosystem
takes on average 18.882 ms for encryption, 18.865 ms for
decryption, and 0.054 ms for addition in the encrypted state
(Sidorov, Wei, and Ng 2022). HyFDCA uses homomorphic
encryption in several steps to ensure that the server can per-
form aggregation operations but not reconstruct the underly-
ing data that belongs to the clients.

In addition, the communication of the inner product infor-
mation poses a similar problem. If we define bti = (wt)Txi,
then the server could collect iterates of b and w and form a
system of linear equations B = Wxi where W collects w
in its rows and B is a column vector of the corresponding
bi. This system could then be solved for xi. For this reason,
the inner product components passed to the server from the
clients must be encrypted using additive homomorphic en-
cryption. So far, we have addressed the server reconstructing
data, however, another concern is the clients themselves re-
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constructing data from other clients. It is important that the
clients are only sent the dual variables corresponding to the
samples on that client and only the primal weights corre-
sponding to the features on that client. With this information
they would only be able to reconstruct their local data.

The dual and primal variables are sent between the server
and clients at the beginning and end of each iteration to
ensure that clients are not using stale information because
they may not participate in every iteration. Several round-
trip communications (RTC) are necessary for the difficult
case of hybrid FL with incomplete client participation. For
the easier cases of horizontal and vertical FL explored in
previous works, HyFDCA can be simplified without chang-
ing the framework, resulting in less communications. For
horizontal FL with complete client participation, SecureIn-
nerProduct and the first instance of PrimalAggregation can
be removed which reduces each iteration to two RTC. Fur-
thermore, if we assume complete client participation, then
the first instances of SecureInnerProduct and PrimalAggre-
gation can be removed and each iteration only has three RTC
even in the hybrid FL setting.

Algorithm 2: SecureInnerProduct

Input: Set of available clients K
for all clients k ∈ K do

for all samples i ∈ Ik do
Client k computes local xT

k,iw
t
k and encrypts this

scalar using additive homomorphic encryption re-
sulting in enc(xT

k,iw
t
k).

ipk,i = enc(xT
k,iw

t
k).

Send ipk,i to server.
end for

end for
for all samples i = 1, 2, ..., N do

Server computes enc(xT
i w

t) =
∑

k∈Bi
ipk,i.

Send to all clients k ∈ K all values enc(xT
i w

t) for i ∈
Ik.

end for
Clients decrypt enc(xT

i w
t
0) to obtain xT

i w
t
0.

Algorithm 3: LocalDualMethod

Input: αt−1
k , wt−1

k , xT
i w

t
0

D is a set of sample indices available to client k of size H
randomly chosen without replacement
Let ∆αt

k,i = 0 for all i ∈ Ik
for i ∈ D do

Let ut−1
i ∈ ∂li(x

T
i w

t−1
0 )

sk,i = argmaxs∈[0,1]{−l∗i (−(αt−1
k,i + sckγt(u

t−1
i −

αt−1
k,i ))) − sckγt(w

t−1)Txi(u
t−1
i − αt−1

k,i ) −
γ2
t

2λ (sck(u
t−1
i − αt−1

k,i ))
2}

∆αt
k,i = sk,ick(u

t−1
k,i − αt−1

k,i )
end for
Return ∆αt

k.

Algorithm 4: PrimalAggregation

Input: Set of available clients K
for all clients k ∈ K do

for all features m ∈ Mk do
ŵk,m =

∑
i∈Ik

αt
k,ixk,i,m

end for
end for
Update global ŵ0,k,m from available local ŵk,m

for all features m = 1, 2, ...,M do
wt

0,m = 1
λN

∑
k∈Km

ŵ0,k,m

end for
Send wt

0 to clients k ∈ K

Figure 1: Flowchart of HyFDCA. Each vertical arrow repre-
sents a communication of some information between clients
and the server.

4 Convergence Analysis
We provide convergence proofs for HyFDCA in various
problem settings. The proofs are in the Supplementary Ma-
terials of the extended paper (Overman, Blum, and Klab-
jan 2023). We also note that no assumptions of IID data are
made in these proofs, so they apply for non-IID settings.

