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Abstract

While shallow decision trees may be interpretable, larger en-
semble models like gradient-boosted trees, which often set
the state of the art in machine learning problems involving
tabular data, still remain black box models. As a remedy,
the Shapley value (SV) is a well-known concept in explain-
able artificial intelligence (XAI) research for quantifying ad-
ditive feature attributions of predictions. The model-specific
TreeSHAP methodology solves the exponential complexity
for retrieving exact SVs from tree-based models. Expand-
ing beyond individual feature attribution, Shapley interac-
tions reveal the impact of intricate feature interactions of any
order. In this work, we present TreeSHAP-IQ, an efficient
method to compute any-order additive Shapley interactions
for predictions of tree-based models. TreeSHAP-IQ is sup-
ported by a mathematical framework that exploits polynomial
arithmetic to compute the interaction scores in a single recur-
sive traversal of the tree, akin to Linear TreeSHAP. We apply
TreeSHAP-IQ on state-of-the-art tree ensembles and explore
interactions on well-established benchmark datasets.

Introduction
Tree-based ensemble methods, in particular gradient-
boosted trees (Friedman 2001), such as XGBoost (Chen and
Guestrin 2016) or LightGBM (Ke et al. 2017), are among
the most popular machine learning (ML) models and often
achieve state-of-the-art (SOTA) performance on tabular data
without extensive hyperparameter tuning (Shwartz-Ziv and
Armon 2022). These ensemble methods utilize intricate pre-
diction functions by employing tree structures of high depth,
thereby obstructing interpretation of the model’s internal
reasoning. Yet, understanding a model’s prediction is neces-
sary for safe and reliable deployment, alongside addressing
ethical and regulatory considerations (Adadi and Berrada
2018). Additive feature attributions, which split the individ-
ual features’ contributions to the prediction, are a prevalent
approach to improving the local interpretation of ML mod-
els (Lundberg and Lee 2017; Covert and Lee 2021; Chen
et al. 2023). However, in complex real-world applications,
such as bioinformatics (Lunetta et al. 2004; Boulesteix et al.
2012; Winham et al. 2012; Wright, Ziegler, and König 2016)
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Figure 1: Network Plot after (Inglis, Parnell, and Hurley
2022) for a test instance of the German Credit dataset for
visualizing local feature attribution and interaction.

or language-related tasks (Tsang, Rambhatla, and Liu 2020)
features only attain meaningfulness when interacting with
other features. In such scenarios, information about interac-
tions complements additive feature attributions, which only
show part of the picture (Wright, Ziegler, and König 2016).

In this work, we are interested in model-specific local
XAI measures for tree-based models, such as XGBoost. In
particular, the extension of predominant attribution mea-
sures based on the Shapley value (SV) (Shapley 1953) to
any-order additive Shapley-based interactions to explain sin-
gle predictions locally. Our work extends path dependent
TreeSHAP (Lundberg et al. 2020), which exploits the struc-
ture of trees to reduce time complexity from exponential to
polynomial, to any-order Shapley-based interactions.

Related Work. The SV (Shapley 1953) is a concept from
cooperative game theory that has been proposed for model-
agnostic explanations for local (Strumbelj and Kononenko
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Figure 2: Force plots of positive (red) and negative (blue) SVs and n-SII scores for an instance of the California dataset The
longit. feature has a high contribution, describing the proximity to the ocean, which affects the price. TreeSHAP (s0 = 1)
reveals this contribution. It also shows that latit. contributed positively. TreeSHAP-IQ, e.g. s0 ≥ 2, reveals that this contribution
can be (mostly) attributed to the interaction latit. x longit., which reveals that the exact location, and not latit., is meaningful.

2014; Lundberg and Lee 2017) and global (Casalicchio,
Molnar, and Bischl 2018; Covert, Lundberg, and Lee 2020)
interpretation. In a model-agnostic setting, efficient approx-
imations techniques, based on Monte Carlo (Castro, Gómez,
and Tejada 2009; Castro et al. 2017; Kolpaczki et al. 2023;
Fumagalli et al. 2023) or the representation of the SV as a
constrained weighted least square problem (Lundberg and
Lee 2017; Covert and Lee 2021; Jethani et al. 2022) have
been proposed to overcome the exponential complexity.
For tree-based models the SV can be computed in poly-
nomial time using TreeSHAP (Lundberg et al. 2020) with
more efficient variants (Yang 2021). Linear TreeSHAP (Yu
et al. 2022) establishes a theoretical foundation that connects
the computation to polynomial arithmetic, achieving SOTA
computational and storage efficiency.

