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Abstract

Pathological images play a vital role in clinical cancer di-
agnosis. Computer-aided diagnosis utilized on digital Whole
Slide Images (WSIs) has been widely studied. The major
challenge of using deep learning models for WSI analysis
is the huge size of WSI images and existing methods strug-
gle between end-to-end learning and proper modeling of con-
textual information. Most state-of-the-art methods utilize a
two-stage strategy, in which they use a pre-trained model to
extract features of small patches cut from a WSI and then
input these features into a classification model. These meth-
ods can not perform end-to-end learning and consider con-
textual information at the same time. To solve this problem,
we propose a framework that models a WSI as a patholo-
gist’s observing video and utilizes Transformer to process
video clips with a divide-and-conquer strategy, which helps
achieve both context-awareness and end-to-end learning. Ex-
tensive experiments on three public WSI datasets show that
our proposed method outperforms existing SOTA methods in
both WSI classification and positive region detection.

Introduction
The primary challenge in analyzing Whole Slide Images
(WSIs) using deep learning techniques is their huge size.
Due to the memory constraint, neural networks cannot di-
rectly take the whole original WSI as input. To address this
challenge, WSIs are usually tiled into small patches as net-
work input (Lu et al. 2021a; Mahmood et al. 2019; Lu et al.
2022). However, in WSI classification tasks, labels are of-
ten only available for each slide instead of each individual
patch, which makes fully supervised methods on the patch
level infeasible. The lack of patch-level labels is due to the
fact that a single slide can consist of hundreds to thousands
of patches, and patch-level labeling is very costly and time-
consuming. WSI classification is often solved as a weakly-
supervised multiple instance learning (MIL) problem (Rony
et al. 2019; Chen et al. 2020a; Lu et al. 2019, 2021b; Yuan
et al. 2022), in which WSI is noted as ’bag’ with the patches
cut from it as ’instances’, and only has slide-level label.

Due to the large number of patches in a WSI, directly in-
putting all patches of a bag into deep neural networks would
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Figure 1: Motivation of our method. (a) Classical MIL Meth-
ods. Two-stage methods include encoding unordered in-
stances into features and aggregating features. (b) Graph-
based Methods. GNN models feature as nodes and establish
edges between neighboring nodes to leverage graph convo-
lution. (c) Transformer-based Methods. Calculate the rela-
tivity between features, retaining the spatial and morpholog-
ical information of WSI. (d) Video-based Method. Construct
a series of synthetic video clips from a WSI.

lead to memory overload, making end-to-end learning on the
slide-level difficult. Some researchers randomly sample a
few patches from a slide as model input and train the model
with slide labels. However, this approach may introduce a
noise label issue, where for example an all-negative sub-
set may be sampled from a positive slide (Chikontwe et al.
2020). As a result, mainstream MIL methods consist of two
stages: 1) Extracting patch features using unsupervised pre-
trained models and then inputting all the patch features of
a slide into the classification model. 2) Performing global
aggregation operations on the input unordered instance fea-
tures for slide classification (Ilse, Tomczak, and Welling
2018; Li, Li, and Eliceiri 2021; Hashimoto et al. 2020; Lu
et al. 2021c; Rymarczyk et al. 2022), as depicted in Figure 1
(a). These methods operate under the assumption that all in-
stances within a bag are independently distributed, overlook-
ing the inter-instance correlations present in the diagnostic
process (Shao et al. 2021). However, pathologists often con-
sider contextual information between different regions when
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making diagnostic decisions. Some recent methods incorpo-
rate contextual information during the aggregation phase to
enhance model performance, using Graph Neural Networks
(GNN) (Zhao et al. 2020; Tu et al. 2019; Chen et al. 2021)
or Transformers (Shao et al. 2021; Li et al. 2021; Chen et al.
2022; Chen and Krishnan 2022; Zhang et al. 2023; Xiang
and Zhang 2022). These models utilize the power of graph
networks and self-attention mechanisms to achieve context-
aware capabilities. As illustrated in Figure 1 (b), GNN mod-
els features as nodes and establishes edges between neigh-
boring nodes to leverage graph convolution, to aggregate
contextual information. In Figure 1(c), the Transformer uti-
lizes self-attention mechanism to explore the relationships
between features in different regions.

