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Abstract

Deep Reinforcement Learning (DRL) has achieved remark-
able advances in sequential decision tasks. However, recent
works have revealed that DRL agents are susceptible to slight
perturbations in observations. This vulnerability raises con-
cerns regarding the effectiveness and robustness of deploy-
ing such agents in real-world applications. In this work,
we propose a novel robust reinforcement learning method
called SortRL, which improves the robustness of DRL poli-
cies against observation perturbations from the perspective
of the network architecture. We employ a novel architecture
for the policy network that incorporates global l∞ Lipschitz
continuity and provide a convenient method to enhance pol-
icy robustness based on the output margin. Besides, a training
framework is designed for SortRL, which solves given tasks
while maintaining robustness against l∞ bounded perturba-
tions on the observations. Several experiments are conducted
to evaluate the effectiveness of our method, including clas-
sic control tasks and video games. The results demonstrate
that SortRL achieves state-of-the-art robustness performance
against different perturbation strength.

Introduction
Recently, Deep Reinforcement Learning (DRL) has
achieved breakthrough success in various application
scenarios, including video games (Mnih et al. 2015), recom-
mender systems (Afsar, Crump, and Far 2022), and robotics
control (Lee et al. 2020). These achievements typically
rely on the Deep Neural Networks (DNNs) as function
approximators for their strong expressive power, which
enables the end-to-end learning of policies in complex
environments with high-dimension state spaces, such as
images observations (Hornik, Stinchcombe, and White
1989; Mnih et al. 2015; Kaiser et al. 2020).

However, DNNs typically lack robustness due to their
highly non-linear and black-box nature, resulting in unrea-
sonable and unpredictable outputs when inputs are perturbed
slightly (Madry et al. 2018; Yuan et al. 2019). Similarly, re-
cent works have shown that typical DNN-based policies are
also vulnerable to imperceptible perturbations on observa-
tions, also known as “state adversaries”, which are prevalent
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in application scenarios such as sensor noise (Zang et al.
2019) and adversarial attacks (Huang et al. 2017). These
slight perturbations can deceive typical DRL policies eas-
ily, leading to irrational and unpredictable decisions by the
agent (Fischer et al. 2019; Zhang et al. 2020b; Oikarinen
et al. 2021; Zhang et al. 2021b; Sun et al. 2022). This may
affect the policy effectiveness and user experience, even
causing safety issues, especially in safety-critical applica-
tions such as autonomous driving and robot manipulation
tasks (Zhao et al. 2022). The lack of robustness to obser-
vation perturbations renders applications of DRL unreliable
and risky, thereby limiting potential applications in real-
world scenarios.

In the recent decade, plenty of works have been pro-
posed to certify and enhance the robustness of DRL poli-
cies against perturbations on observations. Some researchers
propose various robust policy regularizers to enforce pol-
icy smoothness, i.e. the policy output similar actions given
similar observations (Zhang et al. 2020b; Shen et al. 2020;
Oikarinen et al. 2021). For example, Shen et al. (Shen et al.
2020) propose a smoothness-inducing regularizer inspired
by Lipschitz continuity to encourage the policy function to
become smooth, which improves sample efficiency and pol-
icy robustness in continuous control tasks. Despite the excel-
lent performance achieved, the incorporation of a smooth-
ness regularizer may hinder the expressive power of the pol-
icy network, resulting in a partial compromise of optimality
and performance, especially in tasks with strong perturba-
tion strength (Wu and Vorobeychik 2022).

Another approach to enhancing the policy robustness is
based on attacking and adversarial samples (Mandlekar et al.
2017; Pattanaik et al. 2018; Zhang et al. 2021b). For in-
stance, Pattanaik et al. (Pattanaik et al. 2018) improve pol-
icy robustness utilizing adversarial observations found by
gradient-based attackers. Recently, Zhang et al. (Zhang et al.
2021b) propose Alternating Training with Learned Adver-
saries (ATLA), which trains an RL adversary online with the
agent policy alternately. ALTA significantly improves the
policy robustness in continuous control tasks. Despite the
excellent robustness, these methods require training extra
attackers or finding adversaries for the observations, which
incurs additional computational and sampling costs, thereby
limiting their practical applications.

In this work, we propose a novel method called SortRL to
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improve the robustness of DRL policies against observation
perturbations from the perspective of the network architec-
ture. We introduce a new policy network architecture based
on an l∞ Lipschitz Neural Network called SortNet. Besides,
we introduce a straightforward and efficient method to esti-
mate the lower bound of policy robustness utilizing the out-
put margin. Additionally, we design a training framework
for SortRL based on Policy Distillation (Rusu et al. 2016),
which enables the agent to solve the given tasks success-
fully while addressing robustness requirements against ob-
servation perturbations. Several experiments on classic con-
trol tasks and video games are conducted to evaluate the per-
formance of SortRL, which demonstrates the state-of-the-art
performance of our method.

