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Abstract

Continual Learning (CL) aims to learn a sequence of prob-
lems (i.e., tasks and domains) by transferring knowledge ac-
quired on previous problems, whilst avoiding forgetting of
past ones. Different from previous approaches which focused
on CL for one NLP task or domain in a specific use-case, in
this paper, we address a more general CL setting to learn from
a sequence of problems in a unique framework. Our method,
HOP, permits to hop across tasks and domains by address-
ing the CL problem along three directions: (i) we employ a
set of adapters to generalize a large pre-trained model to un-
seen problems, (ii) we compute high-order moments over the
distribution of embedded representations to distinguish inde-
pendent and correlated statistics across different tasks and do-
mains, (iii) we process this enriched information with auxil-
iary heads specialized for each end problem. Extensive exper-
imental campaign on 4 NLP applications, 5 benchmarks and
2 CL setups demonstrates the effectiveness of our HOP.

Introduction

Current practice to obtain a deep learning model to per-
form a specific assignment is to train the model on a specific
dataset for that particular assignment (Chen and Liu 2018).
However, this paradigm has several inherent limitations. For
example, as models get larger, training from scratch re-
quires a larger amount of expensive labeled data and com-
putation time, which can be reduced by knowledge transfer
(KT) from a pre-trained model on a base domain. This prob-
lem is generally addressed via adapting (e.g., through fine-
tuning, FT) large pre-trained language models (e.g., BERT,
Devlin et al. 2019) to various downstream NLP applica-
tions, such as Text Classification (TC, Wang et al. 2023a;
Wu et al. 2023; Ke, Xu, and Liu 2021; Hu et al. 2021), Nat-
ural Language Inference (NLI, Pfeiffer et al. 2020), Doc-
ument (Ke et al. 2020) or Aspect (Ke, Xu, and Liu 2021;
Zhou et al. 2021) Sentiment Classification (DSC and ASC).
In our work, we employ the Adapter-BERT (Houlsby et al.
2019) model. FT a large pre-trained model reaches state-
of-the-art results on NLP benchmarks with a static distri-
bution. However, if a stream of problems' are presented se-
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"For the sake of clarity, we refer to problems as either tasks or
domains experienced by the CL method over time.
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quentially, the naively FT model faces catastrophic forget-
ting (CF, McCloskey and Cohen 1989) of previous knowl-
edge due to the non-stationary data distribution, and can-
not make use of past knowledge to improve capability on
subsequent problems (forward KT, Lopez-Paz and Ranzato
2017) or vice-versa (backward KT). In particular, high CF
and low KT hinder performance of CL for NLP, as several
NLP applications share similar knowledge that can be ex-
ploited to achieve higher accuracy on future/previous prob-
lems, without accuracy degradation. Indeed, ideally, learn-
ing a sequence of problems should allow multiple problems
to support each other via KT (Rusu et al. 2016; Ke, Liu, and
Huang 2020). To address such issues towards more versatile
NLP models, we focus on CL to tune a pre-trained Adapter-
BERT for a stream of problems.

In CL, a model learns a sequence of problems incremen-
tally. After each incremental learning (IL) stage is com-
pleted, its training data is typically discarded (Chen and
Liu 2018). Three main families of CL setups can be iden-
tified (Van de Ven and Tolias 2019): namely, Task-IL (TIL),
Domain-IL (DIL), and Class-IL (CIL). TIL builds one
model for each task (e.g., to classify sentiment in products’
reviews). At test time, task identifier specifies the proper
model for each input sample. This could significantly in-
crease the number of parameters; however, in our case, most
of the parameters are shared across problems and only a few
parameters are problem-specific. DIL is similar to TIL, how-
ever, builds a single head for each domain as classes are
shared across domains. In DIL, no identifier is required at
test time and subsequent problems present data from dif-
ferent domains (e.g., reviews from online commerce, or
from movie critique, efc.). In CIL, non-overlapping classes
are learned progressively. Opposed from traditional CL ap-
proaches used in Computer Vision (CV), most of the NLP
problems are formulated as either TIL or DIL (Biesialska,
Biesialska, and Costa-jussa 2020; Ke and Liu 2022; Ke et al.
2021b; Sun, Ho, and Lee 2019) and, to the best of our knowl-
edge, no prior work has addressed them both jointly.

Differently from concurrent CL NLP approaches, in this
paper, we evaluate models on both TIL and DIL in a uni-
fied framework which employs parameter-efficient transfer
learning strategies to adapt the models to each end problem:
(i) as in current state-of-the-art approaches (Ke, Xu, and Liu
2021; Ke, Liu, and Huang 2020), we use Adapter-BERT
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with a separate set of adapters tuned for each problem; (ii)
we discard the [CLS] token, which we show being coun-
terproductive for CL, and rather compute high-order statisti-
cal measures over the distribution of extracted features (i.e.,
tokens representing text embeddings); (iii) we use an MLP
head specialized for each problem to process and combine
such information. With a slight abuse of notation, we call
our method HOP, from High-Order Pooling, that is the most
distinctive component of our method.

Our HOP extracts multiple cues from the limited sam-
ples drawn from non-stationary distributions while preserv-
ing previous knowledge. HOP accurately models the vari-
able distribution of problems since input-level distribution
shift is reflected into feature-level distribution shift. Indeed,
we show that this variation is not properly captured by the
single [CLS] token. We present an extensive validation on
2 CL setups (DIL and TIL) and 5 benchmarks outperforming
current state-of-the-art on accuracy, KT, CF, and runtime.