The GNN and Transformer-based methods can explore
contextual information for better classification. However,
given the huge number of patches contained within a WSI,
simultaneously extracting patch features and modeling the
contextual relationships between all features also leads to
memory overload, thus precluding the possibility of end-to-
end training. To address this problem, these methods employ
a pre-trained model to extract patch features pre-trained with
tasks such as self-supervised tasks, which are different from
the target task. These differences cause domain gaps and
improper inductive bias, limiting the performance of these
methods on downstream tasks.

In this paper, we introduce a novel Transformer-based
end-to-end framework for WSI classification. We construct
a series of synthetic video clips from a WSI which makes
it possible to realize end-to-end training and model contex-
tual relationship between patches. Instead of simulating the
pathologist’s process of observing a WSI which may include
a lot of switches of focusing area, zoom in and out, we se-
lect patches with the same scale to form video clips which
is practical for computers. This formulation helps achieve
end-to-end training and considers neighboring semantic in-
formation, resulting in promising performance. Specifically,
as illustrated in Figure 2, we employ a divide-and-conquer
strategy for all patches in a bag by organizing spatially con-
secutive patches into synthetic video clips. These clips are
then input into Transformer-based models to explore spatial
contextual information, and parameters are shared among all
the Transformer-based models to reduce spatial complexity
to realize end-to-end training. Within each video clip, the
Transformer utilizes self-attention mechanisms exclusively
to the internal patches, thus exploring inter-patch correla-
tions. Each video clip employs class-specific class tokens to
learn semantics for different categories, and the class tokens
across all video clips are aggregated for bag-level classifi-
cation. As depicted in Figure 3, by computing the dot prod-
uct between the class-specific tokens of video clips and in-
stance features, high-quality pseudo-labels can be obtained
and then used to train an instance classifier, thereby achiev-
ing instance-level classification.

We extensively evaluated our method on three public WSI
datasets: CAMELYON16, PANDA, and TCGA-NSCLC.
Our method outperformed SOTA baseline methods in both
bag and instance classification tasks in all datasets. The main
contribution of this paper can be summarized as follows:

• We propose to model a WSI as synthetic video clips,
making it simple for computers to simulate pathologists’
observing process, which preserves the local spatial re-
lationships between patches, facilitating context-aware
learning. Furthermore, we input each video clip into
Transformer-based model and share parameters across all
these models to reduce the spatial complexity.

• To train instance classifier with high-quality pseudo-
labels, we introduce the class-specific clip token to repre-
sent the semantic information within each video clip. We
generate pseudo-labels for patches by utilizing the clip
tokens to train an instance-level classifier based on the
Transformer model.

• Extensive experiments on three public datasets show that
our proposed method outperforms existing SOTA meth-
ods in both bag and instance classification.

Related Work
Two-stage MIL
Most existing WSI classification methods explore a two-
stage strategy: first extracting features from original patches
using a pre-trained feature extractor and then aggregating
these patch features for bag classification. In the feature ex-
traction stage, the feature extractor is either pre-trained on
ImageNet (Shao et al. 2021) or unlabeled pathological im-
ages(Li, Li, and Eliceiri 2021; Zhang et al. 2022; Chen and
Krishnan 2022; Cai et al. 2023). However, there is a big
domain gap between natural images and pathological im-
ages, which makes the ImageNet pre-trained feature extrac-
tor ineffective in extracting patch features. Pre-trained fea-
ture extractor on unlabeled pathological images using self-
supervising techniques introduce domain gap, but may inject
improper inductive bias into the model, which also limit its
performance on downstream classification tasks (Chen et al.
2022; Wang et al. 2022). In the feature aggregation stage, to
incorporate global information, attention mechanisms (Ilse,
Tomczak, and Welling 2018; Lu et al. 2021b; Li, Li, and Eli-
ceiri 2021) have been predominantly implemented for the
weighted aggregation of instances. The limitation of these
methods is that the patches are perceived as isolated entities,
losing the interactions with contextual information.