Our main contributions are listed as follows:

• We propose a novel robust reinforcement learning
method called SortRL, which enhances the policy robust-
ness against observation perturbations. To our knowl-
edge, this is the first work to address this issue from the
perspective of network architecture.

• We employ a novel policy design base on an l∞ Lips-
chitz Neural Network. A convenient method is provided
to evaluate and improve policy robustness based on the
output margin.

• We design a training framework for SortRL to make a
trade-off between optimality and robustness, which en-
ables the agent to solve given tasks while addressing ro-
bustness requirements.

• Experiments on classic control tasks and video games
are conducted, which demonstrate that SortRL achieves
state-of-the-art robustness against different perturbation
strength, especially in tasks with strong perturbations.

Related Work
Robust Reinforcement Learning
Robust Reinforcement Learning aims to improve the pol-
icy robustness against perturbations in the Markov Deci-
sion Process (MDP). Thus, there exist various interpreta-
tions of robustness in the RL context, including the robust-
ness against action perturbations (Tessler, Efroni, and Man-
nor 2019), dynamics uncertainty (Pinto et al. 2017; Huang
et al. 2022), domain shift (Muratore, Gienger, and Peters
2019; Ju et al. 2022), and reward perturbations (Wang, Liu,
and Li 2020; Eysenbach and Levine 2021).

This work focuses on the policy robustness against ob-
servation perturbations, which has been actively researched
recently (Fischer et al. 2019; Zhang et al. 2020b; Oikari-
nen et al. 2021; Liang et al. 2022). Several works improve
robustness against observation perturbations utilizing vari-
ous policy regularizers, which enforce the policy to make
similar decisions under similar observations (Zhang et al.
2020b; Shen et al. 2020; Oikarinen et al. 2021). For instance,
Shen et al. (Shen et al. 2020) design a policy regularizer
for continuous control tasks inspired by the Lipschitz con-
tinuity, which improves sample efficiency and robustness to
adversarial perturbations. Some researchers attempt to en-
force policy robustness utilizing adversarial samples gen-

erated through active attacks (Mandlekar et al. 2017; Pat-
tanaik et al. 2018; Zhang et al. 2021b; Liang et al. 2022).
Zhang et al. (Zhang et al. 2021b) propose ATLA, which im-
proves the policy robustness in continuous control tasks by
training the policy with an RL adversary online together.
However, Korkmaz (Korkmaz 2021, 2023) points out that
adversarially trained DRL policies may still be sensitive to
policy-independent perturbations. Several researchers study
the certified robustness of DRL policies (Fischer et al. 2019;
Everett, Lütjens, and How 2021). Some methods such as
CROP (Wu et al. 2022) and Policy Smoothing (Kumar,
Levine, and Feizi 2022) are proposed to analyze robustness
certificates for trained DRL policies.

Despite the significant achievements, there are still some
limitations to be addressed. For instance, they may suffer
from high computational costs (Zhang et al. 2021b) and
struggle to cope with strong perturbations, such as pertur-
bations strength greater than 5/255 in video games (Wu and
Vorobeychik 2022). In this work, we propose a new robust
RL method called SortRL. To our knowledge, this is the first
method to improve the robustness of RL policies against ob-
servation perturbations from the perspective of network ar-
chitecture.

Robustness of Neural Networks
Standard neural networks are vulnerable to small perturba-
tions to the inputs (Szegedy et al. 2014; Madry et al. 2018),
especially given high dimensional inputs such as images.
In order to improve the robustness of DNN, various meth-
ods are proposed, including randomized smoothing (Salman
et al. 2019) and relaxation-based approaches (Gowal et al.
2018; Zhang et al. 2020a). Besides, some researchers have
found that the Lipschitz continuity is significant to the net-
work robustness (Tsuzuku, Sato, and Sugiyama 2018; Anil,
Lucas, and Grosse 2019; Li et al. 2019). Recently, several
Lipschitz Neural Networks (LNN) have been proposed to
enhance robustness, including Spectral Norm (Gouk et al.
2021), GroupSort (Anil, Lucas, and Grosse 2019), and l∞-
distance neuron (Zhang et al. 2022a, 2021a). In this work,
we construct the policy network based on an l∞ 1-Lipschitz
Neural Network called SortNet (Zhang et al. 2022b), which
provides Lipschitz property, strong expressive power, and
high computation efficiency.

