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Abstract

In this paper, we investigate the optimal online configuration
of episodic Markov decision processes when the space of the
possible configurations is continuous. Specifically, we study
the interaction between a learner (referred to as the configu-
rator) and an agent with a fixed, unknown policy, when the
learner aims to minimize her losses by choosing transition
functions in online fashion. The losses may be unrelated to
the agent’s rewards. This problem applies to many real-world
scenarios where the learner seeks to manipulate the Markov
decision process to her advantage. We study both determin-
istic and stochastic settings, where the losses are either fixed
or sampled from an unknown probability distribution. We de-
sign two algorithms whose peculiarity is to rely on occupancy
measures to explore with optimism the continuous space of
transition functions, achieving constant regret in determinis-
tic settings and sublinear regret in stochastic settings, respec-
tively. Moreover, we prove that the regret bound is tight with
respect to any constant factor in deterministic settings. Fi-
nally, we compare the empiric performance of our algorithms
with a baseline in synthetic experiments.

Introduction

Reinforcement Learning (RL) investigates the sequential in-
teraction between a learner and an environment, aiming
at continually improving the learner’s strategy (Sutton and
Barto 2018). In this context, the environment is customar-
ily represented as a Markov Decision Process (MDP) with
a fixed but unknown transition function. We study a general
scenario where the interaction occurs in episodes, each with
a predetermined length. Differently from the standard RL
setting, we consider the learner not to be the agent playing
the MDP, but the configurator. Precisely, at each episode,
the learner picks the transition functions for the entire MDP
(i.e., a configuration) from a fixed continuous set. Next, she
observes the loss suffered and the path traversed by the
agent, which depend both on the agent’s fixed policy and
the transition chosen for the specific episode. The aim of the
configurator is to minimize her regret between her total loss
and that provided by an optimal fixed configuration.
Our model represents various real-world situations where

the learner aims to manipulate the stochastic nature of the
*These authors contributed equally.
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MDP to her advantage. For example, consider the sale of
hotel rooms, where the MDP states are characterized by the
number of rooms booked in different categories each day,
while the transitions depend on the hotel’s pricing and user
behavior. Customarily, the hotels use a fixed pricing strat-
egy that is trained offline and implemented online (techni-
cally, it is a post-training scenario). Given that users com-
pare prices across hotels before booking rooms, a competing
hotel (acting as the MDP configurator) can strategically ad-
just its pricing to influence user behavior and consequently
alter the MDP transitions. Specifically, the competitor seeks
to reduce the number of room reservations obtained by the
agent to maximize her own.
Although this example illustrates an adversarial setting,

our model applies to general scenarios that do not require a
relationship between the configurator’s loss and the agent’s
reward.

Related Work

Online learning in MDPs Several works initially intro-
duced for on online learning (Cesa-Bianchi and Lugosi
2006; Hazan 2019) have been subsequently extended to
MDPs (Auer, Jaksch, and Ortner 2008; Even-Dar, Kakade,
and Mansour 2009; Neu et al. 2010). In particular, (Azar,
Osband, and Munos 2017) study the problem of optimal ex-
ploration in episodic MDPs with unknown transitions and
stochastic losses when the feedback is bandit. (Rosenberg
and Mansour 2019a) study the online learning problem in
episodic MDPs with adversarial losses and unknown transi-
tions when the feedback is full information, presenting an
online algorithm which provides a regret upper bound of
Õ(

p
T ), where T is the number of episodes. (Rosenberg and

Mansour 2019b) study the same setting when the feedback
is bandit, providing a regret upper bound of Õ(T 3/4), which
was subsequently improved to Õ(

p
T ) by (Jin et al. 2019).