Limitations of the SV due to correlations and interac-
tions have been widely studied by Slack et al. (2020),
Sundararajan and Najmi (2020), and Kumar et al. (2020,
2021). Extensions to interactions have been proposed with
the Shapley Interaction Index (SII) (Grabisch and Roubens
1999), its aggregation as n-Shapley Values (n-SII) (Bordt and
von Luxburg 2023), the Shapley Taylor Interaction Index
(STI) (Sundararajan, Dhamdhere, and Agarwal 2020) and
the Faithful Shapley Interaction Index (FSI) (Tsai, Yeh, and
Ravikumar 2023). All of these are subsumed in the broad
class of the Cardinal Interaction Index (CII) (Grabisch and
Roubens 1999). Model-agnostic approximations have been
proposed for general CIIs (Fumagalli et al. 2023), STI (Sun-
dararajan, Dhamdhere, and Agarwal 2020), SII and for FSI
(Tsai, Yeh, and Ravikumar 2023). Local pairwise interac-
tions for tree-based models were computed by Lundberg
et al. (2020) and for interventional SHAP by Zern, Broele-
mann, and Kasneci (2023).

Other interaction scores were introduced by Tsang,
Rambhatla, and Liu (2020), Zhang et al. (2021), Patel, Stro-
bel, and Zick (2021), Harris, Pymar, and Rowat (2022), and

Hiabu, Meyer, and Wright (2023). Interaction scores are
further linked to functional decomposition (Hooker 2004,
2007; Lengerich et al. 2020; Herbinger, Bischl, and Casal-
icchio 2023). For tree-based models, limitations of feature
attribution measures (Wright, Ziegler, and König 2016), and
efficient implementations for interactions (Lengerich et al.
2020; Hiabu, Meyer, and Wright 2023) were discussed.

So far, any-order Shapley interactions have only been
studied in a model-agnostic setting, where the exponential
complexity problem is approximately solved. Tree-based ap-
proaches have not considered the efficient computation of
local any-order Shapley interactions.

Contribution. Our main contributions include;

1. TreeSHAP-IQ: An efficient algorithm for computing any-
order SII scores for tree ensembles. TreeSHAP-IQ1 is
supported by a mathematical framework based on poly-
nomial arithmetic, akin to Linear TreeSHAP.

2. Unified Framework: Application of TreeSHAP-IQ to the
broad class of any-order CIIs.

3. Application: We efficiently implement TreeSHAP-IQ on
SOTA tree-based models, such as XGBoost, and show-
case how interaction scores enrich single feature attribu-
tion measures on several benchmark datasets.

Local Shapley-Based Explanations
Local Shapley-based explanations consider a model f on
an n-dimensional feature space X with features N :=
{1, . . . , n}. The goal is to explain the prediction f(x) ∈ R
for a selected explanation point x ∈ X and find an ad-
ditive attribution ϕ = (ϕ[1], . . . , ϕ[n]) ∈ Rn, such that
f(x) = b0 +

∑
i∈N ϕ[i], where b0 ∈ R is the baseline pre-

diction, i.e. the prediction of x, if no feature information is

1TreeSHAP-IQ is implemented as part of the shapiq Python
package at pypi.org/project/shapiq.
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available. To compute a unique attribution score ϕ[i] for each
feature i ∈ N , we extend the model with subsets of features
f : X × P(N) → R, where P(N) is the power set of N
and f(x, T ) refers to the prediction of f at x, if only the
features in T ⊆ N are known. In the following, if we omit
the subset, then T = N , i.e. f(x) := f(x,N). We further
omit the explanation point x if it is clear from context, and
set f(T ) := f(x, T ) and b0 := f(x, ∅). The contribution of
each feature i ∈ N is then the SV (Shapley 1953)

ϕ(f, i) :=
∑

T⊂N\{i}

1

n ·
(
n−1
|T |
)[f(T ∪ {i})− f(T )

]
.

The SVs define the unique attribution measure satisfying the
following axioms: linearity (in f ), symmetry (ordering does
not impact ϕ), dummy (no impact on f implies ϕ(f, i) = 0)
and efficiency f(x) = b0 +

∑
i∈N ϕ(f, i) (Shapley 1953).

