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Abstract
We study the real-valued combinatorial pure exploration of
the multi-armed bandit (R-CPE-MAB) problem. In R-CPE-
MAB, a player is given d stochastic arms, and the reward of
each arm s ∈ {1, . . . , d} follows an unknown distribution
with mean µs. In each time step, a player pulls a single arm
and observes its reward. The player’s goal is to identify the
optimal action π∗ = arg max

π∈A
µ⊤π from a finite-sized real-

valued action set A ⊂ Rd with as few arm pulls as possi-
ble. Previous methods in the R-CPE-MAB require enumerat-
ing all of the feasible actions of the combinatorial optimiza-
tion problem one is considering. In general, since the size of
the action set grows exponentially large in d, this is almost
practically impossible when d is large. We introduce an algo-
rithm named the Generalized Thompson Sampling Explore
(GenTS-Explore) algorithm, which is the first algorithm that
can work even when the size of the action set is exponentially
large in d. We also introduce a novel problem-dependent sam-
ple complexity lower bound of the R-CPE-MAB problem,
and show that the GenTS-Explore algorithm achieves the op-
timal sample complexity up to a problem-dependent constant
factor.

Introduction
Pure exploration in the stochastic multi-armed bandit (PE-
MAB) is one of the important frameworks for investigating
online decision-making problems, where we try to identify
the optimal object from a set of candidates as soon as pos-
sible (Bubeck, Munos, and Stoltz 2009; Audibert, Bubeck,
and Munos 2010; Chen et al. 2014). One of the important
models in PE-MAB is the combinatorial pure exploration
task in the multi-armed bandit (CPE-MAB) problem (Chen
et al. 2014; Wang and Zhu 2022; Gabillon et al. 2016; Chen,
Gupta, and Li 2016; Chen et al. 2017). In CPE-MAB, we
have a set of d stochastic arms, where the reward of each
arm s ∈ {1, . . . , d} follows an unknown distribution with
mean µs, and a finite-sized action set A, which is a collec-
tion of subsets of arms with certain combinatorial structures.
The size of the action set can be exponentially large in d. In
each time step, a player pulls a single arm and observes a
reward from it. The goal is to identify the best action from
action set A with as few arm pulls as possible. Abstractly,
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the goal is to identify π∗, which is the optimal solution for
the following constraint optimization problem:

maximizeπ µ⊤π
subject to π ∈ A, (1)

where µ is a vector whose s-th element is the mean reward
of arm s and ⊤ denotes the transpose. One example of
the CPE-MAB is the shortest path problem shown in
Figure 1. Each edge s ∈ {1, . . . , 7} has a cost µs and A =
{(1, 0, 1, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1)}.
In real-world applications, the cost of each edge (road) can
often be a random variable due to some traffic congestion,
and therefore the cost stochastically changes. We assume
we can choose an edge (road) each round, and conduct a
traffic survey for that edge (road). If we conduct a traffic
survey, we can observe a random sample of the cost of the
chosen edge. Our goal is to identify the best action, which
is a path from the start to the goal nodes.

Although CPE-MAB can be applied to many models
which can be formulated as (1), most of the existing works
in CPE-MAB (Chen et al. 2014; Wang and Zhu 2022; Gabil-
lon et al. 2016; Chen et al. 2017; Du, Kuroki, and Chen
2021; Chen, Gupta, and Li 2016) assume A ⊆ {0, 1}d. This
means that the player’s objective is to identify the best action
which maximizes the sum of the expected rewards. There-
fore, although we can apply the existing CPE-MAB meth-
ods to the shortest path problem (Sniedovich 2006), top-
K arms identification (Kalyanakrishnan and Stone 2010),
matching (Gibbons 1985), and spanning trees (Pettie and
Ramachandran 2002), we cannot apply them to problems
where A ⊂ Rd, such as the optimal transport problem
(Villani 2008), the knapsack problem (Dantzig and Mazur
2007), and the production planning problem (Pochet and
Wolsey 2010). For instance, the optimal transport problem
shown in Figure 2 has a real-valued action set A. We have
five suppliers and four demanders. Each supplier i has si
goods to supply. Each demander j wants dj goods. Each
edge µij is the cost to transport goods from supplier i to
demander j. Our goal is to minimize