Configurable MDPs In MDPs, the transition function is
customarily assumed to be fixed, see, e.g., (Sutton and Barto
2018). However, various subsequent works represent envi-
ronments with non-fixed transition probabilities, as provided
in the works by (Satia and Lave 1973), (White and Eldeib
1994), and (Bueno et al. 2017). Recently, the concept of
Configurable Markov Decision Processes (Conf-MDPs) was
formalized by (Metelli, Mutti, and Restelli 2018). In particu-
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lar, the authors propose an algorithm capable of optimizing,
at the same time, the environment configuration, namely,
the transition function and the policy of the learning agent.
This line of research has been further expanded upon by
(Metelli, Ghelfi, and Restelli 2019) and (Metelli, Manneschi,
and Restelli 2022). Moreover, (Ramponi et al. 2021) extend
the Conf-MDP setting to an online learning framework. This
scenario involves a configurator who chooses online a tran-
sition function from a discrete set and aims to maximize her
own reward, which is independent from the agent’s one.

Adversarial Attacks Several works deal with adversarial
attacks in MDPs, see, e.g., (Ilahi et al. 2021). In the bounded
state attacks framework, the adversary can manipulate the
current state of an MDP in order to force the learning agent
to make suboptimal decisions, see, e.g., (Pattanaik et al.
2017), (Korkmaz 2021), and (Wu et al. 2022). Instead, in
the action attacks setting, the adversary is capable of mod-
ifying the agent’s actions, see, e.g., (Lee et al. 2019), (Lee
et al. 2021) and (Tan et al. 2020). Finally, in the model at-

tacks framework, the attack consists in a (bounded) pertur-
bation of the transition function of the MDP performed by
an adversary, see, e.g., (Rakhsha et al. 2020).

Original Contribution

We investigate the problem of online configuration with con-
tinuous decision space in MDPs, where the rewards may
be both deterministic or stochastic. Precisely, we study the
problem of an online configurator which chooses at any
round a transition function from a continuous decision space
and receives a loss which depends on both the configura-
tion chosen and the fixed policy of the agent she is inter-
acting with. First, we show that our setting can be seen
as an instance of the well-known Lipschitz bandit frame-
work, as well as a generalization of many post-training ad-

versarial attacks models. Then, we propose two algorithms,
namely, O-DOSC (Online Deterministic Optimistic Con-
figuration Search) for deterministic settings and O-SOSC
(Online Stochastic Optimistic Configuration Search) for the
stochastic ones. We prove that O-DOSC achieves constant
regret, matching the lower bound that we provide for the de-
terministic setting. Then, we show that O-SOSC achieves
a eO

⇣p
T

⌘
regret bound in stochastic settings. Finally, we

empirically validate our results with synthetic simulations.

Problem Formulation

Online MDPs

We introduce online episodic loop-free MDPs M =
(X,A, P,R) defined as follows.

• T is the number of episodes, with t 2 [T ] denoting a
specific episode.

• X and A are the finite state and action spaces, respec-
tively. By the loop-free property,X is partitioned intoH
layers X0, . . . , XH such that the first and the last layers
are singletons, i.e., X0 = {x0} and XH = {xH}. We
will refer to H as the horizon. Moreover, we denote as
h(x) the layer of a specific state x.

• P : X ⇥ A ! � (X) is the transition function, where,
for ease of notation, we denote by P (x0

|x, a) the prob-
ability of going from state x 2 X to x

0
2 X by taking

action a 2 A. By the loop-free property, it holds that
P (x0

|x, a) > 0 only if x0
2 Xh+1 and x 2 Xh for some

h 2 [0 .. H � 1].
• R is the reward function, which can be deterministic, that
is, R : X ⇥A ! [0, 1], or stochastic, namely a distribu-
tion over [0, 1] for every (x, a). We refer to the reward of
a specific state-action pair x 2 X, a 2 A for a specific
episode t 2 [T ] as rt(x, a).

Remark 1. Any episodic MDP with horizon H that is not
loop-free can be cast into a loop-free one by suitably dupli-

cating the state spaceH times, i.e., a state x is mapped to a

set of new states (x, h), where h 2 [0 .. H].

A policy ⇡ : X ! � (A) defines a probability distribu-
tion over actions at each state. For ease of notation, we de-
note by ⇡(·|x) the probability distribution for a state x 2 X ,
with ⇡(a|x) denoting the probability of action a 2 A.