In many real-world applications, single feature impor-
tance scores are not sufficient to understand a model, where
features become only meaningful when interacting with oth-
ers. The SV does not give any information about such inter-
actions between two or more features. The SII has been the
first extension of the SV to interactions of feature subsets.
Definition 1 (SII, Grabisch and Roubens 1999). The SII for
an interaction S ⊆ N is defined as

ISII(f, S) :=
∑

T⊆N\S

1

(n− |S|+ 1) ·
(
n−|S|
|T |

)δS(f, T ),
where δS is the S-derivative of f for T ⊆ N \ S, i.e.

δS(f, T ) :=
∑
L⊆S

(−1)|S|−|L|f(T ∪ L).

The SII is the unique attribution measure that fulfills the
(generalized) linearity, symmetry and dummy axiom, as well
as a novel recursive axiom that links higher to lower or-
der interactions (Grabisch and Roubens 1999). In contrast
to the SV, the SII does not fulfill the (generalized) efficiency
axiom, which states that the sum of interaction scores (in-
cluding b0) up to a maximum order s0 equals the model
prediction f(x). This axiom is particularly useful in the
ML context. Recently, Bordt and von Luxburg (2023) pro-
posed a specific aggregation, known as n-SII of order s0,
which yields a unique index that satisfies the (generalized)
efficiency axiom. A more general class constitutes the CII,
where it was shown that every interaction index fulfilling the
linearity, symmetry and dummy axiom can be represented
as a CII (Grabisch and Roubens 1999, Proposition 5). Other
CIIs were proposed that introduce a unique interaction index
of order s0 and require the efficiency axiom directly, such as
the STI (Sundararajan, Dhamdhere, and Agarwal 2020) or
the FSI (Tsai, Yeh, and Ravikumar 2023). While the com-
putation of the SV and SIIs are of exponential complexity,
it has been shown that the complexity for the SV can be re-
duced to polynomial time in the case of tree-based models.

The Shapley Value for Tree Ensembles
For tree-based models the computational complexity of the
SV can be drastically reduced by utilizing the additive tree

Figure 3: Notations in TreeSHAP-IQ and Linear TreeSHAP.

structure. Furthermore, there exists a natural way to handle
missing features, which can be used to define the extended
model f(x, T ). For simplicity, we consider in the following
a single decision tree, where ensembles of trees can be sim-
ilarly computed due to the linearity of the SV.

Notation. We consider a decision tree T = (V,E) as a
rooted directed tree with a set of vertices V , referred to as
decision nodes, and edges E. The root node is denoted as
r ∈ V . Each decision node consists of a split feature i ∈ N
with a threshold value and predictions Vv at the leaf nodes.
For each node v ∈ V , we let Pv be the set of edges from the
root node to v and L(v) the set of leaf nodes reachable from
v, where L(T ) = L(r) is the set of all leaf nodes in the tree.
For every edge e ∈ E going from u to v, we denote u as the
tail of e and v as the head of e, h(e). We consider a weighted
tree with weights we ∈ (0, 1) for every edge e ∈ E, which
is defined as the proportion of observed data points at the
tail of e, that split to the head of e. Additionally, we label
each edge e ∈ E with the feature associated with the tail of
e, i.e. the feature that was used to split the observations on
the decision node at the source of e. Further, Pi,v and Ei are
the edges in Pv and E with label i ∈ N . Our notation for
decision trees is illustrated in Figure 3.

We also require polynomial arithmetic and refer to the set
of polynomials with maximum degree d and coefficients in
R as R[x]d. Polynomial multiplication is denoted with ⊙ and
division with ⌊a

b ⌋ or ⌊a/b⌋. We denote with ⟨x, y⟩ the inner
product of two vectors x, y ∈ Rd and refer to the inner prod-
uct of the coefficients, if polynomials are considered.

Extended Model f(x, T ) for Decision Trees. A deci-
sion tree can be decomposed into distinct decision rules
Rv : X → R for each leaf v ∈ L(T ), which predict Vv , if
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x reaches v and zero otherwise. Note that each Rv induces
a subspace of X at which the prediction of f is constant.
The decision tree is thus given as f(x) =

∑
v∈L(T )R

v(x).
We now define Rv

T , the prediction rule restricted to a set
of active features T ⊆ N , where the remaining are con-
sidered to be unknown. If the split feature is unknown, we
split based on the weights we, which is a common prac-
tice (Yu et al. 2022). If all features are unknown, we de-
fine Rv

∅ := Rv
∅(x) := Vv

∏
e∈Pv

we. When adding feature
i ∈ N to the active set, the product of associated weights
is replaced by the split criterion. This is formalized as a re-
cursive property Rv