Related Work

For a wide survey of the current state-of-the-art, we refer to
recent CL reviews (De Lange et al. 2021; Lesort et al. 2020;
Michieli, Toldo, and Zanuttigh 2022; Biesialska, Biesialska,
and Costa-jussa 2020; Ke and Liu 2022).

Traditional CL methods focused on image classification
and can be grouped according to the proposed technique.
(1) Regularization-based methods are generally based on
knowledge distillation (Li and Hoiem 2017; Jung et al. 2016;
Michieli and Zanuttigh 2019) or on importance score for
each parameter to compute a penalty term in the optimiza-
tion to reduce weight deviation while learning new problems
(Kirkpatrick et al. 2017; Zeng et al. 2019; Nguyen et al.
2018; Zenke, Poole, and Ganguli 2017; Ahn et al. 2019). (2)
Parameter-isolation approaches dedicate a set of parameters
to each problem to reduce forgetting when learning subse-
quent problems. Parameters can be either masked out (Serra
et al. 2018; Mallya and Lazebnik 2018; Mallya, Davis, and
Lazebnik 2018; Wang et al. 2023b), frozen (Rusu et al. 2016;
Xu and Zhu 2018; Michieli and Zanuttigh 2021), or new
branches are grown over time (Rusu et al. 2016; Xu and
Zhu 2018). (3) Replay-based methods either retain an ex-
emplar set of previously seen data (Rebulffi et al. 2017; Isele
and Cosgun 2018; Lopez-Paz and Ranzato 2017; Chaudhry
et al. 2018) or generated pseudo-samples (Shin et al. 2017;
Maracani et al. 2021) to reduce CF and promote KT.

CL in NLP is in rapid expansion due to its great importance.
Early works tackled lifelong learning (with no knowledge
preservation, hence no CF) for sentiment analysis (Carlson
et al. 2010; Silver, Yang, and Li 2013; Ruvolo and Eaton
2013; Chen, Ma, and Liu 2015; Wang et al. 2019; Qin, Hu,
and Liu 2020; Wang et al. 2018). Recent works have dealt
with CF in many applications: sentiment analysis (Lv et al.
2019; Ke et al. 2021b; Ke, Xu, and Liu 2021), dialogue sys-
tems (Shen, Zeng, and Jin 2019; Madotto et al. 2020; Qian,
Wei, and Yu 2021; Chien and Chen 2021), language model-
ing (Sun, Ho, and Lee 2019; Chuang, Su, and Chen 2020)
and learning (Li et al. 2019), cross-lingual modeling (Liu
et al. 2020), sentence embedding (Liu, Ungar, and Sedoc
2019), machine translation (Khayrallah et al. 2018; Zhan
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et al. 2021), question answering (Greco et al. 2019), named
entity recognition (Monaikul et al. 2021).

Most of the previous literature focuses on the simpler TIL
setup. SRK (Lv et al. 2019) and KAN (Ke et al. 2020) tack-
led DSC via recurrent architectures. They are mainly con-
ceived for KT, hence they suffer from CF and cannot be
easily extended to BERT. B-CL (Ke, Xu, and Liu 2021) is
the first CL framework for ASC: it employs Adapter-BERT
and is based on capsule network and dynamic routing, bring-
ing only limited KT. CAT (Ke, Liu, and Huang 2020) works
on mixed sequences of similar and dissimilar problems,
and can transfer knowledge among similar problems. Snap-
shot (Wang et al. 2023a) regularizes training with adapters
learned over previous problems. Parallel to CL, AdapterFu-
sion (Pfeiffer et al. 2021) uses a two-stage method to learn
the adapters of Adapter-BERT to improve multi-task learn-
ing, hence it has no CF. CTR (Ke et al. 2021a) extends the
adapters concept to the idea of CL plugins to adapt BERT to
each problem, and it is the state-of-the-art in TIL.

Recently, DIL has gained attention. LAMOL (Sun, Ho,
and Lee 2019) uses a language model (i.e., GPT-2 Radford
et al. 2019) to solve sequential problems and to generate
training pseudo-samples against CF; CLASSIC (Ke et al.
2021b) uses contrastive learning to promote KT.

Pooling in NLP has been recently studied to improve ac-
curacy (Wu et al. 2020; Acs, Kadar, and Kornai 2021; Zhao
et al. 2022). In particular, Wu et al. 2020 propose an atten-
tive pooling scheme with learnable norm to extract accurate
text representations in different problems, motivated by 3
observations: (i) different contexts have different informa-
tiveness for learning text representations (e.g., they might be
important to determine sentiment polarity, however, proba-
bly less relevant for TC); (ii) different problems have differ-
ent characteristics; (iii) popular pooling methods (e.g., MAX
or AVG) may over-emphasize some concepts and disregard
other useful contextual information. To summarize, some
problem specific words or sentences contain information re-
garding output class in various ways. Our work is motivated
by these results. However, such pooling schemes cannot be
applied to CL. To cope with this, our HOP computes mul-
tiple statistical moments from the encoded text to capture
evolution of different statistics of the input.