Continuous Configurable-MDPs

The framework we propose, called Continuous
Configurable-MDPs, is characterized by:
• an agent, which is characterized by the (optimal) policy
⇡
⇤ of a fixed MDPM(X,A, P ,R). We assume, without

loss of generality, that ⇡⇤ is deterministic, since it is well
known that MDPs always admit an optimal deterministic
policy;

• a configurator, which knows X , A, P , H , T and at ev-
ery episode t 2 [T ] can choose a configuration (i.e., a
transition function) Pt from a bounded set I, in order to
minimize her loss. Similarly to the reward function, the
loss function can be deterministic, that is, ` : X ⇥ A !

[0, 1], or stochastic, namely a distribution over (x, a), still
bounded in [0, 1]. We refer to the loss of a specific state-
action pair x 2 X, a 2 A for a specific episode t 2 [T ]
as `t(x, a). In the stochastic setting, `t(x, a) is a sample
from L(x, a), drawn independently form the past. The
average of loss distribution for (x, a), which does not de-
pend on t, is denoted as `(x, a) = E[L(x, a)].

Customarily in the literature, it is assumed that the config-
urator’s loss is directly tied to the agent’s reward, namely
`t(x, a) = rt(x, a) for every state-action pair and for ev-
ery episode. Instead, in our setting, the two functions can be
independent.
In Algorithm 1, we report the interaction between the

agent and the configurator in the online MDP.
Precisely, at the beginning of each episode t, the loss func-

tion is either deterministically chosen (although this term
may be slightly abused in this context) or stochastically cho-
sen (refer to Line 2). Subsequently, the configurator chooses
a transition function Pt (as in Line 3), and the MDP is ini-
tialized in the state x0 (as per Line 4). During the episode,
the agent traverses all the layers based on her policy ⇡

⇤ (as
described in Line 6) and the transition Pt (as per Line 7).
Upon completion of the episode, the configurator observes
the complete trajectory and losses (as stated in Line 9).
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Algorithm 1: Agent-Configurator Interaction

1: for t 2 [T ] do
2: For every state-action pair, `t(x, a) = `(x, a) in the

deterministic setting or `t(x, a) ⇠ L(x, a) in the
stochastic setting

3: configurator chooses Pt 2 I

4: state is initialized to x0

5: for h = 0, . . . , H � 1 do

6: agent plays ah ⇠ ⇡
⇤(·|xh)

7: environment evolves to xh+1 ⇠ Pt(·|xh, ah)
8: end for

9: configurator observes {xh, ah}
H�1
h=0 and suffers

{`t(xh, ah)}
H�1
h=0

10: end for

Occupancy Measures

We introduce the notion of occupancy measure, see (Rosen-
berg and Mansour 2019b). Given a transition function P and
a policy ⇡, the occupancy measure dP,⇡

2 [0, 1]|X⇥A⇥X| in-
duced by P and ⇡ is such that, for every x 2 Xh, a 2 A,
and x

0
2 Xh+1 with h 2 [0 .. H � 1]:

d
P,⇡(x, a, x0) = P[xh = x, ah = a, xh+1 = x

0
|P,⇡]. (1)

Moreover, we also define:

d
P,⇡(x, a) =

X

x02Xh+1

d
P,⇡(x, a, x0), (2)

d
P,⇡(x) =

X

a2A

d
P,⇡(x, a). (3)

Then, we can introduce the following lemma, which char-
acterizes valid occupancy measures.
Lemma 1. (Rosenberg and Mansour 2019a) For every d 2

[0, 1]|X⇥A⇥X|
, it holds that d is a valid occupancy measure

of an episodic loop-free MDP if and only if, for every h 2

[0 .. H � 1], the following three conditions hold:

1.
P

x2Xh

P
a2A

P
x02Xh+1

d(x, a, x0) = 1

2.
P
a2A

P
x02Xh+1

d(x, a, x0) =
P

x02Xh�1

P
a2A

d(x0
, a, x),

8x 2 Xh

3. P
d = P

where P is the transition function of the MDP and P
d
is

the one induced by d (see Equation (4)).
Notice that any occupancy measure d induces a transition

function P
d and a policy ⇡

d as:

P
d(x0

|x, a) =
d(x, a, x0)

d(x, a)
, ⇡

d(a|x) =
d(x, a)

d(x)
. (4)

Performance Metric

In order to have a proper performance metric for our algo-
rithms, we introduce the notion of objective function of an
MDP (in terms of loss).