Methodology
Problem Formulation
To study policy robustness under observation perturba-
tions, we formulate the decision process based on the state-
adversarial Markov Decision Process (SA-MDP) (Zhang
et al. 2020b). In this work, an SA-MDP M̃ is defined as <
S,A, P,R, γ, ρ, ν >, where S is the state space, A denotes
the action space, P (s′|s, a) = Pr(st+1 = s′|st = s, at = a)
denotes the transition probability, R : S × A × S → R de-
notes the reward function, γ ∈ [0, 1] denotes discount fac-
tor, and ρ(s) = Pr(s0) is the distribution of initial states.
π : S → Pr(A) is a stationary policy, which is trained to
maximize the cumulative reward.
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Different from typical MDPM, there exists an adversary
ν(s) : S → Pr(S) in SA-MDP M̃, which adds perturba-
tions to the agent’s observations. Each time the agent ob-
tains perturbed observation ŝ ∼ ν(s) and makes the decision
a ∼ π(·|ŝ). Therefore, the value function of policy π under
ν adversary is given as follows:

Ṽπ◦ν(s) = Eŝt∼ν(st),at∼π(ŝt)

[ ∞∑
t=0

γtrt+1|s0 = s

]
. (1)

In this work, we focus on RL tasks with discrete ac-
tion spaces against l∞ bounded perturbations, i.e. ν(s) ∈
B∞ϵ (s), where B∞ϵ (s) = {ŝ| ∥ŝ − s∥∞ ≤ ϵ} denotes the
“neighbors” of the clean state s. The ϵ ≥ 0 is an impor-
tant parameter determining the strength of the adversary. A
larger value of ϵ indicates a stronger adversary, which in turn
requires a higher level of policy robustness. Thus, the policy
π can be trained by solving the following optimization prob-
lem:

max
π

min
ν

Es∼ρ

[
Ṽπ◦ν(s)

]
s.t. ∥ŝ− s∥∞ ≤ ϵ, ∀s ∈ S, ŝ ∼ ν(s).

(2)

Problem Transformation
We are required to solve a minimax optimization problem
as described in Eq. (2). However, finding the optimal adver-
sary ν∗(s) = argminν Ṽπ◦ν(s) for each state st is NP-hard,
which is computationally and sample expensive (Oikarinen
et al. 2021). To address this issue, we try to reformulate the
problem in this section.
Theorem 1. Given a typical MDP M, corresponding SA-
MDP M̃ with an adversary ν(s) ∈ B∞

ϵ (s), and a policy π,
Vπ(s) and Ṽπ◦ν(s) denote the value functions inM and M̃
accordingly. We have:

max
s∈S
{Vπ(s)−min

ν
Ṽπ◦ν(s)}

≤ αmax
s∈S

max
ν

√
DKL(π(s), π(ŝ)),

(3)

where α =
√
2
[
1 + γ

(1−γ)2

]
max(s,a,s′) |R(s, a, s′)| is a

constant independent of the policy, ŝ ∼ ν(s) denotes per-
turbed observation, and DKL(·, ·) denotes KL-divergence.

The proof is given in Appendix A.1 according to (Achiam
et al. 2017) and (Zhang et al. 2020b). Theorem 1 indicates
that the performance loss of the policy π under the optimal
adversary ν∗ is bounded by the KL divergence between the
action distributions. Therefore, in order to minimize the per-
formance loss of π against the observation adversary, we can
minimize the DKL illustrated in Eq. (3) during training. One
possible approach is constructing policy regularizers based
on DKL, such as LKL = Es [maxν DKL (π (s) , π (ŝ))] ,
which is minimized during training the policy. However,
finding the adversary argmaxν DKL (π (s) , π (ŝ)) for each
state s is still computationally expensive. Besides, policy
regularization may hinder the expressive power of the policy
network, resulting in the sacrifice of optimality and perfor-
mance. In order to address these issues, we introduce the

robust radius of policies and incorporate the Lipschitz con-
tinuity into the policy network.
Definition 1. (Robust radius of policies) Given a stationary
policy π, the robust radius of π at state s is defined as the
radius of the largest l∞ ball centered at s, in which π does
not change its decision. The formulation is shown as follows:

R(π, s) = inf
π(s′)̸=π(s),s′∈S

∥s′ − s∥∞. (4)

As described in Definition 1, the robust radius of policy
π is designed to evaluate policy robustness against observa-
tion perturbations quantitatively. We can obtain the follow-
ing formulation based on Theorem 1:

∀s, R(π, s) ≥ ϵ =⇒ ∀s, min
ν

Ṽπ◦ν(s) ≥ Vπ(s), (5)

which can be proved utilizing Eq. (3) and Eq. (4). The de-
tailed proof is given in Appendix A.2. The Eq. (5) implies
that, the policy π can resist all attacks from ν without any
degradation in performance when the robust radius is big
enough. Therefore, the original problem Eq. (2) can be re-
formulated as the following equation:

max
π

Es∼ρ [Vπ(s)]

s.t. R(π, s) ≥ ϵ, ∀s ∈ S.
(6)

Note that solving problem Eq. (6) removes the requirement
of finding the optimal adversary ν∗ compared to Eq. (2).

SortRL Policy Networks
The problem described in Eq. (6) involves computing the
robust radius of policy π accurately. However, this task is
particularly challenging for typical DNN-based policies due
to the high computational cost (Zhai et al. 2019; Zhang et al.
2021a). In this section, we design a novel policy network
utilizing the architecture called SortNet (Zhang et al. 2022b)
to address this issue with the Lipschitz property.

We utilize a function gπ : S → R|A| to evaluate the score
of each action a ∈ A based on the perturbed state ŝ obtained
by the agent. gπ is composed of M -layer fully-connected
SortNet (Zhang et al. 2022b). Given a perturbed state s,
x(0) = s denotes the input of gπ , and x

(l)
k denotes the k-

th unit in the l-th layer, which can be computed through the
following formulations:

x
(l)
k =

(
w(l,k)

)T
sort

(∣∣∣x(l−1) + b(l,k)
∣∣∣) ,

ω
(l,k)
i = (1− ρ)ρi−1, 1 ≤ l ≤M, 1 ≤ k ≤ dl,

(7)

where dl is the size of l-th network layer, ρ ∈ [0, 1) is a
hyper-parameter. sort(x) :=

[
x[1], · · · , x[d]

]T
, where x[k] is

the k-th largest element of x ∈ Rd. The final output gπ(s) =
−
(
x(M) + bout

)
. Afterward, the agent takes the best action

with the highest score:

π(a|s) := 1

(
a = argmax

ai

gπi (s)

)
, (8)

where 1(·) denotes the indicator function. The
{
b(l,k)

}
and

bout are network parameters which need to be optimized
during training.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14459



Definition 2. (Lipschitz Continuity) Given a function f :
Rn → Rm, if ∃K > 0, such that

∥f(x1)− f(x2)∥p ≤ K∥x1 − x2∥p, ∀x1, x2 ∈ Rn, (9)

then f is called K-Lipschitz continuous with respect to lp
norm, where K is the Lipschitz constant. Similarly, a neu-
ral network f : Rn → Rm is called l∞ 1-Lipschitz Neural
Network (LNN) if Eq. (9) holds with p = +∞ and K = 1.

Proposition 1. The score function gπ(s) is 1-Lipschitz con-
tinuous with respect to l∞ norm, i.e.

∥gπ(s1)− gπ(s2)∥∞ ≤ ∥s1 − s2∥∞ , ∀s1, s2 ∈ S. (10)

The detailed proof is given in Appendix A.3.

Theorem 2. Given a SortRL policy π described in Eq. (8),
the lower bound of the robust radius for π can be expressed
as follows:

R(π, s) ≥ 1

2
margin(gπ, s), ∀s ∈ S, (11)

where margin(gπ, s) denotes the difference between the
largest and second-largest action scores output by gπ at
state s.

The proof of Theorem 2 is given in Appendix A.4. This
theorem indicates that, ∀s ∈ S , if margin(gπ, s) ≥ 2ϵ, we
can obtain that π(s) = π(ŝ), ∀ŝ ∼ ν(s), i.e. the SortRL π
can resist attacks from any adversary ν ∈ B∞

ϵ (s). There-
fore, the optimization problem described in Eq. (6) can be
transformed as follows:

max
π

Es∼ρ [Vπ(s)]

s.t. π(a|s) = 1
(
a = arg max

ai∈A
gπi (s)

)
,

margin(gπ, s) ≥ 2ϵ, ∀s ∈ S.

(12)

Fortunately, the margin defined in Theorem 2 is easy to
calculate and can be directly obtained from the network out-
put. Thus, it is practical to improve the robustness of policy
π against observation perturbations by optimizing the mar-
gin of gπ .