GNN is used to model contextual information in WSI
(Hou et al. 2022; Zhao et al. 2020; Tu et al. 2019; Chen
et al. 2021), where each patch is regarded as a node and
edges are constructed between spatially adjacent patches.
By using graph convolution, information exchange is real-
ized between nodes in both local neighborhoods and within
the whole graph. Some other studies utilize Transformer to
explore pairwise correlations between each token in a se-
quence to enhance aggregation quality (Shao et al. 2021;
Li et al. 2021; Chen et al. 2022; Chen and Krishnan 2022;
Zhang et al. 2023; Xiang and Zhang 2022). Transformers
can adaptively capture spatial characteristics and interaction
between patches. The above methods rely on a frozen patch
feature extractor, which is not optimal for a specific down-
stream task. In this paper, we proposed a novel Transformer-
based framework that is not only end-to-end trainable but
also capable of capturing contextual information.
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Figure 2: Overview of the proposed VINO framework for bag-level classification. We construct a series of synthetic video clips
from a WSI which help achieve end-to-end training and modeling of contextual relationships between patches at the same time.

End-to-end MIL
There are a few end-to-end trainable models for WSI classi-
fication and they mainly focus on training an instance-level
classifier. For example, Chikontwe (Chikontwe et al. 2020)
identified the top-k instances with the highest predicted pos-
itive probabilities within positive bags as positive instances
and used them together with negative instances from nega-
tive bags to train an instance-level classifier. However, this
kind of Top-k approach may introduce a significant amount
of label noise. The Instance-MIL (Qu et al. 2022; Lin et al.
2022; Luo et al. 2023; Łukasz Struski et al. 2023) is par-
ticularly amenable to end-to-end training. By training an in-
stance classifier, it facilitates the classification of individual
instances. This approach can maintain a consistent spatial
complexity. (Luo et al. 2023) proposed a knowledge distil-
lation framework to generate more accurate positive pseudo
labels to train an instance-level classifier in an end-to-end
way. (Qu et al. 2022) train end-to-end instance classifier us-
ing the attention scores obtained from the teacher network
as pseudo labels. While these methods achieve end-to-end
training, they process each patch independently and over-
look the contextual information of each patch.

Method
Problem Formulation
In the MIL classification problem setting, taking binary clas-
sification as an example, given N training WSIs X =
{X1, X2, . . . , XN}, each WSI is labeled as Yi ∈ {0, 1},
where i = {1, 2, . . . , N}. Our goal is to utilize a deep
learning model to predict the label of each slide and lo-
cate the positive regions. WSI Xi is divided into Mi non-
overlapping patches {xi,j , | j = 1, 2, . . . ,Mi} , where
Mi denotes the number of patches within Xi. It is noted
that their corresponding instance-level labels, {yi,j | j =
1, 2, . . . ,Mi}, are unknown. The problem of positive region
localization can turn into patch-level classification prob-
lems. All patches from Xi form a ’bag’, where each patch

serves as an ’instance’ within this bag. If it contains at least
one positive instance, the bag is positive. On the other hand,
if all patches are negative, the bag is negative.

The classification of WSIs can be categorized into two
tasks: 1) ”Bag-level” classification, which focuses on accu-
rately predicting the bag’s label. 2) ”Instance-level” classi-
fication, predicting instances’ labels, subsequently enabling
the localization of positive regions.