∑5
i=1

∑4
j=1 πijµij ,

where πij(≥ 0) is the amount of goods transported to de-
mander j from supplier i. Again, we assume that we can
choose an edge (road) each round, and conduct a traffic sur-
vey for that edge. Our goal is to identify the best action,
which is a transportation plan (matrix) that shows how much
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goods each supplier should send to each demander.
To overcome the limitation of the existing CPE-MAB

methods, Nakamura and Sugiyama (2023) has introduced a
real-valued CPE-MAB (R-CPE-MAB), where the action set
A ⊂ Rd. However, it needs an assumption that the size of
the action set A is polynomial in d, which is not satisfied
in general since in many combinatorial problems, the action
set is exponentially large in d. To cope with this problem,
one may leverage algorithms from the transductive linear
bandit literature (Fiez et al. 2019; Katz-Samuels et al. 2020)
for the R-CPE-MAB. In the transductive bandit problem, a
player chooses a probing vector v from a given finite set
X ⊂ Rd each round, and observes µ⊤v + ϵ, where ϵ is a
noise from a certain distribution. Her goal is to identify the
best item z∗ from a finite-sized set Z ⊂ Rd, which is de-
fined as z∗ = arg max

z∈Z
µ⊤z. The transductive linear bandit

can be seen as a generalization of the R-CPE-MAB since the
probing vectors are the standard basis vectors and the items
are the actions in the R-CPE-MAB. However, the RAGE al-
gorithm introduced in Fiez et al. (2019) has to enumerate all
the items in Z , and therefore, not realistic to apply it when
the size ofZ is exponentially large in d. The Peace algorithm
(Katz-Samuels et al. 2020) is introduced as an algorithm that
can be applied to the CPE-MAB even when the size of Z is
exponentially large in d, but it cannot be applied to the R-
CPE-MAB since its subroutine that determines the termina-
tion of the algorithm is only valid when Z ⊂ {0, 1}d.

In this study, we introduce an algorithm named the Gener-
alized Thompson Sampling Explore (GenTS-Explore) algo-
rithm, which can identify the best action in the R-CPE-MAB
even when the size of the action set is exponentially large in
d. This algorithm can be seen as a generalized version of the
Thompson Sampling Explore (TS-Explore) algorithm intro-
duced by Wang and Zhu (2022).

Additionally, we show novel lower bounds of the R-CPE-
MAB. One is written explicitly; the other is written implic-
itly and tighter than the first one. We introduce a hardness
measure H =

∑d
s=1

1
∆2

(s)

, where ∆(s) is named G-Gap,

which can be seen as a generalization of the notion gap
introduced in the CPE-MAB literature (Chen et al. 2014;
Chen, Gupta, and Li 2016; Chen et al. 2017). We show
that the sample complexity upper bound of the Gen-TS-
Explore algorithm matches the lower bound up to a factor
of a problem-dependent constant term.

Problem Formulation
In this section, we formally define the R-CPE-MAB model
similar to Chen et al. (2014). Suppose we have d arms, num-
bered 1, . . . , d. Assume that each arm s ∈ [d] is associated
with a reward distribution ϕs, where [d] = {1, . . . , d}. We
assume all reward distributions have an R-sub-Gaussian tail
for some known constant R > 0. Formally, if X is a ran-
dom variable drawn from ϕs, then, for all λ ∈ R, we have
E[exp(λX − λE[X])] ≤ exp(R2λ2/2). It is known that
the family of R-sub-Gaussian tail distributions includes all
distributions that are supported on [0, R] and also many un-
bounded distributions such as Gaussian distributions with

Figure 1: A schematic
of the shortest path
problem.

Figure 2: A schematic of the
optimal transport problem. One
candidate of π can be π =
2.5 0 0 0
1.0 2.5 0 0
0 2.0 1.5 0
0 0 1.5 0
0 0 2.0 2.5

 .

variance R2 (Rivasplata 2012). We denote by N (µ, σ2) the
Gaussian distribution with mean µ and variance σ2. Let
µ = (µ1, . . . , µd)

⊤ denote the vector of expected rewards,
where each element µs = EX∼ϕs

[X] denotes the expected
reward of arm s and ⊤ denotes the transpose. We denote by
Ts(t) the number of times arm s is pulled before round t, and
by µ̂(t) = (µ̂1(t), . . . , µ̂d(t))

⊤ the vector of sample means
of each arm before round t.