Problem Formulation

CL learns a sequence of problems ¢t € {1,...,T}. Each
problem ¢ has its test data S, and training data
St = {(zF,yF) 1%, where zf € X; is a training sample
with label yf € Yy (i.e., supervised problems). Then, the
CL goal is to minimize the empirical loss £ over all seen
problems. At problem 7', we aim at training models f;, Vt,
parameterized by 6 (i.e., ¥ = fi(z¥;6)), which minimize
the loss

T 1 Ny
. N N
;zt, with lt—ﬁt;.ﬁ(yt,yt). (1)

However, Eq. (1) cannot be minimized since no (in case of
replay-free CL methods) or limited (in case of replay CL
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Figure 1: The proposed HOP framework. During the incre-
mental step 7', only orange modules are trained, while gray
and green modules are frozen.
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Figure 2: Accuracy matrix showing the main CL metrics

used in this work. $; and S; are the testing and training
datasets at step ¢.

methods) access to previous data is guaranteed. In the most
challenging replay-free setup, we can minimize the empiri-
cal loss on the current problem 7T only, i.e., l7.

Therefore, CL methods try to approximate Eq. (1) in dif-
ferent ways (e.g., via regularization, replay, efc.). Instead,
we extract high-order statistics from the input dataset and we
process this additional information via an auxiliary problem-
specific multi-layer perceptron (MLP) to adapt the current
model to the current problem.

Depending on the properties of (X, );) Vt, we can iden-
tify TIL, DIL and CIL. In CIL, models are progressively
trained with new classes, and it has been less attractive for
NLP applications as the number of classes is generally de-
termined a priori (Ke et al. 2021b). Therefore, we address
both TIL and DIL in a unified framework of CL for NLP.

Our Proposed Framework: HOP

Our framework employs parameter-efficient learning strate-
gies to adapt models to each end problem, namely: (i)
adapter modules, (ii) computation of high-order moments,
and (iii) a specialized MLP for each end problem. In the ex-
perimental validation, we apply HOP to BERT-based models
due to its superior performance in NLP, however, it can be
seamlessly applied to other architectures as well.

(i) Following recent CL approaches for NLP (Ke, Xu,
and Liu 2021; Ke, Liu, and Huang 2020), our best ar-
chitecture relies on Adapter-BERT, with a separate set of
adapters tuned for each problem. Adding adapters to BERT
is a highly parameter-efficient transfer learning paradigm:
in CL, this means that subsequent problems have separate
adapters (which are small in size). An adapter layer is a tun-
able 2-layer fully-connected network, which adapts the pre-
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trained model to the end problem at hand. In this way, there
is no need for a separate BERT model fine-tuned on each
problem, which is extremely parameter-inefficient if many
problems are learned in sequence.

(i) HOP computes high-order statistical moments from the
distribution of extracted tokens to capture most of the in-
formation from the input sequence. Current approaches (Ke,
Xu, and Liu 2021; Ke et al. 2021a) design their CL systems
relying on the [CLS] token embeddings. More formally, we
consider f; composed of a tokenizer 7 and a classifier C by
ft = C o T torecognize N¢ classes (o represents function
composition). Traditionally, 7 includes a reduction function
‘R as the last layer to summarize the whole input sequence
into one element. Therefore, we can write 7 = R o 7T,
with T being the tokenizer without the final reduction func-
tion. R is often identified by the [CLS] token or by AVG
pooling. However, different problems usually have different
peculiar patterns in the input samples, and the output should
be an explicit function of the whole, non-reduced, embed-
ding sequence. Therefore, we compute high-order central
moments from the input sequence and concatenate (concat)
them. We define the reduction function by

R = concat(mq, ma, ... 2)
where p is the order of considered moments, that is, mq is
the first moment (i.e., AVG), ms is the second moment (i.e.,
the variance), efc. (Papoulis and U. Pillai 2002; Michieli,
Parada, and Ozay 2023; Michieli and Ozay 2023; Michieli
et al. 2024). Such moments are computed over the dis-
tribution of tokens identified by the unreduced tokenizer
T’ : xf — hy, where d denotes the dimension of the em-

bedded sequence and each Ay ; € R? with @ channels.
This step may recall the statistical moments of tokens iden-
tified by standard N-gram models (Cortes and Mohri 2004).
(iii) We process and combine embeddings computed by T
with an auxiliary MLP head specialized for each problem.
We replace the usual linear layer constituting C with an MLP.
The MLP head increases the adaptation capacity to process
the high order information while being highly parameter ef-
ficient. We design the MLP as a 2-layer network consisting
of p - @ and N¢ neurons at each layer, respectively.

Overall, our HOP can extract richer information from the
samples drawn from the non-stationary input sequence dis-
tributions while preserving previous knowledge. Therefore,
our method can hop across the distributions of subsequent
tasks and domains, since input-level distribution shift is re-
flected into a feature-level distribution shift via the embed-
ding tokenizer. Our framework is applicable to both TIL and
DIL setups: in TIL, one head per task adapts models to each
of the tasks separately; in DIL, one single head is incremen-
tally adapted to the varying domains.

HOP alleviates CF thanks to (i) frozen shared backbone to
extract shared rich features, and (ii) adapters tuned for each
problem. It promotes KT via (i) initialization of adapters to
the last achieved ones, therefore bringing onward the previ-
ous information; (ii) modeling tailed distributions of tokens
encountered in subsequent CL problems with different mo-
ments. Finally, MLP heads improve plasticity for new tasks.

7mp)7
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An overview of our framework is given in Figure 1, where
we depict the modular property of HOP, so it can be plugged
on top of other CL methods. Compared to competing meth-
ods, HOP only brings a minimal computation and complex-
ity footprint. Detailed analyses are provided in Sec. .