Definition 1 (Expected Loss). The expected loss suffered

by the configurator at episode t is defined as the expected

value of the sum of the losses given the configuration chosen.

Namely,

J
⇡

t
(P ) := E

"
HX

h=1

`t(xh, ah)
���⇡, P

#
.

Thus, we define the cumulative regret as follows.

Definition 2 (Cumulative Regret). The cumulative regret is

defined as

RT :=
TX

t=1

J
⇡

t
(Pt)� J

⇡

t
(P ⇤),

where P
⇤ := argmin

P2I J
⇡

t
(P ).

Following the formulation based on the occupancy mea-
sure, the cumulative regret can be written as RT :=P

T

t=1 `
>
d
Pt,⇡

⇤
� minP2I

P
T

t=1 `
>
d
P,⇡

⇤
, or equivalently,

RT :=
P

T

t=1 `
>
d
Pt,⇡

⇤
� mind2�(I,⇡⇤)

P
T

t=1 `
>
d, where

d
P,⇡ is the occupancy measure vector defined on the tuple

(x, a) given a transition function P and a policy ⇡,�(I,⇡⇤)
is the space of occupancy measures built given the fixed pol-
icy ⇡

⇤ and the transition function space I, and ` is defined
as:

• in the deterministic setting, ` is the loss vector composed
by the loss values associated to each tuple (x, a), namely
`(x, a),

• in the stochastic setting, `, is the vector composed by the
expected values of the loss distribution for every (x, a),
namely, E[L(x, a)].

Given the definition of this setting, we aim that the regret
is sublinear in T , namely RT = o(T ).

The optimization problem described above is linear in
the space of the occupancy measures, suggesting the po-
tential adoption of online convex programming tools such
as, e.g., Bandit Linear Optimization (BLO) algorithms pro-
posed by (Abernethy, Hazan, and Rakhlin 2008). However,
these methods cannot be adopted to our case. Indeed, with-
out the knowledge of the agent’s policy, the configurator
cannot compute the exact occupancy measure correspond-
ing to her transition and the agent’s policy, thus precluding
the design of online bandit linear optimization algorithms
working on the occupancy measure space. In particular, the
configurator can only choose a transition function Pt and
the objective function is highly nonlinear in the space of the
transition functions.

Generality of the Setting and Interpretation

Our model captures various settings. In the following, we
provide two different interpretations. The first focuses on
MDPs with adversarial attacks, while the second focuses on
Lipshitz bandits.
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Interpreting Our Model as an MDP with

Adversarial Attacks

Selecting the proper configurator’s decision space I, several
forms of adversarial attacks in MDPs can be described by
our model. Since the agent’s policy is assumed to be fixed,
our model captures post-training attacks.
In the following, the adversarial attacks modeled by our

setting are presented with the associated configurator’s con-
tinuous decision space.

• Bounded state attacks. The adversary can modify the
agent’s state, substituting it with another state that is sim-
ilar to the original one. This can be modeled by setting:

I = {P : 8x 2 X, a 2 A, 9x
0
2 B(x),

P (·|x, a) = P (·|x0
, a)},

where B(x) = {x
0 : d(x, x0) < "} for some distance

function d(·) and " > 0.
• Action attacks. Differently from the state attack scenar-
ios, the adversary can perturb the action of the agent. This
kind of attacks can be modeled by setting:

I = {P : 8x 2 X, a 2 A, 9a
0
2 B(a),

P (·|x, a) = P (·|x, a0)},

where the set B(a) is defined as in the case of bounded
state attacks.

• Model attacks. The adversary can change the transi-
tion probabilities and the amount of the change is up-
per bounded according to some metrics. In particular, we
adopt the total variation metric, denoted with TV. There-
fore, I can be defined as

I = {P : TV(P,P ) < "},

for some " > 0, where TV(P, P 0) :=P
x2X,a2A

kP (·|x, a)� P
0(·|x, a)k1.