With a given ν, let us consider the following linear opti-
mization problem:

maximizeπ ν⊤π
subject to π ∈ C ⊂ Rd,

(2)

where C is a problem-dependent feasible region. For any ν ∈
Rd, we denote πν,C as the optimal solution of (2). Then, we
define the action set A as the set of vectors that contains
optimal solutions of (2) for any ν, i.e.,

A =
{
πν,C ∈ Rd | ∀ν ∈ Rd

}
. (3)

Note that |A| could be exponentially large in d. The player’s
objective is to identify π∗ = arg max

π∈A
µ⊤π by playing the

following game. At the beginning of the game, the action
set A is revealed. Then, the player pulls an arm over a se-
quence of rounds; in each round t, she pulls an arm pt ∈ [d]
and observes a reward sampled from the associated reward
distribution ϕpt

. The player can stop the game at any round.
She needs to guarantee that Pr [πout ̸= π∗] ≤ δ for a given
confidence parameter δ. For any δ ∈ (0, 1), we call an al-
gorithm A a δ-correct algorithm if, for any expected reward
µ ∈ R, the probability of the error of A is at most δ, i.e.,
Pr [πout ̸= π∗] ≤ δ. The learner’s performance is evaluated
by her sample complexity, which is the round she terminated
the game. We assume π∗ is unique.

Technical Assumptions
To cope with the exponential largeness of the action set, we
make two mild assumptions for our R-CPE-MAB model.
The first one is the existence of the offline oracle, which
computes π∗(ν) = arg max

π∈A
ν⊤π in polynomial or pseudo-

polynomial time once ν is given. We write Oracle(ν) =
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π∗(ν). This assumption is relatively mild since in linear pro-
gramming, we have the network simplex algorithm (Nelder
and Mead 1965) and interior points methods (Karmarkar
1984), whose computational complexities are both polyno-
mials in d. Moreover, if we consider the knapsack problem,
though the knapsack problem is NP-complete (Garey and
Johnson 1979) and is unlikely that it can be solved in poly-
nomial time, it is well known that we can solve it in pseudo-
polynomial time if we use dynamic programming (Kellerer,
Pferschy, and Pisinger 2004; Fujimoto 2016). In some cases,
it may be sufficient to use this dynamic programming algo-
rithm as the offline oracle in the R-CPE-MAB.

The second assumption is that the set of possible out-
puts of the offline oracle is finite-sized. This assumption also
holds in many combinatorial optimization problems. For in-
stance, no matter what algorithm is used to compute the so-
lution to the knapsack problem, the action set is a finite set of
integer vectors, so this assumption holds. Also, in linear pro-
gramming problems such as the optimal transport problem
(Villani 2008) and the production planning problem (Pochet
and Wolsey 2010), it is well known that the solution is on a
vertex of the feasible region, and therefore, the set of candi-
dates of solutions for optimization problem (1) is finite.

Lower Bound of R-CPE-MAB
In this section, we discuss sample complexity lower bounds
of R-CPE-MAB. In Theorem 1, we show a sample complex-
ity lower bound which is derived explicitly. In Theorem 2,
we show another lower bound, which is only written in an
implicit form but is tighter than that in Theorem 1.

In our analysis, we have several key quantities that are
useful to discuss the sample complexity upper bounds. First,
we define π(s) as follows:

π(s) = arg min
π∈A\{π∗}

µ⊤ (π∗ − π)

|π∗
s − πs|

. (4)

Intuitively, among the actions whose s-th element is differ-
ent from π∗, π(s) is the one that is the most difficult to con-
firm its optimality. We define a notion named G-gap which
is formally defined as follows:

∆(s) =
µ⊤(π∗ − π(s))

|π∗
s − π

(s)
s |

= min
π∈A\{π∗}

µ⊤ (π∗ − π)

|π∗
s − πs|

. (5)

G-gap can be seen as a natural generalization of gap intro-
duced in the CPE-MAB literature (Chen et al. 2014; Chen,
Gupta, and Li 2016; Chen et al. 2017). Then, we denote the
sum of inverse squared gaps by

H =
d∑

s=1

(
1

∆(s)

)2

=
d∑

s=1

max
π∈A\{π∗}

|π∗
s − πs|2(

(π∗ − π)
⊤
µ
)2 ,

which we define as a hardness measure of the problem in-
stance in R-CPE-MAB. In Theorem 1, we show that H ap-
pears in a sample complexity lower bound of R-CPE-MAB.
Therefore, we expect that this quantity plays an essential
role in characterizing the difficulty of the problem instance.

Explicit Form of a Sample Complexity Lower
Bound
Here, we show a sample complexity lower bound of the R-
CPE-MAB which is written in an explicit form.