The main novelty of our HOP are: (i) we are the first to
address tailed distribution of features and its relation to CL;
(i1) we revisit high-order feature statistics (inspired from N-
grams co-occurrence statistics) to deep NLP architectures;
(iii) we exploit them in CL for the first time; (iv) we use
adapters for CL extending concurrent works to jointly tackle
TIL/DIL; (v) we include specialized MLP heads to improve
plasticity in learning new concepts. Overall, we propose
a simple yet effective CL baseline that outperforms com-
plex architectures in all experiments, while requiring signifi-
cantly lower training time. Additionally, it can be seamlessly
applied on top of competitors.

Experimental Setup

Architectures. We evaluate HOP on 3 BERT-based archi-
tectures (Devlin et al. 2019). Previous works (Ke et al.
2021a; Ke, Xu, and Liu 2021) have shown that naively fine-
tuning BERT increases CF, hence we focus on more versatile
ways to learn new concepts limiting CF. BF + Lin consists in
a Frozen BERT (BF) with a trainable linear layer on top. BF
+ CNN consists in a BF with a trainable CNN TC network
(Kim 2014) on top. Adapter-BERT trains only the adapter
blocks built of 2 linear layers each with 2000 neurons.

Datasets. We consider 4 applications, unifying the setups
proposed by (Ke et al. 2021b,a; Asghar et al. 2020). (1)
ASC classifies a review sentence on either positive, nega-
tive or neutral aspect-level sentiments. We use 19 datasets
(i.e., reviews of 19 products) taken from four sources: 5
products from HL5Domains (Hu and Liu 2004), 3 prod-
ucts from Liu3Domains (Liu et al. 2015), 9 products from
Ding9Domains (Ding, Liu, and Yu 2008), and 2 products
from SemEvall4 Task 4 (Pontiki et al. 2014). We applied
the same data filtering of previous works for fair compari-
son (Ke et al. 2021a). (2) DSC classifies product reviews into
either positive or negative opinion classes, using TC formu-
lation of Devlin et al. 2019. We use 10 DSC datasets (i.e.,
reviews of 10 products, Ke et al. 2020). We consider both a
small training version of 100 positive and 100 negative re-
views per problem, and the full training version of 2500 pos-
itive and 2500 negative reviews per problem. Validation and
test sets are fixed, and each consists of 250 reviews per each
class. The first experiment is arguably more useful in prac-
tice because labeling a large number of examples is costly,
thus, ablation is carried out on this split. (3) TC classifies
text into 20 classes using 20News data (Lang 1995). We
split documents into 10 problems with 2 classes per prob-
lem (in DIL, N¢ is supposed known a priori). Classes are
variegate and share little knowledge, hence forgetting is the
main issue. (4) We target NLI for sentence understanding
using the MultiNLI dataset (Williams, Nangia, and Bow-
man 2018) which is one of the largest corpus of its kind.
Sentences are classified into: entailment, neutral and con-
tradiction. We split data in 5 problems, each belonging to a
specific domain (fiction, telephone, etc., Asghar et al. 2020).
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Baselines. As the first baseline, we consider a separate
model learned for each problem independently, which we
call SDL (standalone). No KT or CF occurs here. Sec-
ond, we compare against FT which simply optimizes the
model over the sequence of problems. Third, we examine
13 CL competitors. Among them, some approaches have
been proposed for CL in NLP and have been briefly de-
scribed in Sec. . Additionally, we adapted CL methods pro-
posed in CV for our NLP applications. For TIL-based works:
UCL (Ahn et al. 2019) proposes uncertainty-based regu-
larization via a Bayesian online learning framework; HAT
(Serra et al. 2018) focuses on employing embeddings pre-
serving information of previous problems while learning
new ones. CIL approaches can be adapted to TIL by training
the head of the specific problem and considering predictions
of the specific head during testing. Among them, we used (i)
regularization-based methods, e.g., EWC (Kirkpatrick et al.
2017), OWM (Zeng et al. 2019), and L2 (Kirkpatrick et al.
2017), and (ii) replay-based methods, e.g., the efficient A-
GEM (Chaudhry et al. 2018), and DER++ (Buzzega et al.
2020) for pseudo replay. We note that a single upper bound
for accuracy does not exist, since different methods have a
different number of parameters, as shown in Table 3.
Hyperparameters. We employ the same scenarios as cur-
rent state-of-the-art approaches (Ke et al. 2021a). We follow
the CL evaluation of (De Lange et al. 2021): after training on
one problem is completed, the respective training data is no
longer accessible; all hyperparameters are chosen according
to the performance on the validation set; after all problems
are learned, testing is carried out on the test set. We report
results averaged over 5 random seeds (i.e., different ordering
of problems) and we report the mean (the standard deviation
is negligible - lower than 0.1 in all cases). All baseline ap-
proaches use the [CLS] token as the reduction function of
the tokenizer. We show that this is a major limitation, con-
currently hinted also by (Mirzadeh et al. 2022). However,
(Mirzadeh et al. 2022) address the issue only marginally,
while we propose a simple and effective framework to over-
come it. The only hyperparameter specific to our framework
is p, which is set according to the best validation results.
Empirically, p = 3 provides the best results and represents
a good compromise with additional computational complex-
1ty.