Framework Overview
In order to realize end-to-end training and model contextual
relationships between patches at the same time, we propose
a novel VINO framework for WSI classification and the lo-
calization of positive regions, and the framework is denoted
as VINO. Figure 2 illustrates the pipeline of VINO. Given
a slide Xi, we initially segment it into a series of patches,
which act as a series of frames in the video. Then, we select
patches according to their positional relationships to form a
video clip, where adjacent positions patches are in the same
clip. Each video clip is independently inputted into a Multi-
Head Self Attention (MHSA) that shares parameters. The
MHSA computes the intra-patch correlations and outputs
both the clip token representing different categories’ seman-
tic information and the interactively computed clip feature,
where the clip token denotes the Transformer’s class token.

Specifically, we append to each video clip class-specific
clip tokens that represent negative and positive categories
before inputting them into the MHSA(This is particularly
relevant to binary classification problems. For multi-class
tasks, there would be n category-specific clip tokens, where
n is the number of categories). Subsequently, after process-
ing through MHSA, all the class-specific clip tokens from
the video clips are aggregated by global average pooling
according to their classes. The aggregated clip tokens are
then inputted into a Multi-Layer Perceptron (MLP) Head to
obtain the bag-level prediction, which is used to calculate
Cross Entropy loss with true bag label for model training.

To address the issues related to preserving contextual re-
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Figure 3: Construction of video clips. A WSI contains a se-
ries of video clips according to patch position. ResNet18 is
used to extract features for each video clip.

lationships between patches, domain gap, and improper in-
ductive bias, in this paper, we construct a series of synthetic
video clips from a WSI that can achieve end-to-end train-
ing and the modeling of contextual relationships between
patches at the same time. In the setting of the pathologi-
cal video, such relationships are perceived as temporal se-
quences. In this study, these pathological instance sub-bags
are referred to as ”video clips”. Clips preserve the local spa-
tial relationships between patches, facilitating context-aware
learning. By applying Transformers, we capture local spa-
tial relationships within the WSIs. Additionally, a divide-
and-conquer strategy is employed, where only a subset of
WSIs are inputted into the parameter-shared Transformer-
based model to reduce the spatial complexity of the pro-
posed method to achieve end-to-end training.

Pathology Video Clip Construction
Inspired by the physician diagnosis process, in this paper,
we transform the patches in a WSI into video, which pre-
serves the local spatial relationships between patches, fa-
cilitating context-aware learning. To simplify this setup, as
shown in Figure 3, we assume that the position of the in-
stance within the slide (coordinate relationship) corresponds
to the temporal information of the video. Firstly, the slide
Xi is divided into non-overlapping size P × P patches
xi,j ∈ RH×W×C , with C being the number of channel and
W , H being the dimensional sizes,. We take the feature ex-
traction of patches for every time period T to form a video
clip Clipit ∈ RT×dim, where dim represents the dimension
of the feature output. Clip ensures that internal patches are
within a location range, but the internal order we assume is
not sequential.

It is noted that since our framework is end-to-end, the en-
tire encoder is trained. Here, we employ ResNet18 as the
backbone to extract patch features, denoted as F (·).The re-
sulting video clip, abbreviated as Clipit ∈ RT×dim.

Clipit = F (Xit) , Xit ∈ RT×H×W×C (1)

Transformer-based Bag-level Classification
Each video clip, denoted as Clipit ∈ RT×dim, represents
the region of focus in Slide Xi over a time span T . Each

video clip is fed into a Transformer with shared parame-
ters for exploring inter-patch correlations. Transformer con-
sists of multi-head self-attention (MHSA ). Furthermore, in-
spired by MCT-Former (Xu et al. 2022), to achieve multi-
class classification, we attach n clip tokens ∈ R1×dim to
each video clip to learn the class-specific semantic informa-
tion. Each clip token embodies different semantic informa-
tion for a certain category.