Theorem 1. Fix any action set A ⊂ Rd and any vector
µ ∈ Rd. Suppose that, for each arm s ∈ [d], the reward
distribution ϕs is given by ϕs = N (µs, 1). Then, for any

δ ∈
(
0, e−16

4

)
and any δ-correct algorithm A, we have

E [T ] ≥ 1

16
H log

(
1

4δ

)
, (6)

where T denotes the total number of arm pulls by algorithm
A.

Theorem 1 can be seen as a natural generalization of the
result in ordinary CPE-MAB shown in Chen et al. (2014). In
the CPE-MAB literature, the hardness measure H′ is defined
as follows (Chen et al. 2014; Wang and Zhu 2022; Chen
et al. 2017):

H′ =
d∑

s=1

(
1

∆s

)2

, (7)

where

∆s = min
π∈{π∈A | πs ̸=π∗

s}
µ⊤ (π∗ − π). (8)

Below, we discuss why the hardness measure in R-CPE-
MAB uses ∆(s) not ∆s.

Suppose we have two bandit instances B1 and B2. In B1,
A1 =

{
(100, 0)

⊤
, (0, 100)⊤

}
and µ1 = (µ1,1, µ1,2) =

(0.011, 0.01)
⊤. In B2, A2 =

{
(1, 0)

⊤
, (0, 1)

⊤
}

and

µ2 = (µ2,1, µ2,2) = (0.1, 0.11)
⊤. We assume that, for

both instances, the arms are equipped with Gaussian dis-
tributions with unit variance. Also, for any i ∈ {1, 2}
and s ∈ {1, 2}, let us denote by Ti,s(t) the number
of times arm s is pulled in the bandit instance Bi in
round t. Let us consider the situation where T1,1(t) =
T2,1(t) and T1,2(t) = T2,2(t), and we have prior
knowledge that µ1,1 ∈ [µ̂1,1 − σ1, µ̂1,1 + σ1], µ1,2 ∈
[µ̂1,2 − σ2, µ̂1,2 + σ2], µ2,1 ∈ [µ̂2,1 − σ1, µ̂2,1 + σ1], and
µ2,2 ∈ [µ̂2,2 − σ2, µ̂2,2 + σ2]. Here, σ1 and σ2 are some
confidence bounds on the rewards of arms, which may be
derived by some concentration inequality. Note that they de-
pend only on the number of times the arm is pulled, and that
the confidence bound for each arm is the same in both in-
stances since T1,1(t) = T2,1(t) and T1,2(t) = T2,2(t).

We can see that H′ are the same in both B1 and B2, which
implies that the difficulty in identifying the best actions is the
same in B1 and B2. However, this is not true since when we
estimate the reward of actions in B1, the confidence bound
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will be amplified by 100, and therefore, we are far less confi-
dent to determine the best action in B1 than B2. On the other
hand, H reflects this fact. H in B1 is 10000 larger than that
of B2, which implies that identifying the best action in B1 is
much more difficult than B2.

Implicit Form of a Lower Bound
Here, in Theorem 2, we show that we can generalize the
tightest lower bound in the CPE-MAB literature shown in
Chen et al. (2017) for the R-CPE-MAB.
Theorem 2. For any δ ∈ (0, 0.1) and a δ-correct algorithm
A, A will pull arms Ω(Low(A) log 1

δ ) times, where Low(A)
is the optimal value of the following mathematical program:

minimize
d∑

s=1

τs

subject to ∀π ∈ A,
∑

s∈π∗⋄π

|π∗
s − πs|2

τs
≤ ∆2

π∗,π

τs > 0, ∀s ∈ [d],
(9)

where π∗ ⋄ π = {s ∈ [d] | π∗
s ̸= πs} and ∆π∗,π =

µ⊤ (π∗ − π).
In the appendix, we show that the lower bound in The-

orem 2 is no weaker than that in Theorem 1 by showing
Low(A) ≥ H.

This lower bound is exactly equal to the lower bound in
Fiez et al. (2019) for the transductive bandit, which is written
as follows:

ρ∗ log

(
1

δ

)
, (10)

where

ρ∗ = min
λ∈Πd

max
π∈A\{π∗}

∑d
s=1

|π∗
s−πs|2
λs

∆2
π∗,π

. (11)

GenTS-Explore Algorithm
In this section, we introduce an algorithm named the Gener-
alized Thompson Sampling Explore (GenTS-Explore) algo-
rithm, which can identify the best action in the R-CPE-MAB
even when the size of the action set A is exponentially large
in d. We first explain what the GenTS-Explore algorithm is
doing at a high level. Then, we show a sample complexity
upper bound of it.