4.1 Hybrid Federated Setting with Complete
Client Participation

We first make the following assumptions of our problem set-
ting.
Assumption 4.1. Loss functions li ≥ 0 are convex and L-
Lipschitz functions. This is satisfied by many commonly-
used loss functions in practice including logistic regression
and hinge loss (support vector machines).
Assumption 4.2. The set of clients, K, available at a given
outer iteration is the full set of clients.
Assumption 4.3. The data are split among clients in the
particular way shown in Figure 2. The only assumption we
make is that each sample on a particular client has the same
features (the data are rectangular).
Theorem 4.4. If Assumptions 4.1-4.3 are met, γt = 1, and
ck = Nk/N where Nk is the number of samples on client
k, then Algorithm 1 results in the bound on the dual subop-
timality gap, E[εtD] ≤ (1 − stH

N )E[εt−1
D ] +

s2tH
N G, for any

st ∈ [0, 1] and G ≤ 2L2

λ , where εtD = D(α∗)−D(αt).
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Figure 2: Diagram of a possible data partitioning that fol-
lows Assumption 4.3 for the convergence proof. Each client
is shaded in a different color.

Next, we find the bound on the suboptimality gap in terms
of the number of iterations.
Theorem 4.5. If H

N ≤ 1, then for every t ≥ t0 we have

E[εtD] ≤ 2G

1 + H
2N (t− t0)

(3)

where t0 = max{0, ⌈log(E[ε0D]/G)⌉}. This upper bound
clearly tends to zero as t → ∞.

The requirement of H ≤ N places an upper limit on the
number of inner iterations that can be performed before ag-
gregation across clients.

4.2 Horizontal Federated Setting with Random
Subsets of Available Clients

The case of incomplete client participation for hybrid FL
is difficult because of the presence of stale variables due
to clients not participating in some iterations affecting sev-
eral steps of the algorithm. More details on where these
stale variables impact the algorithm are given in Section
4.3. The PrimalAggregation and SecureInnerProduct steps
before and after the local updates alleviate these issues in
practice, but problems still exist for convergence proofs. For
this reason, we first approach the incomplete client partici-
pation case for horizontal FL where this problem does not
exist.
Assumption 4.6. Data are split among clients such that ev-
ery client has the full set of features but only a subset of
samples (definition of horizontal FL). Furthermore, we as-
sume that each client holds N/K samples, where K is the
total number of clients.
Assumption 4.7. Each outer iteration, a random subset of
clients is chosen to participate and perform updates. Each
client has an equal probability of being chosen and the mean
number of clients chosen for a given outer iteration is P .
Thus the mean fraction of clients participating in a given
outer iteration is P

K .
Theorem 4.8. If Assumptions 4.1,4.6, and 4.7 are met, γt =
1, ck = 1, and PH

N ≤ 1, then Algorithm 1 results in the dual
suboptimality gap for every t ≥ t0 as follows

E[εtD] ≤ 2G

1 + PH
2N (t− t0)

(4)

where t0 = max{0, ⌈log(E[ε0D]/G)⌉} and G ≤ 2L2

λ . This
upper bound clearly tends to zero as t → ∞.

The requirement on PH ≤ N similarly places a limit on
the amount of inner iterations that can be performed before
aggregation. This result demonstrates that HyFDCA enjoys
a convergence rate of O( 1t ) which matches the convergence
rate of FedAvg. However, our convergence proof does not
assume smooth loss functions whereas FedAvg does. This
makes our convergence results more flexible in the horizon-
tal FL setting.

4.3 Vertical Federated Setting with Incomplete
Client Participation

We now explore the case of incomplete client participation
for the vertical federated setting. We change the assump-
tions for how subsets of clients are available for participation
in Assumption 4.10 because random client subsets impose
some issues for vertical FL. If a particular αi is updated,
then w0 needs to be updated using local data on each client.
If one of these clients cannot provide its contribution to w0,
then these primal weights will be stale and thus (wt−1

0 )Txi

used in LocalDualMethod will also be stale. We require a
limit on the maximum number of iterations that a particular
client can go without being updated. The reason this cannot
be extended to the hybrid case is that if wt−1

0 is updated,
then a particular client will require (wt−1

0 )Txi for any i, but
now that samples are also split across clients, it may not be
able to access all components of (wt−1

0 )Txi if some of those
clients are not available. This is unlike the vertical FL case
where all samples belong to each client.
Assumption 4.9. Data are split among clients such that ev-
ery client has the full set of samples but only a subset of
features (definition of vertical FL).
Assumption 4.10. All of the clients are partitioned into
C ≥ 2 sets where each subset of clients has Q/C clients
(we assume that Q mod C = 0). Let B1,B2, ...,BC be
this partition. We then assume that client subsets are active
(participating in a particular outer iteration) in the cyclic
fashion. Thus the sequence of active clients is defined as
B1,B2, ...,BC ,B1, ...,BC ,...
Theorem 4.11. If Assumptions 4.1, 4.9, and 4.10 are met,
H
N ≤ 1, ck = 1, and γt =