The Transformer (Vaswani et al. 2017), employs three
learnable matrices W q ∈ Rdim×dimk , W k ∈ Rdim×dimk ,
and W v ∈ Rdim×dimv to get Q ∈ R(T+n)×dimk , K ∈
R(T+n)×dimk , and V ∈ R(T+n)×dimv , resulting in the gen-
eration of the attention output. The output vectors encom-
pass not only the current instance’s information but also the
context surrounding it, calculated as,

Attention(Q,K, V ) = softmax
(

QKT

√
dimk

)
V (2)

The multi-head attention mechanism enables the model
to capture a richer set of information. In the context of this
framework, multiple clips are inputted into the MHSA with
shared parameters. Here, we denote the number of heads as
heads, the dimensions as dimk = dimv = dim

heads . Thus,
we train heads of W q ∈ Rdim× dim

heads , W k ∈ Rdim× dim
heads ,

and W v ∈ Rdim× dim
heads . After obtaining QKV , Transformer

then generate heads vectors. The concatenated output fol-
lowing the MHSA process is depicted as follows:

Zh = softmax

(
QhK

T
h√

dimk

)
Vh, h = 1, . . . , heads (3)

MHSA(Q,K, V ) = Wo · Concat(Z1, · · · , Zheads) (4)

where W o is the output weight matrix, and the Concat
function is utilized to concatenate the attention output vec-
tors from each head into a vector. By processing with the
MHSA, the internal self-attention mechanism within the clip
is computed, and the result includes clip tokens representing
class semantic information and clip features that have under-
gone interactive computation, denoted as Clip′it.

For an n-class classification task, Clipit has correspond-
ing n clip tokens, Clip tokenitc ∈ Rn×dim, where c =
1, . . . , n, which can learn the semantic information of differ-
ent categories in the video clip, and a global average pool-
ing is performed on the clip token representing each cate-
gory. This produces the class-specific feature Class feat ∈
Rn×dim. Then, the feature is then inputted into the classifi-
cation head for the ith category, denoted MLP i, to generate
video scores ∈ Rn×1 as follows.

Class featic = GAP(Clip tokenitc) (5)

V ideo scorei = softmax (MLP i (Class featic)) (6)

where c is ranged from 1 to c, and GAP denotes the global
average pooling. V ideo scorei are used to calculate a cross-
entropy loss as follows, providing full supervision informa-
tion for the class-specific token.
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Figure 4: Instance-level classification of VINO.

Lbag = CrossEntropy(V ideo scorei, Yi) (7)

Transformer-based Instance-level Classification
In WSI analysis tasks, apart from the bag-level classification
task, another main task is the instance-level classification
task. In cancer diagnostic tasks, classifying each instance
into benign or malignant categories has significant clinical
importance. For example, in prostate grading tasks, regions
are required to be rated by Gleason scores. The final grading
is then determined based on the overall area percentage of
each score, and instance classification plays a vital role in
clinical diagnoses of prostate cancer.

We introduce an instance classification method based on
the VINO Transformer architecture. Each video clip has n
clip tokens ∈ R1×dim designed to learn class-specific repre-
sentations. Consequently, every video clip possesses class-
specific semantic information. The similarity between every
clip feature that has passed through MHSA and the class-
specific clip token is computed. As depicted in Figure 4, this
measures the similarity of the instance feature with the vec-
tors representing benign and malignant categories. During
the training process, the instance branch utilizes the MHSA
parameters trained by the bag branch to conduct instance-
level training.

Due to the lack of instance-level labels for instance clas-
sification, this paper proposes creating high-quality pseudo-
labels for the instance classifier branch by computing the
similarity between the class-specific clip token and the in-
stance features. Specifically, the class-specific clip tokens
that have learned category semantic information during bag
classification training and the clip features encoded through
the self-attention mechanism, denoted as Clip′it, are used to
compute the dot product. The resulting scores serve as the
pseudo-labels ŷi,j . This is then used to train the Classifier
Head H , specifically by computing the cross-entropy loss.
Notably, for binary classification problems, each clip at-
taches two clip tokens ∈ R2×dim, corresponding to positive
and negative categories. For multi-class pathological classi-
fication tasks, such as the Gleason grading in prostate cancer

diagnosis, each clip is attached with n tokens ∈ Rn×dim,
where n is the number of classes. As depicted in Figure
3, supposing Clip′it contains k instances, the instance-level
prediction for calculating the ith class score is as follows:

ŷi,j = dot
(
Clip token,Clip′itj

)
(8)

yj = H(Clip′itj), j = 1, . . . , k (9)

Lins = CrossEntropy(ŷ,y) (10)

Experiment
Datasets

To demonstrate the performance of VINO and compare it to
SOTA algorithms, various experiments were conducted over
three public datasets: CAMELYON16 (Bejnordi et al. 2017),
TCGA-NSCLC1, PANDA (Bulten et al. 2022). Finally, anal-
ysis and ablation studies are conducted on the public dataset
CAMELYON16. It’s noted that CAMELYON and TCGA-
NSCLC datasets are binary classification problems, while
the PANDA dataset is a multi-class dataset contains 3 Glea-
son scores and instance-level annotations.

Evaluation Metrics

For the bag classification and positive patch localization
tasks, we use the bag-level AUC and the instance-level AUC,
correspondingly. The PANDA dataset comprises three Glea-
son Score grades, and individual slides may contain regions
with different Gleason Score patterns, which is a multi-label
task. we present both the bag-level and instance-level AUCs
distinctively for each Gleason Score category. As for the
datasets from TCGA, our experiments only focus on the task
of bag classification.

1http://www.cancer.gov/tcga
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Implementation Details and Comparison Methods
During the training process, we utilized the cross-entropy
loss, with an Adam optimizer having a learning rate of 1e-4
and weight decay of 1e-4. The encoder for extracting video
clips is implemented with ResNet18 (Chen et al. 2020b). All
experiments are conducted using 2 A100s.

We compared the VINO framework with current SOTA
methods, including ABMIL (Ilse, Tomczak, and Welling
2018), Loss-ABMIL (Shi et al. 2020), DSMIL (Li, Li,
and Eliceiri 2021), TransMIL (Shao et al. 2021), DTFD-
MIL (Zhang et al. 2022), IBMIL (Lin et al. 2023), and an
instance-level approach proposed by Chikontwe (Maksoud
et al. 2020). We reproduced these methods based on the
codes they published and reported their instance-level AUC
(if instance-level predictions were available). We also repro-
duced ABMIL and Loss-ABMIL with end-to-end training.
When reproducing them, due to the memory constraint, we
sampled 64 instances in each batch to represent the whole
bag. In addition, we also constructed video clips using fea-
tures extracted by the frozen encoder (denoted as VINO-
Feature) to show the advantage of end-to-end training, while
our proposed method is denoted as VINO-E2E. We com-
pared VINO with all the other methods on the CAME-
LYON16, PANDA, and TCGA-NSCLC datasets. For the
CAMELYON16 and PANDA datasets, we also compared
VINO with fully supervised methods using instance-level
labels.

Comparison results
Results with CAMELYON16 The instance-level and
bag-level classification AUCs of our VINO and the other
comparison methods on CAMELYON16 are shown in Ta-
ble 1. The instance-level and bag-level AUC of VINO-E2E
are 0.9213 and 0.9466, respectively, which surpass the other
methods by a large margin. The results of VINO-Feature
demonstrate that the VINO framework can also achieve
SOTA results even without end-to-end training. This is at-
tributed to the fact that each clip within the video structure
retains local context awareness, and every clip token car-
ries class-specific semantic information. Nevertheless, the
bag-level AUC of VINO-E2E is much higher than VINO-
Feature, which shows the importance of end-to-end training.

Results with PANDA The instance-level and bag-level
classification of our VINO and the other comparison meth-
ods for each Gleason score is shown in Table 2, where the
Gleason score i is denoted as Grade i. Comparing VINO
with end-to-end and two-stage methods, we can see that
VINO surpasses these methods in both instance-level and
bag-level AUC, only slightly below the fully supervised
methods. The outcomes suggest that our VINO can also
be applied to multi-class prediction tasks. The end-to-end
VINO also outperforms the VINO with pre-extracted fea-
tures in this task.