Interpreting Our Model as a Lipschitz Bandit

We can show that the optimization problem faced by the
configurator can be seen as a Lipschitz bandit, namely, the
objective function in the optimization problem is Lipschitz
continuous. This result is crucial in order to have a proper
baseline to compare our theoretical guarantees to. Indeed,
standard multi-armed bandits techniques cannot be applied
to our setting, since the decision space is continuous.
The Lipschitz continuity of the objective is already well-

known for discounted MDPs (Munos and Szepesvári 2008);
nevertheless, we report here the result for the case of finite
horizon problems.
Theorem 2. Let P, P

0
be two transition functions, and ⇡ an

arbitrary Markovian policy. Then,

|J
⇡(P )� J

⇡(P 0)| 
H

2

2
TV(P, P 0),

where TV(P, P 0) :=
P

x2X,a2A
kP (·|x, a) �

P
0(·|x, a)k1.

Theorem 2 suggests that algorithms for Lipschitz bandits
can be used to solve our problem. In the specific case of
the Zooming algorithm by (Kleinberg, Slivkins, and Upfal
2008)—one of the state-of-the-art algorithms for Lipschitz
bandits—, we can derive the following upper regret bound.
Corollary 3. The Zooming algorithm in our setting achieves

a regret of RT  T
1+D(I)
2+D(I) , where D(I) is the Zooming di-

mension of the space I.

When the decision space I depends on a family of p con-
tinuous parameters, its Zooming dimension is exactly p, so
that the regret becomes T

1+p
2+p . As we show in the following,

this regret bound can be dramatically improved and there-
fore the Zooming algorithm is suboptimal for our problem.

Deterministic Settings

We focus on deterministic settings, and we present our algo-
rithm and its theoretical guarantees. More precisely, we as-
sume there is a fixed function ` : X ⇥ A ! [0, 1], such that
the configurator will always achieve the same loss whenever
the agent chooses a particular action in a given state.

Algorithm

Algorithm 2 provides the pseudo-code of Online Deter-

ministic Optimistic Configuration Search (O-DOSC), which
tackles deterministic losses. As is customary in the on-
line learning, the configurator needs to face an exploration-
exploitation trade-off when searching for the optimal con-
figuration. Specifically, the choice of Pt needs to balance
the exploration of unobserved states with the minimization
of the configurator’s losses.
As stated above, we assume that the optimal policy ⇡

⇤

in the MDP is deterministic. Thus, our algorithm can safely
keep track of the actions played and losses obtained. For this
purpose, the set ⇧ is initialized to contain all possible deter-
ministic policies, while the function b̀is initialized to return
a loss value of 0 for every tuple (x, a) (Lines 1–2). Such an
initialization for the function b̀ is chosen to guarantee opti-
mism vs. uncertainty with respect to the actual loss function.
In order to determine the transition function Pt for each

episode, an optimistic approach is adopted. In particular, we
minimize the objective over the space of the occupancy mea-
sures, which is based on an estimate of the agent’s policy (as
reported in Line 4). This approach is optimistic with respect
to both the policy and the loss function, which is set to be
0 when non-visited. Additionally, it is possible to simplify
the optimization over I and ⇧ by reducing to the optimiza-
tion over the space �(I,⇧), where dP,⇡

2 �(I,⇧). For a
detailed study of the computational complexity of the mini-
mization update, please refer to the Appendix.
Then, once the agent’s trajectory and losses suffered

throughout the path have been observed (Line 5), the fol-
lowing updates are performed. For b̀, the 0 values associated
with the tuples (x, a) visited during the episode are substi-
tuted with the observed losses (Line 6). Instead, for the set
⇧, the actions of the state traversed but not executed by the
agent are discarded from the set (Line 7).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14318



Algorithm 2: O-DOSC Algorithm
Require: X,A,H, I

1: ⇧  set of all deterministic policies
2: b̀(x, a)  0 8(x, a) 2 X ⇥A

3: for t 2 [T ] do
4: Choose Pt =

argmin
P2I,⇡2⇧

X

x,a

0

@
X

x02Xh(x)+1

d
P,⇡(x, a, x0)