Metrics. We compute both mean accuracy (mAcc, 1) and
macro-F1 (MF1, 1), to reduce biases in accuracy originat-
ing from imbalanced classes. To fully characterize the dif-
ferent approaches, we report a wide range of forgetting and
transfer metrics computed from the accuracy matrix (Mai
et al. 2022), as illustrated in Figure 2. Namely, we report:
backward transfer (BwT, 1), which tracks the influence that
learning a new problem has on the preceding problems per-
formance, to measure stability; forward transfer (FwT, 1)
measures the positive influence of learning a problem on fu-
ture problems performance; forgetting (Forg, |) averages
the difference of class-wise accuracy achieved at the last
step and the best class-wise accuracy achieved previously;
plasticity (Pla, T) averages the accuracy achieved on each
problem evaluated right after learning that problem. Addi-
tionally, we report the number of overall (#OP, |) and of
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ASC DSC (small) DSC (full) 20News NLI
TIL DIL TIL DIL TIL DIL TIL DIL TIL DIL

mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1 mAcc MF1

Method

ESDL  56.32 27.8 58.48 35.21 48.97 42.21 57.87 56.97 82.32 80.11 77.45 76.94 95.31 95.30 54.96 54.31 48.69 43.78 43.24 41.55
FFT~ " T61.1832.00 68.42 39.97 6041 5236 66.12765.06 70.53 63.62 75.07 7419 66.30 65.59 55.85 54.88 42.53 37.09 41.08 38.17
E HOP  86.38 78.64 87.54 81.79 78.48 75.31 81.96 80.93 84.59 83.18 85.63 84.65 96.45 96.45 68.45 66.16 61.05 60.88 59.24 58.82
SDL  78.14 58.13 78.14 58.13 73.88 67.97 73.88 67.97 85.34 80.17 85.34 80.17 96.49 96.48 96.49 96.48 68.21 67.49 68.21 67.49
FT~ ~ 85.5176.64 86.85 78.73 83.12 79.23 85.66 84.87 61.88 45.79 85.54 84.59 83.28 81.81 64.4558.68 71.98 71.70 71.70 71.47
z L2 56.04 38.40 86.31 77.90 59.17 48.39 82.29 81.32 69.80 62.63 64.92 61.06 72.14 65.39 62.50 58.85 56.80 56.49 68.71 68.55
Z A-GEM 86.06 78.44 79.74 71.78 59.33 45.94 80.23 79.27 70.67 61.77 87.53 86.61 93.31 92.95 58.50 46.86 71.95 71.89 72.49 72.34
2 DER++ 84.27 75.08 87.53 80.09 72.29 66.28 83.26 82.29 86.70 85.46 86.87 85.99 60.44 49.67 54.20 39.22 70.48 69.98 71.84 71.69
= EWC  86.37 74.52 86.60 78.31 82.38 78.41 81.88 80.99 72.77 65.76 85.78 84.65 80.26 78.60 75.40 71.98 68.85 68.18 71.10 70.90
L OWM 87.02 79.31 86.11 76.65 58.07 42.63 80.25 79.45 86.30 85.36 82.31 81.44 84.54 82.73 50.00 33.33 72.23 71.96 65.97 65.81
é UCL  83.89 74.82 85.38 76.90 80.12 74.13 84.39 83.59 74.76 69.48 89.00 88.27 94.65 94.63 72.20 67.15 71.61 71.46 72.66 72.50
— HAT  86.74 78.16 84.73 76.49 79.48 72.78 79.98 79.10 87.29 86.14 88.07 87.26 93.51 92.93 53.80 42.56 69.78 69.70 71.06 70.93
8 CAT  83.68 68.64 87.32 81.42 67.41 56.22 71.03 69.40 87.34 86.51 83.56 82.74 95.17 95.16 51.15 44.11 72.39 72.08 73.21 73.10
KAN  85.49 77.38 83.20 73.52 77.27 72.34 68.02 66.13 82.32 81.23 86.10 85.30 73.07 69.97 64.95 58.84 72.77 72.72 73.97 73.86
SRK  84.76 78.52 83.91 74.38 78.58 76.03 75.58 74.64 83.99 82.66 88.14 87.45 79.64 77.89 57.80 51.26 69.84 69.79 70.69 70.54
HOP  87.51 80.45 88.16 82.76 83.79 81.45 85.74 84.98 87.98 86.91 89.30 88.54 95.23 95.20 74.32 72.10 74.49 74.34 76.59 76.45
SDL  85.96 78.07 85.96 78.07 76.31 71.04 76.31 71.04 88.30 87.31 88.30 87.31 96.20 96.19 96.20 96.19 72.54 71.26 72.54 71.26
FT ~ 54.0344.81 86.67 78.04 55.19 35.28 82.22 81.32 64.94 63.40 88.77 88.21 68.29 61.70 63.10 57.87 69.31 67.80 81.63 81.59
L2 63.97 52.43 75.64 59.78 70.87 69.11 83.78 82.86 73.03 71.50 89.02 88.49 69.56 65.50 63.85 61.29 77.16 76.85 78.81 78.91

=~ A-GEM 45.88 28.21 86.78 77.84 59.35 54.20 86.25 85.49 71.22 69.94 86.54 56.12 60.29 50.40 62.24 60.30 78.84 78.04 77.45 77.36
& DER++ 47.63 35.54 88.59 79.85 63.11 61.96 84.00 83.16 59.67 57.82 87.12 86.43 58.95 49.58 60.18 57.89 74.12 73.78 79.84 79.56
56.30 49.58 88.05 78.75 58.34 42.85 87.29 86.34 62.69 61.51 88.58 87.94 61.86 53.94 49.95 36.86 75.72 75.38 80.63 80.59