Results with TCGA-NSCLC Table 3 displays the perfor-
mance of VINO and other methods on the TCGA-NSCLC
Dataset. Since there are no precise instance labels available
for this dataset, we only evaluate the performance of bag

Methods End
to End

Instance
AUC

Bag
AUC

Fully Supervised TRUE 0.9644 0.8621
ABMIL(18’ICML) TRUE 0.4739 0.6612
Loss-Attention(20’AAAI) TRUE 0.6173 0.7024
Chikontwe(20’MICCAI) TRUE 0.7880 0.7024

ABMIL(18’ICML) FALSE 0.8480 0.8379
Loss-Attention(20’AAAI) FALSE 0.8995 0.7965
DSMIL(21’CVPR) FALSE 0.8858 0.7826
TransMIL(21’NeurIPS) FALSE - 0.8360
DTFD-MIL(22’CVPR) FALSE 0.7411 0.8638
IBMIL(23’CVPR) FALSE - 0.8991

VINO-Feature FALSE 0.9185 0.9085
VINO-E2E TRUE 0.9213 0.9466

Table 1: Comparison of classification performance on the
CAMELYON16 Dataset.

classification. This is a relatively easy task and the patch
features pre-extracted by SimCLR(Yan et al. 2018) are suf-
ficient, so all methods work with the pre-extracted features
instead of in an end-to-end way. We randomly select features
to construct the video clip for MHSA for further processing.
VINO-Feature, utilizing the pre-extracted features, achieves
a bag-level AUC of 0.9834 and outperforms other methods.
The results indicate that our VINO can also be employed in a
two-stage training approach with the pre-extracted features,
and the advantage of VINO lies in using class-specific clip
tokens to obtain robust class-specific representation.

Ablation Study
We conducted ablation studies on the key components of
VINO using the CAMELYON16 dataset. It should be noted
that we already conducted ablation studies on each dataset to
compare using pre-extracted features and end-to-end train-
ing. The additional ablation study results are shown in Table
5. Among them, ”w/o contextual information” means ran-
domly picking patches to construct each video clip. End-
to-end training, modeling contextual information, and de-
signing class-specific clip tokens can all effectively enhance
VINO performance.

Moreover, we employed the traditional video anomaly
detection method, RTFM (Tian et al. 2021), to perform
anomaly detection on pathological videos, examining the
anomalies in each frame (instance-level) and the entire video
(bag-level), which corresponds to benign or malignant. Ex-
periments show traditional video anomaly detection meth-
ods are not suitable for WSI classification. One significant
issue is that in traditional videos, each frame is sequential
and has overlapping relationships, whereas in our patho-
logical videos, frames are independent with only positional
relationships. To facilitate computer processing, we treated
adjacent non-overlapping patches without natural temporal
continuity as temporally consecutive video frames. We also
experimented with overlapping patches to construct video
clips. We found enhanced continuity can be more feasi-
ble for video formulation. Compared with VINO-Feature
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Instance-level AUC Bag-level AUCMethods End to End Grade 3 Grade 4 Grade 5 Grade 3 Grade 4 Grade 5

Fully Supervised TRUE 0.9862 0.9800 0.9784 0.9405 0.9420 0.9244
ABMIL(18’ICML) TRUE 0.8976 0.8959 0.8423 0.8269 0.8522 0.7988
Chikontwe(20’MICCAI) TRUE 0.9260 0.9183 0.9411 0.8438 0.8269 0.8561

ABMIL(18’ICML) FALSE 0.8614 0.9144 0.9142 0.9013 0.8782 0.8874
Loss-Attention(20’AAAI) FALSE 0.9398 0.9284 0.9245 0.8708 0.8608 0.8584
DSMIL(21’CVPR) FALSE 0.9525 0.9363 0.9263 0.8783 0.8650 0.8714
TransMIL(21’NeurIPS) FALSE - - - 0.8089 0.8260 0.7396
DTFD-MIL(22’CVPR) FALSE 0.9361 0.9290 0.9159 0.8875 0.8813 0.8546
IBMIL(23’CVPR) FALSE - - - 0.9015 0.8923 0.9010
VINO-Feature FALSE 0.9626 0.9370 0.9602 0.9100 0.8991 0.8978
VINO-E2E TRUE 0.9659 0.9406 0.9603 0.9173 0.9048 0.9140

Table 2: Comparison of classification performance on the PANDA.