T∪{i} = qi,v(x)R
v
T (x), where qi,v is the

marginal effect of adding i to the active set. To define qi,v ,
we let x ∈ πi(R

v), if x[i] satisfies each split criterion re-
garding features i in the path of v, i.e. πi(Rv) is the region
of feature i in the induced subspace of X by Rv . For v the
marginal effect of adding feature i ∈ N is then defined as

qi,v(x) := 1(x ∈ πi(R
v))

∏
e∈Pi,v

1

we
, (1)

where 1(·) is the indicator function. Furthermore, for Pi,v =
∅ we define qi,v = 1. The restricted rule is thus defined as

Rv
T (x) := Rv

∅

∏
j∈T

qj,v(x). (2)

For a tree Tf and T ⊆ N the restricted model at x is then

f(T ) := f(x, T ) :=
∑

v∈L(Tf )

Rv
T (x).

In the following, we omit the argument x in the notation. We
proceed to compute the SV of f(T ), which is known as path
dependent TreeSHAP (Lundberg et al. 2020).

Linear TreeSHAP. TreeSHAP exploits the tree structure
to compute the SV in polynomial time (Lundberg et al.
2020). Linear TreeSHAP improved this computation and
provided a theoretical framework by linking the computa-
tion to polynomial arithmetic (Yu et al. 2022). Plugging
(2) into the definition of the SV and using the fact that
qj,v − 1 = 0, if a feature does not appear in the path, yields

ϕ(Rv, i) = (qi,v − 1)
∑

T⊆F(Rv)\{i}

Rv
∅

n ·
(
n−1
|T |
) ∏

j∈T

qj,v, (3)

where F(Rv) is the set of all features that appear in Rv . It
was shown that this sum can be efficiently stored using the
coefficients of a specific polynomial.
Definition 2 (Summary Polynomial (SP), Yu et al. 2022).
The SP of leaf node v isGSP

v (y) := Rv
∅
∏

j∈F(Rv) (qj,v + y).

For feature i ∈ N , Rv
∅
∑|S|=k

S⊂F(R)\{i}
∏

j∈S qj,v is the
coefficient of yd−k−1 in G

qi,v+y , where d := |F(Rv)| is
the number of features in each path. Note that this cor-
responds to the non-weighted terms in the sum of (3) for
k = 0, . . . , d − 1. The SV of a single decision rule can thus
be represented as

ϕ(Rv, i) = (qi,v − 1)ψ

(⌊
Gv

qi,v + y

⌋)
, (4)

where ψ : R[x]d → R is a function that properly weights
the coefficients, such that it corresponds to the sum in (3). It
is formally defined (Yu et al. 2022) as

ψd(A) :=
⟨A,Bd⟩
d+ 1

with Bd(y) :=
d∑

k=0

(
d

k

)−1

yk. (5)

We write ψ(A) = ψd(A), where d is the degree of A. It was
then shown that ψ is additive and scale invariant.
Proposition 1 (Yu et al. 2022). For ψ and p, q ∈ R[x]d,

ψd(p+ q) = ψd(p) + ψd(q) and ψ
(
p⊙ (1 + y)k

)
= ψ(p).

Using (4) based on leaf nodes, a representation of the SV
in terms of edges is presented, which is explicitly computed
by recursively traversing the tree. For this representation, the
SP is extended to every edge in the path of Pi,v as

Gu :=
⊕

v∈L(u)

Gv with G1⊕G2 := G1+G2⊙(1+y)d1−d2 ,

where the order is such that d1 > d2, i.e. ⊕ is an oper-
ation on the set of polynomials ⊕ : R[x]d1 × R[x]d2 →
R[x]max(d1,d2) that sums the polynomial while scaling them
to the same degree. Note that due to the properties of ψ, we
have ψ(Gu) =

∑
v∈L(u) ψ(Gv). For edge e ∈ E and its

feature i, we further introduce the inter-path value of qi,v as

pe := 1
(
x ∈ πh(e)

) ∏
e′∈Pi,h(e)

1

we′
.

Note that pe∗ = qi,v if e∗ is the last edge in Pi,v . An edge-
based representation of the SV is then provided.
Theorem 1 (Yu et al. 2022). Let i ∈ N and denote for e
the closest ancestor in the set Ei by e↑, where e↑ =⊥ and
pi,⊥ = 1 in case it does not exist. Then,

ϕ(f, i) =
∑
e∈Ei

(pe − 1)ψ

(⌊
Gh(e)

y + pe

⌋)

− (pe↑ − 1)ψ

(⌊
Gh(e) ⊙ (y + 1)de↑−de

y + pe↑

⌋)
.