3 OWM 7299 66.51 87.66 78.82 73.97 71.96 77.32 76.68 85.46 84.57 85.78 85.45 71.10 66.25 60.23 57.94 70.45 68.24 77.65 76.89
§ UCL  64.46 36.64 71.23 39.61 48.36 32.07 56.53 52.96 57.06 55.86 88.18 87.54 51.75 36.06 50.25 36.78 76.54 76.43 80.36 80.40
< HAT  86.14 78.52 88.23 79.19 80.83 78.41 86.22 85.44 88.00 87.26 86.52 85.78 95.22 95.21 63.30 60.44 71.51 68.83 81.02 80.92
<B-CL 88.29 81.40 89.83 84.22 84.34 83.12 85.92 85.11 79.76 76.51 88.12 87.48 95.07 95.04 64.50 61.87 72.92 72.71 81.23 81.02
CTR  89.47 83.62 89.13 83.52 83.96 83.00 86.01 85.16 89.31 88.75 88.36 87.89 95.25 95.23 65.76 63.04 75.95 75.46 80.78 80.64
HOP  89.84 85.06 89.87 84.12 85.63 84.18 87.84 86.96 90.08 89.44 89.93 89.41 95.30 95.29 72.30 69.67 81.75 81.66 82.46 82.22

Table 1: mAcc and M F'1 over 5 benchmark datasets on both TIL and DIL setups. We evaluate 3 network architectures based
on BERT and 14 baselines. Results are color-coded according to the column-wise value and best results are in bold.

model size for adaptation to end problems. However, it
builds a model for each problem independently using a sep-
arate network, therefore, it does not handle CF or KT. On
the other hand: FT, regularization-based approaches (such as
EWC, OWM, and L2) and replay-based approaches (such as
A-GEM and DER++) perform generally better in BF+CNN
than in Adapter-BERT, due to the fewer parameters used to
update models and apply regularization on them.

trainable parameters (#TP, ), and the computation time ({,
in minutes).

Experimental Results

Main Results. We evaluate methods on 5 benchmarks
(ASC, DSC small, DSC full, 20News, NLI) targeting 4 ap-
plications (ASC, DSC, TC, NLI) in 2 CL setups (DIL and
TIL) using 3 network architectures based on BERT. Table 1

shows that HOP clearly outperforms or achieves comparable
results to baseline competitors in every scenario.

In the first block, we evaluate them on BF + Lin. Due to
the low accuracy of this architecture, we compare our frame-
work only against SDL and FT. HOP outperforms both by
a large margin in every case. In the second block, we use
BF + CNN (Kim 2014). Here, we report comparison against
several approaches (we note that B-CL and CTR cannot be
employed with a CNN head). Finally, the best results are
achieved on Adapter-BERT reported in the third block (we
remark that CAT, KAN, SRK cannot work with adapters).
We observe that mAcc and M F'1 generally show consensus
in identifying the best methods. Also, results are higher in
DIL since a single head can transfer knowledge more easily.

SDL outperforms some approaches, due to increased
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KAN and HAT require problem identifier, and suffer from
CF in TIL. We extended them to DIL by using the last
model, which, however, shows low results in DIL. Simi-
larly, also CAT (which extends HAT), SRK and UCL can-
not achieve competitive results. Approaches specifically de-
signed for CL in NLP (i.e., B-CL and CTR) show clear im-
provements compared to the others. B-CL and CTR have
been mainly designed for TIL: they achieve competitive re-
sults in TIL setup, however they fail when employed in DIL.
HOP outperforms or it is comparable to the current state-of-
the-art competitors in every scenario, and it can deal both
with large scale data (e.g., DSC full) and with limited data
(e.g., DSC small) in both TIL and DIL. We confirm these
findings by looking at the aggregate results reported in Ta-
ble 2. The results show that HOP robustly outperforms all
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Avg Benchmarks

CL Method DIL  Avg Setups
mAcc MF1 mAcc MF1 mAcc MF1

£ SDL 66.32 57.84 58.40 53.00 62.36 55.42
f’FT 77777 60.19 50.13 61.31 56.45 60.75 53.29
EHOP (ours) 81.39 78.89 76.56 74.47 78.98 76.68
SDL 80.41 74.05 80.41 74.05 80.41 74.05
FT 77.15 71.03 7884 75.67 78.00 73.35
z L2 62.79 54.26 72.95 69.54 67.87 61.90
Z A-GEM 76.26 70.20 75.70 71.37 75.98 70.79
2 DER++ 74.84 69.29 76.74 71.86 75.79 70.58
= EwWC 78.13 73.09 80.15 77.37 79.14 75.23
g OWM 77.63 7240 72.93 67.34 75.28 69.87
é UCL 81.01 76.90 80.73 77.68 80.87 77.29
— HAT 83.36 79.94 75.53 71.27 79.44 75.61
5 CAT 81.20 75.72 73.25 70.15 77.23 72.94
KAN 78.18 74.73 75.25 71.53 76.72 73.13
SRK 79.36 76.98 7522 71.65 77.29 74.32
HOP (ours) 85.80 83.67 82.82 80.97 84.31 82.32
SDL 83.86 80.77 83.86 80.77 83.86 80.77
Fr 62.35 54.60 80.48 77.41 71.42 66.00°
L2 70.92 67.08 7822 7427 74.57 70.67
=~ A-GEM 63.12 56.16 79.85 71.42 71.48 63.79
5 DER++ 60.70 55.74 79.95 77.38 70.32 66.56
g EWC 62.98 56.65 78.90 74.10 70.94 65.37
5 OWM 74.79 71.51 77.73 75.16 76.26 73.33
E{UCL 59.63 47.41 69.31 59.46 64.47 53.44
< HAT 84.34 81.65 81.06 78.35 82.70 80.00
B-CL 84.08 81.76 81.92 79.94 83.00 80.85
CTR 86.79 85.21 82.01 80.05 84.40 82.63
HOP (ours) 88.52 87.13 84.48 82.48 86.50 84.80

Table 2: Aggregate results from Table 1. First (second) ver-
tical group of 2 columns: results averaged over the 5 bench-
marks for TIL (DIL). Last vertical group: averaged over both
benchmarks and CL setups.

baseline competitors in both TIL and DIL (first and sec-
ond vertical groups). Also, CIL-based methods are inade-
quate for TIL and DIL in NLP. Finally, the last vertical block
provides a further comparison aggregated across all bench-
marks and CL setups, and is helpful to grasp an overall sense
of the results. In general, the best performing frameworks
for BF+CNN are HOP, UCL and HAT; while for Adapter-
BERT, they are HOP, CTR, B-CL, and HAT.