SortRL Training Framework
In this section, we design a training framework for the pol-
icy network gπ to solve the problem illustrated in Eq. (12).
Different from typical DNNs, the output of each layer in gπ

is biased (always being non-negative) under random initial-
ization. The biases of each layer are accumulated, leading to
unstable or ineffective outputs of the network, which need
to be removed with per-layer normalization, i.e. x(l) ←
x(l) − E

[
x(l)

]
. The estimation of E

[
x(l)

]
is inaccessible

due to the distribution drift of input observations during the
training of typical DRL algorithms. More details are given
in Appendix B.2.

To address this issue, we introduce a new training pipeline
for gπ based on Policy Distillation (PD) (Rusu et al. 2016).
Firstly, given a task modeled as M̃, a DNN-based teacher
policy πT is trained in the typical MDP M utilizing arbi-
trary DRL algorithms, i.e. πT ← argmaxπ Es∼ρ [Vπ(s)].

An expert dataset D := {(s, a∗)} is constructed through in-
teraction between the teacher policy πT and the clean en-
vironment without adversary, where s and a∗ denote the
clean states and teacher actions correspondingly, i.e. a∗ =
argmaxa πT (a|s).

Afterward, a SortRL policy πS is constructed as the stu-
dent policy, which is trained to mimic the decisions of the
teacher policy πT , while maintaining robustness against per-
turbations. In this work, the πS is trained by minimizing the
following loss function on the expert dataset D:

LπS
=λE(s,a∗)∼D

[
LCE (gπ(s), a∗)

]
+ E(s,a∗)∼D

[
LRob (g

π(s), θ, a∗)
]
,

(13)

where λ ∈ R is a hyper-parameter. As described in Eq. (13),
the LCE(·, ·) denotes the cross-entropy loss, which is uti-
lized to improve the performance of πS in the typical MDP
M by mimicking the behaviors of the teacher policy πT .
The formulation of LCE(·, ·) is described as follows:

LCE(z, a
∗) = log

(∑
i

ezi

)
− za∗ , (14)

where z = gπ(s) denotes the action logits without SoftMax
normalization. The LRob utilized in Eq. (13) denotes robust-
ness loss designed based on the Hinge loss. The formulation
of LRob is given as follows:

LRob(z, θ, y) =

0, zy < max
i

zi or zy −max
i̸=y

zi > θ,

max
i̸=y

zi − zy, Otherwise,

(15)
where θ ∈ R+ is the hinge threshold hyper-parameter. De-
cisions made by πS with margins exceeding θ, or deviat-
ing from πT , are excluded from the robustness training. As
shown in Eq. (13), the LRob(z, θ, y) is utilized to improve
policy robustness by optimizing the margin(gπ, s) to sat-
isfy the requirement described in Eq. (6) and Eq. (12), i.e.
R(π, s) ≥ 1

2 margin(π, s) ≥ ϵ.
The parameter λ balances between LCE and LRob, corre-

sponding to the trade-off between optimality (nominal per-
formance of πS in typicalM) and robustness (performance
against observation perturbations in M̃). During the training
process, the value of λ is slowly decayed to achieve optimal
performance. Initially, we mainly focus on minimizing LCE

of πS to learn the decision-making process of πT . In the
later stages, a smaller value of λ is used to prioritize policy
robustness against observation perturbations. More details
including the pseudocode are given in Appendix B.

Experiment
In this section, to evaluate the performance of our method
compared to the existing methods, we conduct experiments
on the following three tasks:

a) Classic Control: Experiments on four classic control
tasks (Brockman et al. 2016) are conducted under differ-
ent perturbation strength, which aim to demonstrate that
SortRL improves the robustness of typical DRL policies.
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b) Video Games: Afterward, we compare SortRL with ex-
isting robust RL methods on six video games against ad-
versarial perturbations with 0 ≤ ϵ ≤ 5

255 . The purpose is
to evaluate the robustness of each method against pertur-
bations on high-dimension observations.

c) Video Games with Stronger Adversaries: In order
to evaluate the performance of our method against
stronger perturbations, we conduct experiments on video
games under adversaries with large strength ϵ > 5

255 ,
which is quite challenging and rarely studied in previous
works (Wu and Vorobeychik 2022).

In this work, all SortRL policies are trained with AdamW
optimizer (Loshchilov and Hutter 2018) on a single NVIDIA
RTX 3090 GPU.

Classic Control
Experimental Settings. In this experiment, four environ-
ments are utilized, including CartPole, Acrobot, Mountain-
Car, and LunarLander. The policy trained by PPO (Schul-
man et al. 2017) algorithm is utilized as the teacher πT . The
dataset D is constructed utilizing πT with 50K states and
corresponding teacher actions. The Projected Gradient De-
scent (PGD) (Madry et al. 2018) attacker is applied as the
adversary ν in this experiment. In each step, the observa-
tion is perturbed with untargeted l∞ PGD attacks with 10
steps. Each method is evaluated with different perturbation
strength ϵ ∈ [0.0, 0.2], and the episode rewards are recorded
to evaluate robustness.