1
t , then Algorithm 1 results in the

following bound on the dual suboptimality gap for t ≥ C

E[εtD] ≤ J1 + J2(ln(t− C + 1) + 1)

tH/N

where J1 = CH/NE[εC−1
D ], J2 = 2HL2(C+1)

Nλ [(C − 1)4 +

2(C − 1)2 + 1], and E[εC−1
D ] is bounded by a constant with

the standard assumption that li(0) ≤ 1. This converges to
zero as t → ∞.

It is clear that for fastest convergence in an asymptotic
sense we want H/N to be large, however, this would also in-
crease the magnitude of J1 and J2 which would in turn slow
convergence in early iterations when t is small and J1 and
J2 dominate the bound. Furthermore, if we take H/N = 1,
then HyFDCA exhibits O( log t

t ) convergence whereas Fed-
BCD exhibits a slower O( 1√

t
) convergence rate and requires
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full client participation. Thus, to the best of our knowledge
HyFDCA exhibits the best convergence rates for vertical FL
even with partial client participation.

We emphasize that Theorems 4.5-4.11 demonstrate that
HyFDCA in a particular federated setting converges to the
same optimal solution as if all of the data are collected on
a centralized device and trained with a convergent method.
Furthermore, Theorems 4.8 and 4.11 demonstrate that in the
horizontal and vertical FL cases, HyFDCA is still guaran-
teed to converge to the optimal solution when only a subset
of clients participate in each iteration. The convergence rates
for the special cases of horizontal and vertical FL match or
exceed the convergence rates of existing FL algorithms in
those settings.

5 Experimental Results
We investigate the performance of HyFDCA on several
datasets and in several different problem settings (number of
clients and percentage of available clients). These different
problem settings cover the vast number of different environ-
ments seen in practice.

Three datasets are selected. MNIST is a database of hand-
written digits where each sample is a 28x28 pixel image
(Deng 2012). News20 binary is a class-balanced two-class
variant of the UCI “20 newsgroup” dataset, a text classifica-
tion dataset (Chang and Lin 2011). Finally, Covtype binary
is a binarized dataset for predicting forest cover type from
cartographic variables (Chang and Lin 2011).

We use the hinge loss function for li in experiments. A
practical variant of LocalDualMethod, shown in Algorithm
5, is used for experiments. Line 6 of Algorithm 5 has a
closed form solution of ∆αt

k,i = yi(max(0,min(1, λN(1−
xT
i w

t−1
0 )+yiα

t−1
k,i )))−αt−1

k,i , where yi is the class label for
the i-th sample. Furthermore, the second occurrence of Se-
cureInnerProduct in Algorithm 1 is omitted for experiments
because it does not improve empirical performance and in-
curred more communication cost.

Algorithm 5: LocalDualMethod (Practical Variant)

Input: αt−1
k , wt−1

k , xT
i w

t
0

D is a set of sample indices available to client k of size H
randomly chosen without replacement
Let ∆αt

k,i = 0 for all i ∈ Ik
for i ∈ D do

Find ∆αt
k,i that maximizes −l∗i (−(αt−1

k,i + ∆αt
k,i)) −

λN
2 (||wt−1

0 ||2 + 2∆αt
k,i

λN (wt−1
0 )Txi + (

∆αt
k,i

λN )2)

αt−1
k,i = αt−1

k,i +∆αt
k,i

end for
Return ∆αt

k.

5.1 Implementation
The exact details of the implementation are provided in the
Supplementary Materials. Data are inherently non-IID in the
hybrid FL case because each client stores different sections
of the feature space. We emphasize that the experiments are

performed in the hybrid setting where both samples and fea-
tures are gathered across different clients. Homomorphic en-
cryption is not actually performed; instead, published time
benchmarks of homomorphic encryption is used to estimate
the encryption time penalty which is added to the overall
wall time. The regularization parameter, λ, is found by tun-
ing via a centralized model where the value of λ that resulted
in the highest validation accuracy is employed. The resulting
choices of λ are λMNIST = 0.001, λNews20 = 1 × 10−5,
and λcovtype = 5× 10−5.