Methods End to End Bag AUC

Mean-pooling FALSE 0.9369
Max-pooling FALSE 0.9014
ABMIL(18’ICML) FALSE 0.9488
Loss-Attention(20’AAAI) FALSE 0.9517
Chikontwe(20’MICCAI) FALSE 0.9523
DSMIL(21’CVPR) FALSE 0.9633
TransMIL(21’NeurIPS) FALSE 0.9830
DTFD-MIL(22’CVPR) FALSE 0.9808
IBMIL(23’CVPR) FALSE 0.9789

VINO-Feature FALSE 0.9853

Table 3: Comparison of classification performance on the
TCGA-NSCLC.

Key Point Instance AUC Bag AUC

VINO end-to-end 0.9213 0.9466
w/o contextual information 0.8925 0.9276

w/o end-to-end training 0.9185 0.9085
RTFM (Tian et al. 2021) 0.8749 0.7500

Table 4: Main results of ablation study on the CAME-
LYON16 Dataset.

(overlapping rate=0%), when we tiled CAMELYON16 with
a 10% overlapping rate, VINO-Feature outperformed by
0.36% and 0.17% on both Instance-level and bag-level clas-
sification.

Evaluation of VINO end-to-end training. At present,
most methods use pre-trained encoder to obtain instance fea-
tures before training. The reasons why VINO is effective lie
in VINO achieving end-to-end training by video formula-
tion, which avoids the inductive bias in two-stage methods,
in which a feature extractor is trained by tasks different from
the target tasks. Second, our way of constructing video clips
from neighboring patches considers context information. We
analyze the quality of the patch features extracted by VINO
in this section.

This analysis is also conducted on the CAMELYON16
dataset. Firstly, we utilized both ImageNet pre-trained and

Instance-level AUCMethods SVM Linear
Fully Supervised 0.9644 0.9642

ImageNet Pretrained 0.7963 0.7959
SimCLR 0.9365 0.9344

VINO (ours) 0.9521 0.9403

Table 5: SVM and linear evaluation of pre-extracted features
on the Camelyon16 Dataset.

SimCLR pre-trained models as performed in DSMIL (Li,
Li, and Eliceiri 2021) to train feature extractors and then
used them to extract all patch features, as well as using the
feature extractor trained with our method. Following this,
using the true labels of each patch, we trained a simple SVM
classifier and a linear classifier on the training set. We then
evaluated these classifiers on the test set, keeping in mind
that all methods adopted the ResNet-18. Table 5 indicates
that the features extracted by VINO consistently achieved
the highest scores, suggesting that the VINO method can
extract better features than the unsupervised SimCLR.

Conclusion
To address issues related to preserving contextual relation-
ship between patches, domain gap and improper inductive
bias, in this paper, we construct synthetic video clips from a
WSI that can achieve end-to-end training and the modeling
of contextual relationship between patches. A divide-and-
conquer strategy is employed, where only a subset of WSIs
input into the Transformer-based model which can reduce
the spatial complexity of the proposed method to achieve
end-to-end training. In the future, we will apply the model
to real pathological diagnosis videos such as eye-tracking
videos, helping pathologists reduce the misdiagnosis rate.
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R.; Tabor, J.; and Zieliński, B. 2023. ProMIL: Probabilistic
Multiple Instance Learning for Medical Imaging. In ECAI
2023, 2210–2217. IOS Press.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14271