Results and Analysis. The experiment results are given
in Fig. 1, where x-axis denotes ϵ value and y-axis denotes
episode rewards under perturbations. The mean episode re-
wards and standard errors are given at ϵ intervals of 0.02,
corresponding to curves and shades respectively.

As shown in Fig. 1, our method SortRL (orange) out-
performs PPO (blue) with higher rewards generally, espe-
cially on tasks with large perturbation strength ϵ > 0.1. The
episode rewards of both methods decrease as ϵ increases, but
SortRL decays much slower than PPO expert, which demon-
strates better robustness of our method. Besides, in some
nominal tasks (ϵ = 0.0), there exists a small performance
loss of our method compared to PPO, such as MountainCar
and LunarLander. This performance gap is reported and dis-
cussed in the previous studies (Liang et al. 2022). One possi-
ble explanation is that the robustness loss LRob encourages
the policy to become smoother and may harm the expres-
sive power to some extent, which is necessary and crucial
for nominal performance.

Video Games
Experimental Settings. In this experiment, we utilize six
video games listed as follows. Atari tasks (Bellemare et al.
2013): Freeway, RoadRunner, Pong, and BankHeist. Proc-
Gen tasks (Cobbe et al. 2020): Jumper and Coinrun. Teacher
policies are constructed utilizing DQN (Mnih et al. 2015)
and PPO (Schulman et al. 2017) for Atari and ProcGen
tasks accordingly. The dataset D is composed of 100k states
and corresponding teacher actions. To evaluate the robust-
ness, l∞-PGD attackers with 10 steps and different strength
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Figure 1: The experiment results on the classic control tasks.

ϵ ∈
{

1
255 ,

3
255 ,

5
255

}
are applied as the adversary ν in this

experiment. In each frame, the adversary ν performs untar-
geted attacks on the input observation, which cheats the pol-
icy to change decisions.

Baselines. We compare SortRL with the following rep-
resentative methods: (1) Standard DRL algorithms, includ-
ing DQN (Mnih et al. 2015), A3C (Mnih et al. 2016), and
PPO (Schulman et al. 2017). (2) RS-DQN (Fischer et al.
2019) designed with adversarial training and provably robust
training. (3) SA-DQN (Zhang et al. 2020b) regularizing pol-
icy networks based on convex relaxation. (4) WocalR (Liang
et al. 2022), which estimates and optimizes the worst-case
reward of the policy network under bounded attacks. (5) RA-
DIAL (Oikarinen et al. 2021), which trains policy networks
by adversarial loss functions based on robustness bounds.

Evaluation Metrics. (1) The episode reward against 10
steps PGD perturbations with ϵ ∈

{
1

255 ,
3

255 ,
5

255

}
, which

is widely used in previous works (Fischer et al. 2019; Zhang
et al. 2020b; Oikarinen et al. 2021). (2) Action Certifica-
tion Rate (ACR) (Zhang et al. 2020b), which is designed to
evaluate policy performance on certified robustness. ACR is
defined as the proportion of the actions during rollout that
are guaranteed unchanged with any adversary ν ∈ B∞ϵ . The
detailed computation process of ACR for SortRL is given in
Appendix D.2.

Results and Analysis. The experiment result are shown
in Table 1 (Atari) and Table 2 (ProcGen). As shown in the
tables, SortRL outperforms baseline methods and achieves
higher episode rewards on video game tasks with different
perturbation strength, demonstrating the effectiveness of our
approach. Take RoadRunner with ϵ = 5/255 as an instance,
SortRL achieves an episode reward of 40905 and outper-
forms existing state-of-the-art 31545 by 29.6%.

As shown in Fig. 2, to measure and analyze the perfor-
mance, we adopt the metric of average normalized score
to aggregate episode rewards across tasks. In detail, given
the episode reward Z, its normalized score is defined as

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14461



Task Model/Metric Episode Reward ACR (%)
ϵ 0 (nominal) 1/255 3/255 5/255 1/255

Freeway

DQN 33.9± 0.07 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0
RS-DQN 32.93 32.53 N/A N/A N/A
SA-DQN 30.0± 0.0 30.0± 0.0 30.05± 0.05 27.65± 0.22 100.0
WocaR-DQN 31.2± 0.4 31.2± 0.5 31.4± 0.3 21.1± 1.75 99.90
RADIAL-DQN 33.2± 0.19 33.35± 0.16 33.4± 0.13 29.1± 0.17 99.82
SortRL-DQN 33.91± 0.32 33.83± 0.48 33.94± 0.24 33.92± 0.33 99.94