CF and KT. We report additional metrics to evaluate the
intrinsic CF and KT properties of CL models in Table 3
for both TIL and DIL in the DSC small dataset. Most
regularization- and replay-based approaches designed for
image classification (first group of eight rows) are inade-
quate to address CL in NLP. These methods show low ac-
curacy due to high forgetting and low KT (BwT and F'wT),
despite having good plasticity (Pla) to learn representa-
tions for a new problem. Methods designed for CL in NLP
(second group of three rows), instead, can effectively in-
crease accuracy (mAcc and M F'1) by increasing KT, reduc-
ing F'org whilst maintaining Pla. Compared to competitors,
our HOP can find a better balance between CF and KT. In
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both TIL and DIL, modeling high order statistics using HOP
leads to increased mAcc and M F'1 by reducing Forg, al-
though showing comparable or more conservative results in
terms of KT properties (BwT', FwT and Pla of HOP are
not always maximized). Overall, our framework achieves a
better trade-off and outperforms methods proposed specifi-
cally for TIL and for DIL.

HOP Improves Other CL Methods. To ensure that HOP is
beneficial to CL in NLP applications, we include it in com-
peting CL methods and report the results in Table 4 for DSC
small in both TIL and DIL. Comparing the results against
Table 1 (gains are reported within brackets in Table 4 for
convenience) emerges clear how HOP improves CL meth-
ods almost every time, only exception for EWC DIL. In
some cases, we observe a large gain up to about 140%. The
gain is experienced in both TIL and DIL, the former being
more largely improved by our HOP. The integrated meth-
ods robustly outperform the original methods along all the
evaluated metrics. Remarkably, also current state-of-the-art
approaches as B-CL and CTR are significantly improved by
our framework.

Per-Problem Acc is shown in Figure 3. Acc evolution over
problem is measured by mAcc; (i.e., per-problem accu-
racy averaged over all problems) and mAcc; <7 (i.e., per-
problem accuracy averaged over the problems seen so far).
FT exhibits a clear performance drop due to CF and in-
ability to perform KT. Methods designed for CL in NLP
show an almost perfect monotonically increasing behaviour
of mAcet <, since they are capable of learning new prob-
lems (high plasticity) without forgetting previous ones.
Efficiency. HOP only adds a small increase in parameters
and computation time. We observe in Table 3 that adapters
of Adapter-BERT account only for about 40% (73.8M) of
the total number of parameters (183.3M), while clearly out-
performing architectures with only a linear or convolution-
based trainable head (see Table 1). Compared to FT, HOP
introduces just about 3% more total parameters, increasing
the average running training time per problem by about 8%
(1.2 to 1.3 min). We confirm in Table 4 that HOP only adds a
minimal increase in computation time when added on top of
existing CL methods. On average, HOP increases the mean
running time per problem by just 7.2%.

We further highlight the effectiveness of HOP in Figure 4.
Our approach is more computationally efficient than existing
methods while outperforming them in terms of accuracy. In
particular, HOP is much faster than the main competitors
being about 24 x faster than CTR, 4 faster than B-CL.
Other Pooling Schemes and Order of HOP. Next, we ob-
serve in Table 5 how popular pooling schemes underper-
form our solution. As a baseline, [CLS] token is used for
the final classification (Devlin et al. 2019): its low results
are due to the variable distribution of tokens over training.
AVG pooling (LeCun et al. 1998) already shows remarkable
improvements especially in handling the problem variabil-
ity in TIL. MAX pooling (Riesenhuber and Poggio 1999)
has a slightly worse effect than AVG. Concatenating AVG
and MAX (AVGMAX, Monteiro, Alam, and Falk 2020) im-
proves compared to using single clues alone. Employment
of second order statistics of tokens alone, i.e. either standard
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TIL DIL

mAcctT MF11 BwT?T FwT1 Forg| PlaT;mAccT MF11 BwT1 FwT1 Forg| PlaT;#OPi #TP| Time]
FT 55.19 3528 59.59 4550 28.79 74.71 : 82.22 81.32 83.17 79.24 5.56 82.99: 1833 73.8 1.2
L2 70.87 69.11 7148 5746 13.60 82.86, 83.78 82.86 8348 8122 144 8299,1833 738 14
A-GEM 59.35 5420 56.77 46.14 26.05 84.24, 86.25 8549 8492 83.03 0.90 84.801183.3 73.8 8.7
DER++ 63.11 6196 5092 4026 22.76 83.311 84.00 83.16 85.06 8097 346 84.15'183.3 73.8 1.2
EWC 5834 42.85 54.15 43.10 25.65 79.13' 87.29 86.34 86.05 8225 0.83 83.19'183.3 738 1.3
OWM 73.97 7196 72.19 58.32 1240 83.39: 7732  76.68 7378 54.12 6.76 79.87: 1844 748 14
UCL 48.36 32.07 51.19 4921 7.48 5212, 56.53 5296 51.07 43.16 7.08 57.71,183.4 739 13
HAT 80.83 7841 7597 58.15 6.50 83.12, 86.22 8544 8525 80.57 1.57 84.261184.0 745 1.6
BCL 84.34 8312 8476 4840 067 81.981 8592 8511 8518 7873 1.34 859212202 110.7 48
CR 8396 8300 8401 4795 028 $286' 8601 8516 8526 7881 156 8589'186.6 77.1 308
HOP (ours)  85.63 84.18 8439 4532 0.57 8276, 87.84 86.96 8511 8233 039 84411892 79.7 1.3
B-CL+HOP 86.93 8625 86.84 5147 024 86.53, 87.08 8630 86.47 84.49 0.88 87.22,244.8 1343 49
CTR + HOP 87.08 86.32 86.67 57.04 049 86.331 86.54 8573 8573 81.72 144 100.8 32.7