Using this edge-based representation, Linear TreeSHAP
computes the SV by traversing once through the tree. To im-
prove efficiency, the SP is stored in a multipoint interpola-
tion form. For more details, we refer to Appendix B.

TreeSHAP-IQ: Computation of Local Shapley
Interactions for Tree Ensembles

Computing the exact SV for tree ensembles can reliably
quantify the impact of single features on the model’s pre-
dictions. However, in many applications, certain features be-
come only meaningful when interacting with other features.
In this case, the SV is not sufficient to understand how the
model predicts, and more complex explanations in terms of
Shapley interactions are necessary. In the following, we pro-
pose TreeSHAP Interaction Quantification (TreeSHAP-IQ),
an efficient algorithm for computing any-order SII scores,
which follows naturally by extending the SP to interactions.
All proofs are deferred to Appendix A.
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Theoretical Foundation of TreeSHAP-IQ
We now present the theoretical foundation of TreeSHAP-IQ.
The notations in this section extend on Linear TreeSHAP
(Yu et al. 2022) and are illustrated in Figure 3. We compute
the S-derivative for Rv and T ⊆ N \ S as

δS(R
v, T ) = Rv

T

∑
L⊂S

(−1)|S|−|L|
∏
j∈L

qj,v, (6)

which follows from (2) and the recursive property. We thus
represent the SII for a single decision rule as follows.
Proposition 2. For a leaf v in Tf , it holds ISII(Rv, S) =∑

L⊆S

(−1)|S|−|L|
∏
j∈L

qj,v

ψ

(⌊
Gv∏

j∈S(qj,v + y)

⌋)
.

Proposition 2 yields a compact representation in terms of
leaf nodes and decision rules, which reduces to the repre-
sentation of (4) for single feature subsets. Similar to Linear
TreeSHAP, the representation of SII in terms of leaf nodes is
not suitable for efficient computation. We thus again estab-
lish an edge-based representation, similar to Theorem 1. By
Proposition 2, the computation of an interaction for a subset
S ⊂ N requires knowledge of all qi,v with i ∈ S, which
have to be tracked during the traversal of the tree. We thus
first extend the inter-path values pe to every feature as

pi,e := 1
(
x ∈ πi,h(e)

) ∏
e′∈Pi,h(e)

1

we′
,

where x ∈ πi,u if x[i] satisfies each decision criterion in
Pi,u. Note that pj,e = pe and πj,h(e) = πh(e), if j is the
label of e. Our goal in the following is to provide an algo-
rithm similar to Linear TreeSHAP that traverses the decision
tree once and recursively computes the interaction scores.
The SP thereby remains unchanged, but we introduce fur-
ther polynomials of order |S| to efficiently maintain the sum
as well as the denominator in Proposition 2.
Definition 3 (Interaction Polynomial (IP)). The IP of S ⊂
N and edge e is H IP

S,e(y) :=
∏

j∈S(pj,e − y).

Note that the coefficient of yk in HS,e is exactly∑|L|=|S|−k
L⊂S (−1)|L|∏

j∈L pj,e for k = 0, . . . , |S|. There-
fore, the sum of the coefficients of the IP equals the sum
in (6). We thus define the coefficient sum.
Definition 4 (Coefficient sum κ). We define the function κd :
R[x]d → R as κd(A) := ⟨A, yd + · · · + y + 1⟩. We write
κ(p) = κd(p), where d is the degree of p.

Applying κ to the IP yields the following properties.
Proposition 3. For the sum of coefficients of the IP, it holds

κ(H IP
S,e) =

∑
L⊆S

(−1)|S|−|L|
∏
j∈L

pj,e. (7)

If there exists j ∈ S with pj,e = 1, then κ(H IP
S,e) = 0.

Proposition 3 shows that κ(H IP
S,e) corresponds to the

edge-based representation of the sum in Proposition 2. If e is

the last edge in Pj,v , then pj,e = qj,v for all j ∈ N and thus
κ(H IP

S,e) retrieves the sum in Proposition 2. Furthermore, if
pj,e = 1, then it is intuitive that all inter-path contributions
with j ∈ S are zero, since j does not impact the model’s
prediction in this part of the tree. This property allows us
to update interaction scores only if all features of the subset
have occurred in the path. We further describe the quotient
in Proposition 2 using another polynomial of order |S|.
Definition 5 (Quotient Polynomial (QP)). The QP of S ⊂
N and edge e is HQP

S,e(y) :=
∏

j∈S(pj,e + y).