Outline of the GenTS-Explore Algorithm
Here, we show what the GenTS-Explore algorithm is doing
at a high level (Algorithm 1).

The GenTS-Explore algorithm can be seen as a mod-
ified version of the TS-Explore algorithm introduced
in Wang and Zhu (2022). At each round t, it out-
puts π̂(t) = Oracle(µ̂(t)), which is the empiri-
cally best action (line 7). Then, for any s ∈ [d], it
draws M(δ, q, t) ≜

⌈
1
q (log 12|A|

2t2/δ)
⌉

random samples{
θks
}M(δ,q,t)

k=1
independently from a Gaussian distribution

Algorithm 1: GenTS-Explore Algorithm

1: Input: Confidence level δ, q ∈ [δ, 0.1], t ← 0, T (0) =
(T1(0), . . . , Td(0))

⊤ = (0, . . . , 0)⊤

2: Output: Action πout ∈ A
3: // Initialization
4: Pull each arm once, and update their number of pulls

Ti’s and the µ̂s(t)
5: t← d
6: while true do
7: π̂(t)← Oracle(µ̂(t))
8: for k = 1, . . . ,M(δ, q, t) do
9: For each arm s, draw θks (t) independently from dis-

tribution N
(
µ̂s(t),

C(δ,q,t)
Ts(t)

)
10: θk(t)←

(
θk1 (t), . . . , θ

k
d(t)

)
11: π̃k(t)← Oracle(θk(t))

12: ∆̃k
t ← θk(t)

⊤ (
π̃k(t)− π̂(t)

)
13: end for
14: if ∀1 ≤ k ≤M(δ, q, t), π̃k(t) = π̂(t) then
15: Return: π̂(t)
16: else
17: k∗t ← arg max

k
∆̃k

t , π̃(t)← π̃k∗
t (t)

18: Pull arm pt according to (12) or (15),and update
Tpt and µ̂pt(t)

19: t← t+ 1
20: end if
21: end while

N
(
µ̂s(t),

C(δ,q,t)
Ts(t))

)
, and C(δ, q, t) ≜ 4R2 log(12|A|2t2/δ)

ϕ2(q) . In-

tuitively, {θk(t)}M(δ,q,t)
k=1 is a set of possible values that the

true reward vector µ can take. Then, it computes π̃k(t) =

Oracle(θk(t)) for all k, where θk(t) =
(
θk1 (t), . . . , θ

k
d(t)

)
.

We can say that we estimate the true reward gap
µ⊤
(
π̃k(t)− π̂(t)

)
by computing θk(t)

⊤ (
π̃k(t)− π̂(t)

)
for each k ∈ [M(δ, q, t)]. If all the actions π̃k(t)’s
are the same as π̂(t), we output π̂(t) as the best ac-
tion. Otherwise, we focus on π̃k∗

t (t), where k∗t =

arg max
k∈[M(δ,q,t)]

θk(t)
⊤ (

π̃k(t)− π̂(t)
)

. We can say that π̃k∗
t (t)

is potentially the best action.
Then, the most essential question is: “Which arm should

we pull in round t, once we obtain the empirically best action
π̂(t) and a potentially best action π̃k∗

(t) ?” We discuss this
below.

Arm Selection Strategies Here, we discuss which arm
to pull at round t, once we obtain the empirically best ac-
tion π̂(t) and a potentially best action π̃k∗

t (t). For the or-
dinary CPE-MAB, the arm selection strategy in Wang and
Zhu (2022) was to pull the following arm:

pnaivet = arg min
s∈{s∈[d] | π̂s(t)̸=π̃k∗

s (t)}
Ts(t). (12)
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Therefore, one candidate of an arm selection strategy is to
naively pull the arm defined in (12). We call this the naive
arm selection strategy.

Next, we consider another arm selection strategy as fol-
lows. We want to pull the arm that is most “informative” to
discriminate whether π̂(t) is a better action than π̃k∗

t (t) or
not. In other words, we want to pull the arm that is most “in-
formative” to estimate the true gap µ⊤

(
π̃k∗

t (t)− π̂(t)
)

. If
it is less than 0, π̂(t) is better, and if it is greater than 0,
π̃k∗

t is better. To discuss this more quantitatively, let us as-
sume that θk∗

t (t) ≈ µ̂(t). From Hoeffding’s inequality (Luo
2017), we obtain the following:

Pr

[∣∣∣∣(µ− θk∗
t (t)

)⊤ (
π̃k∗

t (t)− π̂(t)
)∣∣∣∣ ≥ ϵ

]
≈ Pr

[∣∣∣(µ− µ̂(t))
⊤
(
π̃k∗

t (t)− π̂(t)
)∣∣∣ ≥ ϵ

]