1

A b̀(x, a)

5: Observe {xh, ah, `(xh, ah)}
H�1
h=0

6: b̀(xh, ah)  `(xh, ah) 8h 2 [0..H � 1]
7: ⇧  ⇧ \ {xh, a} 8a 6=ah,8h2[0 .. H�1]
8: end for

Upper and Lower Regret Bounds

In this section, we present the theoretical guarantees of our
O-DOSC algorithm in deterministic settings. Initially, we
state the regret bound achieved by our algorithm, and, sub-
sequently, we show that the regret bound matches the lower
bound for our specific setting.
In deterministic settings, we show that Algorithm 2

achieves a constant regret bound.
Theorem 4. In deterministic settings, Algorithm 2 guaran-

tees a regret upper bound

RT  (H + 1)|X|.

Proof Sketch. First, notice that, due to the deterministic na-
ture of the loss, visiting each state one time is sufficient to
compute the optimal policy.
Still, it is necessary to deal with states for which the asso-

ciated occupancy measure is very low under every transition
P 2 I available to the configurator. Since these states are
unlikely to be visited in the whole episode, they may prevent
the configurator from learning the optimal configuration.
The key observation is that the aforementioned states can-

not contribute significantly to the regret: defining the esti-
mation error as follows, "t := J

⇡(Pt) � LBt(Pt), where
LBt(Pt) := min

P2I,⇡2⇧

P
x

d
P,⇡(x)b̀(x), we can show that,

1. The regret is bounded by RT  E
hP

T

t=1 "t

i

2. At each step, the undiscovered states Xt satisfyP
x2Xt

d
Pt,⇡(x) � "t

H+1

Given the previous steps, it can be derived that,

RT  (H + 1)
X

x2Xt

d
Pt,⇡(x),

which implies that the higher regret at one step, the higher
probability to discover more states, thus lower regret for the
future.

The previous result is rather intuitive. Indeed, since both
the optimal policy and reward function are deterministic,

once the configurator visited the entire MDP, the optimal
configuration has been found.
The reader may wonder if the the regret bound shown in

Theorem 4 is tight for the setting. In the following, we show
that our result is the best any algorithm can achieve. There-
fore, Algorithm 2 matches the lower bound of the determin-
istic setting. Indeed, we can show that,
Theorem 5. In deterministic settings, any algorithm

achieves a regret of order ⌦(H|X|).

Proof Sketch. We properly build a Markov decision process
as follows: the second layer is composed by approximately
|X| states while the remaining layers by two states only. The
agent policy chooses a non-trivial action only at the second
step, after which the loss in uniquely determined. Thus, the
following H � 3 steps have the effect of increasing the loss
H�3 times. In order to get to the optimal state (in the second
layer), the configurator has to pull in expectation approx-
imately |X|/2 suboptimal configurations, thus augmenting
the regret of aH � 3 factor. This in turns implies a regret of
approximately (H � 3)|X|/2.

Stochastic Settings

We focus on stochastic settings, and we present our algo-
rithm and its theoretical guarantees. Precisely, we assume
that there is a fixed probability distribution for every state-
action pair, denoted as L(x, a), which drives the sampling of
losses from the interval [0, 1] every time the agent chooses
an action in a given state.

Algorithm

Algorithm 3 provides the pseudo-code of Online Stochastic
Optimistic Configuration Search (O-SOSC) for stochastic
losses. Similarly to what happens in deterministic settings,
the configurator needs to address an exploration-exploitation
trade-off when seeking for the optimal configuration. Again,
the choice of Pt is required to balance the exploration of
non-visited states with the minimization of the configura-
tor’s losses. Furthermore, in this case we introduce an addi-
tional complexity, given by the way losses are chosen.
By the theory of MDPs, we can safely assume that the op-

timal policy ⇡
⇤ for the MDP is deterministic. Algorithm 3

keeps track of the action played and the losses obtained by
the configurator. For this purpose, the set ⇧ is initialized
to containing all possible deterministic policies, while b̀

t is
initialized to return a loss value of 0 for every tuple (x, a)