If e∗S is the last edge in Pv of leaf node v that contains any
feature of S, then pj,e∗S = qj,v for every j ∈ S and hence
we can rewrite Proposition 2 using Proposition 3 as

ISII(Rv, S) = κ(H IP
S,e∗S

)ψ
(⌊
Gv/H

QP
S,e∗S

⌋)
. (8)

Clearly, Proposition 2 reduces to (4) for the case of the SV.
In contrast to the SV, the edge-based computation includes
all inter-path values of pj,e with j ∈ S. To extend Theorem
2, we therefore need to extend the notion of ancestor edges
to ancestors with respect to a subset S ⊂ N .
Proposition 4. For a decision rule Rv of a leaf node v and
a subset S ⊂ N , let PS,v :=

⋃
i∈S Pi,v and e↑S as the closest

ancestor of e in PS,v . The SII of Rv is then given by

ISII(Rv, S) =
∑

e∈PS,v

κ(H IP
S,e)ψ

(⌊
Gv ⊙ (y + 1)de−dv

HQP
S,e

⌋)

− κ(H IP
S,e↑S

)ψ

Gv ⊙ (y + 1)
d
e
↑
S

−dv

HQP
S,e↑S

 .

Using Proposition 4, we can state our main theorem.
Theorem 2. For S ⊂ N , let ES :=

⋃
i∈S Ei be the set of

edges that split on any feature in S, and denote the closest
ancestor of e in PS,v as e↑S . The SII is then computed as

ISII(f, S) =
∑
e∈ES

κ(H IP
S,e)ψ

(⌊
Gh(e)

HQP
S,e

⌋)

− κ(H IP
S,e↑S

)ψ

Gh(e) ⊙ (y + 1)
d
e
↑
S

−de

HQP
S,e↑S

 .

Note that for S = {i}, Theorem 2 reduces to Theorem 1.

Implementation of TreeSHAP-IQ. Theorem 2 allows for
an efficient computation of the SII, with the SP being han-
dled alike to Linear TreeSHAP. The IQ and QP are updated
for each interaction subset that contains the feature of e. We
again use the multipoint interpolation form to store and up-
date the polynomialsGv, H

IP
S,e, andHQP

S,e. TreeSHAP-IQ tra-
verses the decision tree once for every explanation point.
At each edge (decision node), TreeSHAP-IQ updates all
interactions that contain the currently encountered feature,(

n−1
|S|−1

)
in total. However, the update can be restricted to

those interactions, where all features have been observed in
the path. We refer to Appendix B for more details.
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Complexity of TreeSHAP-IQ. Consider m explanation
points, ℓT := |L(T )| as the number of leaves and dmax as
the maximum depth of the tree.

Linear TreeSHAP has a computational complexity of
O(m·ℓT ·dmax) and storage complexity of O(d2max+n) (Yu
et al. 2022). We now consider the complexity of TreeSHAP-
IQ, if all interactions of order s := |S| are computed. In
contrast to Linear TreeSHAP and the SP, where only the cur-
rent feature value has to be updated, TreeSHAP-IQ needs to
update the IP, the QP and the interaction scores for all in-
teraction subsets that contain the currently observed feature.
This increases the computational complexity by a factor of(
n−1
s−1

)
. Furthermore, all interaction scores have to be stored,

requiring storage of
(
n
s

)
. To store the IQ and QP, we require

further a storage capacity of O(d2max ·
(
n
s

)
). The computa-

tional complexity is thus summarized as follows.

TreeSHAP-IQ complexity for the SII of order s

Computational Complexity Storage Complexity

O
(
m · ℓT · dmax ·

(
n− 1

s− 1

))
O
(
d2max ·

(
n

s

))
For the computation of the SV, the computational com-

plexity of TreeSHAP-IQ is similar to Linear TreeSHAP. The
storage capacity is increased by a factor n, as we store the
IP and QP for every feature. Moreover, for pairwise interac-
tions, TreeSHAP-IQ mirrors the complexity of the computa-
tion proposed by Lundberg et al. (2020) using Linear Tree-
SHAP. However, our method distinguishes itself by relying
on a single initialization of the tree parameters.