Hyperparameter tuning for federated learning is difficult
because there are many competing interests such as mini-
mizing iterations to reach a suitable solution while also min-
imizing the amount of computation performed on clients due
to computational limits on common clients such as smart-
phones. Therefore, we frame this as a multiobjective op-
timization problem where an optimal solution must be se-
lected from the Pareto-Optimal front. We chose to use Gray
Relational Analysis to solve this (Wang and Rangaiah 2017).
The exact metrics used are provided in the Supplementary
Materials. For FedAvg, we tuned the number of local itera-
tions of SGD performed as well as a, b in the learning rate
γt =

a
b+

√
t
. For HyFEM, we tune the aforemetnioned Fed-

Avg hyperparameters in addition to µ which balances the
two losses. For HyFDCA, we only need to tune the number
of inner iterations. In each problem setting, the number of
clients and fraction of available clients had different hyper-
paremeters tuned for that particular problem.

The plots shown use the relative loss function which is de-
fined as PR =

P (wt)−P∗
C

P∗
C

where P ∗
C is the optimal loss func-

tion value trained centrally. The x-axis of Figure 3 shows rel-
ative outer iteration because each dataset requires a different
number of outer iterations, but the number of iterations for
each algorithm is kept consistent. Further plotting details are
provided in the Supplementary Materials.

5.2 Results
We now discuss the results of the experiments. Due to the
large number of problem settings we investigate and the var-
ious metrics, only selected plots are displayed in the main
body. Complete results are included in the Supplementary
Materials.

Figure 3 compares the performance of HyFDCA with
FedAvg and HyFEM over a variety of settings with respect
to outer iterations. Similarly, Supplementary Materials Fig-
ure 1 compares performance with respect to time includ-
ing communication latency and homomorphic encryption
time. These plots correspond to varying levels of difficulty.
Intuitively, a large number of clients with a low fraction
of participating clients is more difficult than a small num-
ber of clients with a high fraction of participating clients.
Figure 3 and Supplementary Materials Figure 1 show that
HyFDCA converges to a lower relative loss function value
and a higher validation accuracy in 69 of 72 comparisons
made. The poor performance of FedAvg demonstrates that
algorithms designed specifically for horizontal or vertical FL
cannot simply be lifted to the hybrid case. HyFEM’s simi-
larly poor performance demonstrates that its main utility is
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Figure 3: Comparison of HyFDCA, FedAvg, & HyFEM over constant number of outer iterations across client-fraction settings.

Figure 4: Average time costs of components of each outer iteration for HyFDCA, FedAvg, and HyFEM.

in non-convex problems with significant overlap in feature
spaces across clients and where the matching of nonlinear
embeddings can be utilized. Moreover, these results are in-
dicative that, though HyFEM can converge, it may result in a
substantially worse solution than if trained centrally. Finally,
though HyFDCA is a significantly more complex algorithm,
HyFDCA often achieves better loss and generalization in a
shorter amount of both outer iterations and time even ac-
counting for encryption and latency.

Figure 4 shows the average time cost breakdown per outer
iteration of the three algorithms. HyFDCA takes more time
per outer iterations than FedAvg or HyFEM. However, the
most expensive component of HyFDCA is the homomorphic
encryption cost. This is expected to significantly decrease in
the future as homomorphic encryption algorithms become
much faster due to heavy research efforts. In addition, vari-
ous methods can be employed to decrease the homomorphic
encryption costs such as parallelizing the encryption/decryp-

tion of the vectors or choosing whether to encrypt the primal
or the dual variables depending on the dataset.

While HyFDCA is a more complicated algorithm involv-
ing more RTC and homomorphic encryption, the clear em-
pirical performance gains over FedAvg and HyFEM make
it superior in 69 of 72 comparisons examined. Specifically,
HyFDCA converges to a lower loss value and higher valida-
tion accuracy in less overall time in 33 of 36 comparisons
examined and 36 of 36 comparisons examined with respect
to the number of outer iterations. Lastly, HyFDCA only re-
quires tuning of one hyperparameter, the number of inner it-
erations, as opposed to FedAvg (which requires tuning three)
or HyFEM (which requires tuning four). In addition to Fed-
Avg and HyFEM being quite difficult to optimize hyperpa-
rameters in turn greatly affecting convergence, HyFDCA’s
single hyperparameter allows for simpler practical imple-
mentations and hyperparameter selection methodologies.
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