Road
Runner

DQN 43390± 973 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0
A3C 34420± 604 31040± 2173 3025± 317 350± 93 0.0
RS-DQN 12106.67 5753.33 N/A N/A N/A
SA-DQN 45870± 1380 44300± 1753 20170± 1822 3350± 335 60.20
RADIAL-DQN 44495± 1165 44445± 1148 39560± 1621 23820± 942 99.42
WocaR-DQN 44156± 2279 44079± 2154 38720± 1765 3490± 1959 98.41
RADIAL-A3C 34825± 981 31960± 933 29920± 1496 31545± 1480 92.33
SortRL-DQN 43697± 1457 44596± 1070 39766± 1176 40905± 1249 99.98
DQN 21.0± 0.0 −21.0± 0.0 −21.0± 0.0 −20.85± 0.08 0.0
A3C 21.0± 0.0 21.0± 0.0 21.0± 0.0 −17.85± 0.33 0.0
RS-DQN 19.73 18.13 N/A N/A N/A
SA-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 −19.75± 0.1 100.0
WocaR-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 −20.7± 0.45 59.05
RADIAL-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 89.49
RADIAL-A3C 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 75.53

Pong

SortRL-DQN 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 100.0

Bank
Heist

DQN 1325.5± 5.7 29.5± 2.4 0.0± 0.0 0.0± 0.0 0.0
A3C 1109.0± 21.4 1102.5± 49.4 534.5± 58.2 115.0± 27.8 0.0
RS-DQN 238.66 190.67 N/A N/A N/A
SA-DQN 1237.6± 1.7 1237.0± 2.0 1213.0± 2.5 1130.0± 29.1 97.63
WocaR-DQN 1220± 12 1220± 3 1214± 7 1094± 20 96.75
RADIAL-DQN 1349.5± 1.7 1349.5± 1.7 1348± 1.7 1182.5± 43.3 98.17
RADIAL-A3C 1036.5± 23.4 975± 22.2 949± 19.5 712± 46.4 71.84
SortRL-DQN 1323.8± 6.9 1325.6± 6.5 1315.1± 5.8 1317.8± 7.2 99.69
SortRL-RADIAL 1342.8± 5.5 1340.8±4.7 1345.2± 4.9 1341.1± 5.1 99.93

Table 1: The experiment results on the Atari video games. The best results are boldfaced, while the second best ones are
underlined. The gray rows denote the most robust methods, selected based on the score Rϵ=0+

1
3

∑
ϵ Rϵ, where Rϵ is the mean

episode reward given perturbation strength ϵ. N/A denotes the authors have not released results, codes, or models.
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Figure 2: Normalized score on Atari tasks. Left: relative to
the human expert. Right: relative to nominal performance.

Z−Z0

Z1−Z0
∈ [0, 1], where Z0 denotes the reward of the ran-

dom policy, and Z1 denotes human reward or nominal re-
ward. As described in Fig. 2, the advantage of SortRL over
baseline methods increases as ϵ increases generally. As de-
scribed in the right figure, compared to the corresponding

nominal performance, our method only loses performance
less than 1.7% against ϵ = 5/255, while the state-of-the-
art RADIAL loses about 18%. Besides, the performance of
SortRL on ACR in Table 1 is also excellent, which is greater
than 99.6% in various tasks. These results demonstrate that,
compared to existing methods, SortRL achieves policy ro-
bustness with fewer sacrifices on the optimality and expres-
sive power of the policy network. This relies on the Lips-
chitz property at the network level and the maximization of
the robust radius in the training framework.

It is interesting that SortRL outperforms standard DRL
methods in some nominal tasks, such as Freeway, Jumper,
and Coinrun. This implies that robust training with suit-
able parameter settings may improve nominal performance
in some tasks. Besides, some methods achieve better perfor-
mance against perturbations than that in nominal environ-
ments, such as in the Coinrun task with both RADIAL and
SortRL methods. These interesting phenomena are also ob-
served in previous studies (Zhang et al. 2020b; Oikarinen
et al. 2021). One possible explanation is that most tasks pre-
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Task Model/Metric Episode Reward
ϵ Env. Type 0 (nominal) 1/255 3/255 5/255

Jumper

PPO Train 8.69± 0.11 6.61± 0.15 4.50± 0.16 3.42± 0.15
Eval 4.22± 0.16 3.90± 0.15 3.10± 0.15 3.15± 0.15