(Lines 1–2). We choose this initialization for the function b̀
t

to be optimistic with respect to the actual loss function.
To determine the transition function Pt for each episode,

we take an optimistic approach by minimizing the objective
over the space of occupancy measures based on an estimate
of the agent’s policy (as reported in Line 4). It is worth not-
ing that this update is optimistic with respect to both the
policy and the loss function, which is set to 0 when non-
visited, and is computed with UCB-like lower bound once
traversed. Moreover, it is possible to simplify the optimiza-
tion over I and ⇧ by reducing it to the optimization over
the space �(I,⇧), where d

P,⇡
2 �(I,⇧). For a detailed
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Algorithm 3: O-SOSC Algorithm
Require: X,A,H, I, �, T
1: ⇧  set of all deterministic policies
2: b̀

1(x, a)  0 8(x, a) 2 X ⇥A

3: for t 2 [T ] do
4: Choose Pt =

argmin
P2I,⇡2⇧

X

x,a

0

@
X

x02Xh(x)+1

d
P,⇡(x, a, x0)

1

A b̀
t(x, a)

5: Observe {xh, ah, `t(xh, ah)}
H�1
h=0

6: Bonus =
q

� log(�)+log(Nt(xh)(Nt(xh)+1))
2Nt(xh)

7: b̀
t+1(xh, ah)  max

�
0, `t(xh, ah)� Bonus

�

8h 2 [0..H � 1]
8: ⇧  ⇧ \ {xh, a} 8a 6=ah,8h2[0 .. H�1]
9: end for

study of the computational complexity of the minimization
update, please refer to the Appendix.
Once the agent’s trajectory and losses suffered throughout

the path have been observed (Line 5), the following updates
are performed. For b̀t, the values associated with the tuples
(x, a) visited during the episode are updated with a UCB-
like term that depends on the number of visits of a specific
state Nt(x) (Line 6), which is subtracted to the empirical
mean `(x, a) of the losses observed. For the set ⇧, the ac-
tions of the state traversed but not executed by the agent are
discarded from the set (Line 7).

Theoretical Guarantees

In this section, we present the theoretical result for Algo-
rithm 3. First of all, we can derive a simple lower bound of
the regret in the stochastic case.

Theorem 6. In stochastic settings, any algorithm achieves

a regret of order ⌦(
p

|X|T ).

Proof. In order to find a proper lower bound, we restrict to
the (simpler) discrete decision space case. In such a setting,
our model can be seen as a generalization of the multi-armed
bandit setting. Specifically, given any multi-armed bandit
problem, we can build an equivalent instance of our prob-
lem as follows. For every arm of the bandit problem, we have
a transition function in I bringing deterministically from a
common initial state to a different state. This implies that the
number of transition functions in the MDP equals the num-
ber of arms of the bandit problem (|I| = |X|). Therefore,
the standard instance independent lower bound for multi-
armed bandits with |I| = |X| number of arms leads to a
regret of RT = ⌦(

p
|X|T ) which represents a lower bound

for our problem.

Finally, we show that Algorithm 3 achieves a sublinear
regret bound that matches the aforementioned lower bound
in the number of episodes T .

Theorem 7. In the stochastic setting, for the choice � =
T

�1/2
, Algorithm 3 achieves a regret upper bounded as fol-

lows,

RT = eO
⇣
|X|

p

T +H|X|

⌘
.

Proof Sketch. In the stochastic setting, the configurator has
to visit each state more than one time, due to the stochastic
nature of the loss.
Analogously to stochastic multi-armed bandits, the afore-

mentioned issue is faced defining a good event under which
the configurator is able to learn a good policy by only vis-
iting all the states for a fixed and not too large amount of
times.
We refer to the good events s Ec, where E corresponds to

E :=

⇢
9x 2 X, t 2 [T ] : |¯̀t(x)� `(x)| >

s
� log(�) + log(Nt(x)(Nt(x) + 1))

2Nt(x)

�
,

and where Nt(x) is the number of times state x has been
visited by round t, and � = T

�1/2. With a standard con-
centration inequality and a union bound, we can prove that
P(E)  2|X|�. Next, it is necessary to focus on the good

event E
c.