86.261210.2

Table 3: Collection of metrics on the DSC small dataset for every competing approach on both TIL and DIL setups.
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Figure 3: Per-problem accuracy (mAcc; and mAcc: <7) on the DSC small dataset for both TIL and DIL setups.
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Figure 4: mAcc vs. training time per problem on the TIL
setup. Optimal results are in the top-left corner.

deviation (TSDP, Wang et al. 2021) or covariance (iSQRT-
COV, Li et al. 2018), improves on TIL but not on DIL com-
pared to the baseline. HOP with p = 2 improves results
compared to AVGMAX whilst using the same number of
statistical measures from the distribution of tokens. We ob-
serve that the best results are obtained for HOP with p = 3.
Intuitively, features of different problems have similar dis-

tribution of first moments, while higher moments are dis-
criminative for the specific problems. We compute the av-
erage Wasserstein distance between distributions of features
of different problems to quantify this effect. The mean dis-
tance of first moments (0.15 £ 0.03) is considerably lower
than the mean distance of second (0.364+0.05) and third mo-
ments (0.26 & 0.07), indicating that problems are more en-
tangled in the feature space of first moment (lower distance)
than of second-third moments. Thus, second-third moments
improve accuracy. On the other hand, moments > 3 show
lower distance (e.g., the average distance of fourth moments
is 0.04 4 0.01) and yield lower results (Table 5). Therefore,
they have been ignored. HOP with m; = [CLS] concate-
nates the [CLS] token with high order statistics and shows
results similar to our framework, suggesting that the [CLS]
token can be used in conjunction with high order statistics
in par with AVG. In other words, in HOP, m; can be either
AVGor [CLS].

Conclusion

We proposed HOP, which, to our knowledge, is the first
CL method for both TIL and DIL in various NLP appli-
cations (ASC, DSC, NLI, TC). HOP is a novel approach
to adapt a pre-trained NLP model for CL. HOP relies on
adapter modules and auxiliary MLPs specialized for each
problem. Then, it computes high order moments of embed-
ded tokens to extract rich sentence-wide information, op-
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HOP + | TIL DIL

! mAcc MF1 ‘ mAcc MF1 , Time [min]
FT | 85.63 (+55.2%) 84.18 (+138.6%) , 87.94 (+7.0%) 87.04 (+7.0%) , 1.3 (+8.3%)
L2 | 82.57 (+16.5%)  80.02 (+15.8%) | 85.60 (+2.2%) 84.84 (+2.4%) I 1.4 (+0.0%)
A-GEM | 86.87 (+46.4%)  85.96 (+58.6%) | 86.91 (+0.8 %) 86.08 (+0.7%) | 8.8 (+1.1%)
DER++ 1 85.49 (+35.5%)  83.97 (+35.5%) | 87.00 (+3.6%) 86.05 (+3.5%) | 1.5 (+25.0%)
EWC | 84.43 (+44.7%)  83.30 (+94.4%) ' 8691 (:0.4%) 86.14 (-02%) | 1.4 (+7.7%)
B-CL | 8693 (+3.1%)  86.25(+3.8%) | 87.08 (+1.4%) 86.30 (+1.4%) | 4.9 (+2.1%)
CTR 1| 87.08 (+3.7%)  86.32 (+4.0%) 1 86.54 (+0.6%) 85.73 (+0.7%) 1 32.7 (+6.2%)

Table 4: Combination of HOP with competing CL methods on the DSC small dataset.

TIL DIL

mAcc MF1 mAcc MF1

[CLS] 55.19 35.28 82.22 81.32

AVG 81.44 80.53 82.94 81.68

MAX 7949 7848 82.63 81.26

AVGMAX 81.51 80.47 83.34 82.27

TSDP 77.52 7630 7891 77.50

iSQRT-COV 81.47 80.59 79.62 78.06
"HOPp =2 (ours) 83.52 8253 8691 86.12°

HOP p = 3 (ours) 85.63 84.18 87.84 86.96

HOP p = 4 (ours) 84.47 83.58 86.65 85.81
"HOP with m; = [CLS] (ours) 85.47 84.61 87.50 86.70

Table 5: Ablation results on DSC small for different pooling
schemes and HOP with different values of R.

posed to relying on a single token for classification (e.g.,
[CLS]), which fails to adapt to dynamic non-stationary in-
put distributions. HOP encourages KT among problems and
protects problem-specific knowledge reducing CF. Experi-
ments show that HOP sets new state-of-the-art results on the
most widely used CL NLP scenarios. At the same time, HOP
only adds a minimal computation footprint.
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