≤ 2 exp

−
ϵ2

2
d∑

s=1

∣∣∣π̃k∗
t

s (t)− π̂s(t)
∣∣∣2

Ts(t)
R2

 , (13)

where ϵ > 0. (13) shows that if we make
d∑

s=1

∣∣∣∣π̃k∗
t

s (t)−π̂s(t)

∣∣∣∣2
Ts(t)

small, ∆̃
k∗
t

t = θ
k∗
t
(t)

⊤ (
π̃

k∗
t
(t)− π̂(t)

)
will become close

to the true gap µ⊤
(
π̃k∗

t (t)− π̂(t)
)

.
Since we want to estimate the true gap accurately as soon

as possible, we pull arm pRt that makes
d∑

s=1

∣∣∣∣π̃k∗
t

s (t)−π̂s(t)

∣∣∣∣2
Ts(t)

the smallest, which is defined as follows:

pRt = arg min
e∈[d]

d∑
s=1

∣∣∣π̃k∗
t

s (t)− π̂s(t)
∣∣∣2

Ts(t) + 1[s = e]
, (14)

where 1[·] denotes the indicator function. Then, the follow-
ing proposition holds.
Proposition 3. pRt in (14) can be written as follows:

pRt = arg max
s∈[d]

∣∣∣π̃k∗
t

s (t)− π̂s(t)
∣∣∣2

Ts(t)(Ts(t) + 1)
. (15)

We show the proof in the appendix. We call pulling the
arm defined in (15) the R-CPE-MAB arm selection strategy.
(15) implies that the larger

∣∣∣π̃k∗
t

s (t)− π̂s(t)
∣∣∣ is, the more we

need to pull arm s. Similar to the discussion in the previ-
ous section, this is because if

∣∣∣π̃k∗
t

s (t)− π̂s(t)
∣∣∣ is large, the

uncertainty of arm s is amplified largely when we compute

∆̃
k∗
t

t = θk∗
t (t)

⊤ (
π̃k∗

t (t)− π̂(t)
)

. Therefore, we have to

pull arm s many times to make the C(δ,q,t)
Ts(t)

small, which is

the variance of θks , to gain more confidence about the reward
of arm s.

Also, the R-CPE-MAB arm selection strategy is equiva-
lent to the naive arm selection strategy in CPE-MAB, since
when A ⊂ {0, 1}d,

pRt = arg max
s∈[d]

∣∣∣π̃k∗
t

s (t)− π̂s(t)
∣∣∣2

Ts(t)(Ts(t) + 1)

= arg max

s∈
{
s∈[d] | π̃k∗

t
s (t)̸=π̂s(t)

} 1

Ts(t)(Ts(t) + 1)

= arg min

s∈
{
s∈[d] | π̃k∗

t
s (t)̸=π̂s(t)

}Ts(t).

= pnaivet . (16)

Therefore, we can say that the R-CPE-MAB arm selection
strategy is a generalization of the arm selection strategy in
Wang and Zhu (2022).

Sample Complexity Upper Bounds of the
GenTS-Explore Algorithm
Here, we show sample complexity upper bounds of the
GenTS-Explore algorithm when we use the two arm selec-
tion strategies: the naive arm selection strategy shown in
(12) and the R-CPE-MAB arm selection strategy shown in
(15), respectively.

First, in Theorem 4, we show a sample complexity upper
bound of the naive arm selection strategy.
Theorem 4. For q ∈ [δ, 0.1], with probability at least 1− δ,
the GenTS-Explore algorithm with the naive arm sampling
strategy will output the best action π∗ with sample complex-
ity upper bounded by

O

(
R2HN

(
log
(
|A|HN

)
+ log 1

δ

)2
log 1

q

)
, (17)

where HN =
∑d

s=1
Us

∆2
(s)

and Us =

maxπ′∈A,π∈{π∈A | π∗
s ̸=πs}

1
|π∗

s−πs|2
∑d

e=1 |πe − π′
e|

2.
Specifically, if we choose q = δ, then the complexity upper

bound is

O
(
R2HN

(
log

1

δ
+ log2

(
|A|HN

)))
. (18)

Next, in Theorem 5, we show a sample complexity upper
bound of the R-CPE-MAB arm selection strategy.
Theorem 5. For q ∈ [δ, 0.1], with probability at least 1 −
δ, the GenTS-Explore algorithm with the R-CPE-MAB arm
sampling strategy will output the best action π∗ with sample
complexity upper bounded by