RADIAL-PPO Train 6.59± 0.15 6.70± 0.15 6.55± 0.15 6.83± 0.15
Eval 3.85± 0.15 3.93± 0.15 3.75± 0.15 3.59± 0.15
Train 9.10± 0.28 9.10± 0.29 9.10± 0.29 9.10± 0.29SortRL-PPO (Ours) Eval 4.65± 0.39 4.63± 0.39 4.68± 0.39 4.65± 0.39

Coinrun

PPO Train 8.31± 0.12 6.36± 0.15 4.19± 0.16 3.32± 0.15
Eval 6.65± 0.15 5.22± 0.16 3.58± 0.15 3.36± 0.15

RADIAL-PPO Train 7.12± 0.14 7.10± 0.14 7.19± 0.14 7.34± 0.14
Eval 6.66± 0.15 6.71± 0.15 6.71± 0.15 6.67± 0.15
Train 8.40± 0.37 8.51± 0.36 8.60± 0.35 8.41± 0.37SortRL-PPO (Ours) Eval 7.33± 0.44 7.70± 0.42 7.23± 0.45 7.20± 0.41

Table 2: The experiment results on the ProcGen video games.
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Figure 3: Experiment results on video games BankHeist and
Freeway with stronger adversaries (ϵ ≥ 5/255).

fer smooth policies, i.e. similar decisions given similar ob-
servations. However, policies trained by standard DRL are
suboptimal due to the non-smoothness property of the pol-
icy network, especially in tasks with high-dimension obser-
vations, such as ProcGen. Smoother policies and trajectories
with higher rewards may be found through robust training or
by adding perturbations to the observations.

Video Games with Stronger Adversaries
Experimental Settings In this experiment, the same
teacher policies and dataset D described in video games ex-
periments are utilized. In order to evaluate policy robust-
ness against stronger perturbations, we utilize larger strength
ϵ > 5/255. Besides, more attackers (Wu and Vorobey-
chik 2022) are utilized as adversaries ν in this experiment:
(1) PGD attacker with 30 steps. (2) FGSM attacks with
Random Initialization (RI-FGSM) (Wong, Rice, and Kolter
2019) (3) RI-FGSM-Multi: sample multiple random starts
for RI-FGSM, and choose the first sample which alters the
policy decision (4) RI-FGSM-Multi-T: sample multiple ran-
dom starts for RI-FGSM, and choose the sample which min-
imizes the estimated Q values among the samples.

Baselines and Evaluation Metrics Most baseline meth-
ods in this section are the same as the video games experi-

ments, including (1) SA-DQN and (2) RADIAL. In addition,
a new benchmark (3) Bootstrapped Opportunistic Adversar-
ial Curriculum Learning (BCL) (Wu and Vorobeychik 2022)
is utilized, which can enhance the robustness of existing ro-
bust RL methods under strong adversaries. BCL is an adver-
sarial curriculum training framework, and can be combined
with various robust RL methods, such as BCL-RADIAL and
BCL-MOS-AT.

Results and Analysis. The experiment results on the
BankHeist task with ϵ ∈

{
5

255 ,
10
255 ,

15
255

}
and Freeway task

with ϵ ∈
{

10
255 ,

15
255 ,

20
255

}
are illustrated in Fig. 3. As shown

in the figures, the x-axis denotes the ϵ value while the y-axis
denotes episode reward. More experiment results are given
in Appendix D.3.

As shown in Fig. 3, SortRL achieves state-of-the-art per-
formance compared to existing methods, especially in tasks
with strong perturbations with ϵ ≥ 15/255. Take the Free-
way task with ϵ = 20/255 as an instance, SortRL achieves
an episode reward of 27.2 and outperforms existing state-of-
the-art BCL-RADIAL (21.2) by approximately 28.3%. The
results demonstrate the excellent robustness of SortRL un-
der strong perturbation strength, which relies on the Lips-
chitz continuity of the policy network and the robust training
framework.

Conclusion
In this work, we propose a novel robust RL method called
SortRL, which improves the robustness of DRL policies
against observation perturbations from the perspective of
network architecture. We employ a new policy network
based on Lipschitz Neural Networks, and provide a con-
venient approach to optimizing policy robustness based on
the output margin. To facilitate training, we design a train-
ing framework based on Policy Distillation, which trains the
policy to solve given tasks while maintaining a suitable ro-
bust radius. Several experiments are conducted to evaluate
the robustness of our method, including control tasks and
video games with different perturbation strength. The exper-
iment results demonstrate that SortRL outperforms existing
methods on robustness.
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