Extending TreeSHAP-IQ to General CIIs
TreeSHAP-IQ can be extended to the broad class of CIIs. A
CII is defined as ICII(f, S) :=

∑
T⊆N\S w

CII
s (|T |)δS(f, T )

with non-negative weights wCII
s that depend on the interac-

tion order s := |S| (Grabisch and Roubens 1999; Fumagalli
et al. 2023). This includes other approaches of extending the
SV to interactions, such as STI and FSI, as well as Banzhaf
interactions (Patel, Strobel, and Zick 2021). Observe from
the proofs, that different weights in CIIs solely impact the
SP, and in particular ψ. To extend the SP for CIIs, we let
d := |F(Rv)| and scale Gv to the degree of n, which does
not impact ψ due to the scale invariance. We then observe

ψ

(⌊
Gv ⊙ (1 + y)n−d∏

j∈S(1 + qj,v)

⌋)
= Rv

∅

∑
T⊆N\S

wSII
s (t)

∏
j∈S

qj,v,

where wSII
s (t) is the CII weight for SII, cf. Definition 1. Re-

call from (5) that these weights are retrieved from the poly-
nomial Bn−s. Thus, we generalize ψCII

d : R[x]d → R to

ψCII
d (A) := ⟨A,Wd⟩ with WCII

d (y) :=
d∑

k=0

wCII
n−d(k)y

k.

If Gv is scaled to degree n, then ψCII
d is always evaluated

with a polynomial of degree d = n− |S|. Further, note that
for SII, we have ψd(A) ≡ ψSII

d (A), where the quotient d+1
is included in the weights, i.e. W SII

d (y) = Bd/(d+ 1).

Datasets # Instances # Features Target Speed-Up

Credit 1 000 20 {0, 1} ∼ 104

Bank 45 211 16 {0, 1} ∼ 103

Adult 45 222 14 {0, 1} ∼ 103

Bike 17 379 12 R ∼ 101

COMPAS 6 172 11 {0, 1} ∼ 102

Titanic 891 9 {0, 1} ∼ 101

California 20 640 8 R ∼ 1

Table 1: Overview of datasets and speed-up compared to a
naive computation

200 220 240 260 280 300 320

+111.9

+42.53

+32.98

+28.02

+24.64

+47.15

59.62

44.16

37.68

20.51

E[f(X)] =191.237

f(x) =316.49

(19.0)
hour.

(19.0 x 0.0)
hour. x worki.

(0.0)
year.

(31.6)
temp.

(19.0 x 0.0 x 34.8)
hour. x worki. x feel t.

(19.0 x 34.8)
hour. x feel t.

(19.0 x 31.6)
hour. x temp.

(34.8)
feel t.

(0.0 x 19.0)
year. x hour.

other interactions

Figure 4: Waterfall chart for n-SII scores with s0 = 3 and a
prediction of the Bike regression dataset.

Implementation of CIIs in TreeSHAP-IQ. Using ψCII,
any CII can be computed by TreeSHAP-IQ. In contrast to
ψ ≡ ψSII, the scale invariance does not hold for CIIs. There-
fore, the SP cannot be reduced to the degree d := |F(Rv)|.
However, if we maintain the SP at the maximum degree
n, then all previous results apply. If the SP is stored in
multipoint interpolation form, then this merely requires a
multiplication with the corresponding term of (y + 1)n−d,
which can be efficiently precalculated. Thus, the computa-
tional complexity is not affected by this extension. Provided
dmax ≥ n, the storage complexity is not affected either.

Experiments
We apply TreeSHAP-IQ2 on XGBoost (XBG) (Chen and
Guestrin 2016), gradient-boosted trees (GBTs), random for-
est (RF), and decision tree (DT) algorithms on the German
Credit (Hofmann 1994), Bank (Moro, Cortez, and Laure-
ano 2011), Adult Census (Kohavi 1996), Bike (Fanaee-T and
Gama 2014), COMPAS (Angwin et al. 2016), Titanic (Daw-
son 1995), and California (Kelley Pace and Barry 1997)
datasets, see Table 1. For further experimental results, in-
cluding a run-time analysis and detailed information on the
datasets, models, and pre-processing steps, we refer to Ap-
pendix C. We compute additive interactions for single pre-
dictions using TreeSHAP-IQ with n-SII of different order.

2All experimental code and the technical appendix can be found
at: github.com/mmschlk/TreeSHAP-IQ.
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Figure 5: Visualization of positive and negative n-SII scores
per feature with s0 = 7 for an observation in German Credit.

TreeSHAP-IQ Reveals Intricate Feature Interactions.
Using TreeSHAP-IQ, we examine the model’s prediction
based on higher order interaction effects. We distinguish n-
SII scores that positively (red) and negatively (blue) impact
the prediction. In Figure 1, we visualize n-SII with s0 = 2.
The width of the network vertices (order 1) and the network
edges (order 2) describes the absolute value of the corre-
sponding n-SII scores. We observe that there exist features
that strongly impact the prediction individually, such as the
information about a non-existing checking account. How-
ever, the present credit amount strongly impacts the predic-
tion only in interaction with the given installment rate (pos-
itively) and duration (negatively).