O

(
R2HR

(
log
(
|A|HR

)
+ log 1

δ

)2
log 1

q

)
, (19)

where HR =
∑d

s=1
Vs

∆2
(s)

and Vs =

maxπ′∈A,π∈{π∈A | π∗
s ̸=πs}

|πs−π′
s|

|π∗
s−πs|2

∑d
e=1 |πe − π′

e|.
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Specifically, if we choose q = δ, then the complexity upper
bound is

O
(
R2HR

(
log

1

δ
+ log2

(
|A|HR

)))
. (20)

Comparison to the Lower Bounds Let us define U =
maxs∈[d] Us and V = maxs∈[d] Vs. Then, the sample com-
plexity upper bound of the naive arm selection strategy is
O
(
UH log

(
1
δ

))
and that of the R-CPE-MAB arm selection

strategy is O
(
VH log

(
1
δ

))
. Therefore, regardless of which

arm selection strategy is used, the sample complexity upper
bound of the GenTS-Explore algorithm matches the lower
bound shown in (6) up to a problem-dependent constant fac-
tor.

Comparison between the Naive and R-CPE-MAB Arm
Selection Strategies In general, whether the R-CPE-MAB
arm selection strategy has a tighter upper bound than
the naive arm selection strategy or not depends on the
problem instance. Let us consider one situation in which
the R-CPE-MAB arm selection strategy may be a better
choice than the naive arm selection strategy. Suppose A =
{(100, 0, 0)⊤, (0, 1, 1)⊤} and π∗ = (100, 0, 0)⊤. Then,
U1 = 1.0002, U2 = 10002, and U3 = 10002. On the other
hand, V1 = 1.02, V2 = 102, and V3 = 102. We can see that
U2 and U3 are extremely larger than V2 and V3, respectively,
and therefore HR is much smaller than HN. Eventually, the
sample complexity upper bound of the naive arm selection
strategy will be looser than that of the R-CPE-MAB arm se-
lection strategy.

Comparison with Existing Works in the Ordinary CPE-
MAB In the ordinary CPE-MAB, where A ⊆ {0, 1}d, a
key notion called width appears in the upper bound of some
existing algorithms (Chen et al. 2014; Wang and Zhu 2022),
which is defined as follows:

width = max
π,π′∈A

d∑
s=1

|πs − π′
s| . (21)

The following proposition implies that both U and V can be
seen as generalizations of the notion width.
Proposition 6. Let U = maxs∈[d] Us and V =
maxs∈[d] Vs. In the ordinary CPE-MAB, where A ⊆
{0, 1}d, we have

U = V = width. (22)

Next, recall that the GenTS-Explore algorithm is equiva-
lent to the TS-Explore algorithm in the ordinary CPE-MAB,
regardless of which arm selection strategy is used. Propo-
sition 7 shows that our upper bound (18) and (20) are both
tighter than that shown in Wang and Zhu (2022), which is
O
(
width

∑d
s=1

1
∆2

s

)
.

Proposition 7. In the ordinary CPE-MAB, where A ⊆
{0, 1}d, we have

HN =
d∑

s=1

Us

∆2
s

≤ width
d∑

s=1

1

∆2
s

, (23)

and

HR =
d∑

s=1

Vs

∆2
s

≤ width
d∑

s=1

1

∆2
s

. (24)

Experiment
In this section, we conduct experiments on the knapsack
(Dantzig and Mazur 2007) and production planning (Pochet
and Wolsey 2010) problems and experimentally compare
two main arm selection strategies: the naive arm selection
strategy and the R-CPE-MAB arm selection strategy. Also,
for the knapsack problem, we compare the GenTS-Explore
algorithm with other algorithms that can be applied to the
R-CPE-MAB.

The Knapsack Problem
Here, we consider the knapsack problem (Dantzig and
Mazur 2007), where the action set A is exponentially large
in d in general.

In the knapsack problem, we have d items. Each item
s ∈ [d] has a weight ws and value vs. Also, there is a knap-
sack whose capacity is W in which we put items. Our goal is
to maximize the total value of the knapsack not letting the to-
tal weight of the items exceed the capacity of the knapsack.
Formally, the optimization problem is given as follows:

maximizeπ∈A
∑d

s=1 vsπs

subject to
∑d

s=1 πsws ≤W,

where πs denotes the number of item s in the knapsack.
Here, the weight of each item is known, but the value is
unknown, and therefore has to be estimated. In each time
step, the player chooses an item s and gets an observation of
value rs, which can be regarded as a random variable from
an unknown distribution with mean vs.