Under Ec, the proof follows the one for the deterministic
case with a fixed number of visits for every state, showing
that the expected regret conditioned to the event is of order
eO
⇣
|X|

p
T +H|X|

⌘
.

Empirical Evaluation

In this section, we experimentally evaluate the performance
of Algorithms 2 and 3 in terms of empiric regret. We de-
scribe the results obtained in the deterministic and stochas-
tic settings separately. In each case, we conduct experiments
with both discrete and continuous decision spaces I.
As a baseline, we opt for UCB1 (Auer, Cesa-Bianchi, and

Fischer 2002) since, in the case of discrete decision spaces,
UCB1 is a standard baseline, while, in the case of contin-
uous decision spaces, UCB1 can be preferred to Zooming
(Kleinberg, Slivkins, and Upfal 2008) for two reasons. The
first reason is that the design of a suitable covering oracle
for Zooming raises several conceptual and computational is-
sues due to the high number of dimensions whose solutions
is open. The second reason is that, in our experimental set-
tings, the optimal solution is one of the arms, and, in these
cases, UCB1 is a more severe baseline than Zooming as it
guarantees a much better regret bound.
In the following experiments, we consider a Markov de-

cision process structured as follows. The MDP consists of
four layers. As is standard in the loop-free model, the first
and the last layers are singletons, while the second and third
layers each comprise two states. Additionally, every state is
associated with two actions. For reasons of space, the de-
scription of the experimental settings and additional details
on the experimental results can be found in the Appendix.
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(a) (b) (c)

Figure 1: Average cumulative regret with a 95% confidence interval over 10 experiments in deterministic settings with discrete
(a, b) and continuous (c) decision spaces.

(a) (b)

Figure 2: Average cumulative regret with a 95% confidence interval over 10 experiments in stochastic settings with discrete (a)
and continuous (b) decision spaces.

Deterministic Settings We report in Figure 1 the experi-
mental results obtained with deterministic settings where the
cumulative regret is averaged over 10 runs.
In particular, Figure 1(a) shows the results with discrete

settings, while Figure 1(c) shows the results with continuous
settings. In both cases, O-DOSC dramatically outperforms
UCB1. Figure 1(b) clearly shows that O-DOSC effectively
computes the optimal transition function during the very ini-
tial rounds, and subsequently it ceases to explore. Indeed,
once O-DOSC visited all the states, it can numerically com-
pute the optimal transition. Instead, UBC1 keeps exploring
for a long time.

Stochastic Settings We report in Figure 2 the experimen-
tal results obtained with deterministic settings where the cu-
mulative regret is averaged over 10 runs.
Precisely, Figure 2(a) shows the results with discrete set-

tings, while Figure 2(b) shows the results with continuous
settings.In both cases, O-SOSC outperforms UCB1. Dif-
ferently from what happens in deterministic settings, O-
SOSC does not find the optimal solution in the initial rounds,
and additional exploration is required. However, the perfor-
mance exhibited by O-SOSC in this setting is remarkably
impressive.

Conclusions

In this paper, we propose the problem of online configu-

ration of Markov decision processes with continuous de-

cision spaces. We study the problem both when the losses
are deterministic and stochastic. We propose O-DOSC algo-
rithm, which achieves constant regret in deterministic set-
tings, and we show that this result is tight for any constant
with respect to the lower bound. Then, we propose O-SOSC
which achieves a sublinear regret bound when the losses are
stochastic. Finally, we empirically validate our theoretical
results with synthetic simulations.

Future Works In future work, we are interested in study-
ing the problem when losses are adversarial, namely no
statistical assumption are made. Furthermore, we aim to
study the problem of online configurations against a learning
agent, namely, when the policy of the agent is allowed to be
dynamic. In such a setting, we are interested in understand-
ing how the results change when the agent is employing a
no-regret optimizer and when she is omniscient, namely, she
can observe the transitions chosen by the configurator and
then commit to a policy as in a Stackelberg game.
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