The force plots in Figure 2 illustrate how the additive lo-
cal explanations change, if higher order interactions are con-
sidered. We consider the n-SII scores for s0 = 1, 2, 3 for
the California housing dataset and an XGBoost regressor.
The force plot displays the positive and negative interaction
scores starting from the predicted value to the left and right,
respectively, sorted by their absolute value. We observe that
individual feature effects, such as Longitude, reduce when
higher order interactions are considered. The interaction of
Longitude and Latitude reveals the importance of the geo-
graphic location of this instance.

The waterfall chart in Figure 4 displays the explanations
of n-SII with order s0 = 3 for an instance in the bike dataset.
For this instance, it can be seen that the interaction of the
evening hour with a non-working day affects the prediction
negatively, whereas the interaction with both temperature
features contribute positively.

n-SII Plots Quantify Interactions of Each Feature. To
assess the strength of interaction per individual feature, we
utilize the visualization of n-SII values presented by Bordt
and von Luxburg (2023). We compute exact n-SII scores up
to order s0 = 7 for the German Credit dataset. The positive
and negative interactions are distributed equally onto each
feature in the subset and displayed on the positive and neg-
ative axes, respectively. The sum of all stacked bars results
in the SV of each feature (Bordt and von Luxburg 2023). In

Figure 5, we observe that the interaction effects diminish at
order 5, with interactions of orders 6 and 7 being virtually
absent. Assuming that interactions decay with higher order,
this visualization can be used to find the maximum order to
explain the prediction (i.e. s0 = 5 from Figure 5).

Limitations
TreeSHAP-IQ applies to the broad class of CIIs, provided
that its representation in terms of a weighted sum of dis-
crete derivatives is known. For FSI, this representation is
only explicitly known for top-order interactions (Tsai, Yeh,
and Ravikumar 2023), as FSI is motivated as a solution to
a constrained weighted least square problem. Similar to the
SV, Shapley interactions strongly rely on how absent fea-
tures are modeled. In our work, we considered the path de-
pendent feature perturbation (Lundberg et al. 2020), which
is linked to the observational approach (Chen et al. 2020).
The interventional approach (Lundberg et al. 2020) can be
computed with TreeSHAP-IQ, akin to TreeSHAP, but simi-
larly increases the computational complexity by the number
of samples used in the background dataset. In this case, more
efficient variants should be used instead (Zern, Broelemann,
and Kasneci 2023). Both paradigms yield different explana-
tions, where the appropriate choice should be carefully done
depending on the application (Chen et al. 2020).

Conclusion and Future Work
We presented TreeSHAP-IQ, an efficient method to com-
pute any-order additive Shapley interactions that locally
explain single predictions for general ensembles of trees.
Akin to SOTA Linear TreeSHAP (Yu et al. 2022), our al-
gorithm is based on a solid theoretical foundation that ex-
ploits polynomial arithmetic. We applied TreeSHAP-IQ on
SOTA ML models, such as XGBoost (Chen and Guestrin
2016), and several benchmark datasets. We demonstrated
that TreeSHAP-IQ reveals intricate feature interactions,
which enrich Shapley-based feature attribution.

Utilizing well-known visualization and aggregation tech-
niques from machine learning (Lundberg and Lee 2017;
Bordt and von Luxburg 2023) and statistics (Inglis, Par-
nell, and Hurley 2022) we presented these scores in a man-
ner that is easily understandable and interpretable. While
interactions are widely studied in statistics, explaining lo-
cal predictions using interaction scores, in particular with
Shapley-based interactions, is an emerging line of research
in the field of XAI. Due to the exponentially increasing num-
ber of interactions, we provided intuitive visualizations to
present TreeSHAP-IQ scores to practitioners. Nevertheless,
it would be beneficial to explore further human-centered
post-processing techniques and visualizations, as well as rig-
orously evaluate the explanatory capabilities of TreeSHAP-
IQ with user studies, especially to validate quantitatively that
the user’s understanding increases when higher order expla-
nations are presented. Additionally, the n-SII scores define
a local generalized additive model (GAM) (Bordt and von
Luxburg 2023) that could be further linked to functional de-
composition (Hiabu, Meyer, and Wright 2023).
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