For our experiment, we generate the weight of each item
uniformly from {1, 2, . . . , 50}. For each item s, we gener-
ate vs as vs = ws × (1 + x), where x is a sample from
N (0, 0.12). We set the capacity of the knapsack at W = 50.
Each time we choose an item s, we observe a value vs + x
where x is a noise from N (0, 0.12). We set R = 0.1. We
show the result in Figure 3.

We can say that the R-CPE-MAB arm selection strategy
performs better than the naive arm selection strategy since
the former needs fewer rounds until termination. In some
cases, the sample complexity of the R-CPE-MAB arm selec-
tion strategy is only 1/3 to 1/2 that of the naive arm selection
strategy.

Next, we compare the GenTS-Explore algorithm with the
CombGapE (Nakamura and Sugiyama 2023), RAGE (Ran-
domized Adaptive Gap Elimination) Fiez et al. (2019) and
Peace(Katz-Samuels et al. 2020) algorithms. Note that these
algorithms have to enumerate all the feasible actions, which
is nearly impossible in practice when the size of the action
set is exponentially large in d.

We conducted an experiment on a knapsack problem with
d = 5. We show the results in Table 1. We can see that while
the GenTS-Explore algorithm can not outperform the Com-
bGapE algorithm, it outperforms the other two methods.
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Figure 3: Comparison of the naive arm selection strategy and
the R-CPE-MAB arm selection strategy. The vertical axis
indicates the number of rounds the former strategy takes to
find the best action normalized by the number of rounds the
latter strategy takes to find the best action. The horizontal
axis indicates the number of items d. We ran experiments 30
times for each setting.

GenTS-Explore 44± 40
RAGE (Fiez et al. 2019) 1.9 ×1.44 ± 2.7× 104

Peace
(Katz-Samuels et al. 2020) 66± 54

Table 1: The mean and standard deviation of sample com-
plexity normalized by the sample complexity of the Comp-
GapE algorithm.

The Production Planning Problem
Here, we consider the production planning problem (Pochet
and Wolsey 2010). In the production planning problem,
there are m materials, and these materials can be mixed to
make one of d different products. We have a matrix M ∈
Rm×d, where Ms represents how much material i ∈ [m] is
needed to make product s ∈ [d]. Also, we are given vectors
vmax ∈ Rm and µ ∈ Rd. Then, formally, the optimization
problem is given as follows:

maximizeπ∈A µ⊤π

subject to Mπ ≤ vmax,

where the inequality is an element-wise comparison. Intu-
itively, we want to obtain the optimal vector π∗ that max-
imizes the total profit without using more material i than
vmax
i for each i ∈ [m], where π∗

s represents how much prod-
uct s is produced.

Here, we assume that M and vmax are known, but µ is
unknown, and therefore has to be estimated. In each time
step, the player chooses a product s and gets an observation
of value rs, which can be regarded as a random variable from
an unknown distribution with mean µs.

3 4 5 6 7 8
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Figure 4: The numbers show the mean and standard devia-
tion of the number of rounds the naive arm selection strat-
egy takes to find the best action normalized by the number
of rounds the R-CPE-MAB arm selection strategy takes to
find the best action over 15 runs.

For our experiment, we have three materials, i.e., m = 3.
We set vmax = (30, 30, 30)⊤. Also, we generate every ele-
ment in M uniformly from {1, 2, 3, 4}. For each product s,
we generate µs as µs =

∑m
i=1 Mis+x, where x is a random

sample from N (0, 1). Each time we choose a product s, we
observe a value µs + x where x is a noise fromN

(
0, 0.12

)
.

We set R = 0.1. We show the result in Figure 4. Again,
we can see that the R-CPE-MAB arm selection strategy per-
forms better than the naive arm selection strategy since the
former needs fewer rounds until termination.

Conclusion
In this study, we studied the R-CPE-MAB. We showed novel
lower bounds for R-CPE-MAB by generalizing key quanti-
ties in the ordinary CPE-MAB literature. Then, we intro-
duced an algorithm named the GenTS-Explore algorithm,
which can identify the best action in R-CPE-MAB even
when the size of the action set is exponentially large in d. We
showed a sample complexity upper bound of it, and showed
that it matches the sample complexity lower bound up to a
problem-dependent constant factor. Finally, we experimen-
tally showed that the GenTS-Explore algorithm can identify
the best action even if the action set is exponentially large
in d.
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