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Abstract

Optimizing multiple conflicting black-box objectives simul-
taneously is a prevalent occurrence in many real-world ap-
plications, such as neural architecture search, and machine
learning. These problems are known as expensive multi-
objective optimization problems (EMOPs) when the function
evaluations are computationally or financially costly. Multi-
objective Bayesian optimization (MOBO) offers an efficient
approach to discovering a set of Pareto optimal solutions.
However, the data deficiency issue caused by limited func-
tion evaluations has posed a great challenge to current opti-
mization methods. Moreover, most current methods tend to
prioritize the quality of candidate solutions, while ignoring
the quantity of promising samples. In order to tackle these
issues, our paper proposes a novel multi-objective Bayesian
optimization algorithm with a data augmentation strategy that
provides ample high-quality samples for Pareto set learning
(PSL). Specifically, it utilizes Generative Adversarial Net-
works (GANs) to enrich data and a dominance prediction
model to screen out high-quality samples, mitigating the
predicament of limited function evaluations in EMOPs. Ad-
ditionally, we adopt the regularity model to expensive multi-
objective Bayesian optimization for PSL. Experimental re-
sults on both synthetic benchmarks and real-world appli-
cations demonstrate that our algorithm outperforms several
state-of-the-art and classical algorithms.

Introduction
Expensive multi-objective optimization problems (EMOPs)
are commonly seen in various real-world applications
(Jablonka et al. 2021; Baia et al. 2022; Xie et al. 2021; Yang
et al. 2023). These problems typically entail conflicting ob-
jectives and costly evaluations, such as antenna structure de-
sign (Ding et al. 2019), clinical drug trials (Yu, Ramakrish-
nan, and Meinzer 2019), and neural network structure search
(Lu et al. 2019), etc. For example, sampling all designs of 11
configuration options for x264 in software configuration tun-
ing can cost up to 1,536 hours (Chen and Li 2021). Conse-
quently, the number of function evaluations is severely lim-
ited due to time/financial budget. Furthermore, it is desirable
to discover a set of optimal solutions (Pareto optimal set)
rather than a single one, which imposes further difficulty.
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To address these challenges, multi-objective Bayesian
optimization (MOBO) (Laumanns and Ocenasek 2002), a
generalization of single-objective BO (Močkus 1975a) to
EMOPs, has shown to be a promising approach. Bayesian
Optimization (BO) is a highly effective global optimiza-
tion strategy that has demonstrated tremendous success in
handling black-box optimization problems (Jones, Schon-
lau, and Welch 1998; Snoek, Larochelle, and Adams 2012).
The primary concept behind BO is to construct surrogate
models based on probability, which approximate the black-
box functions and employ acquisition functions to explore
globally optimal solutions. Multi-objective Bayesian Op-
timization (MOBO) combines the principles of Bayesian
optimization and multi-objective optimization. One popu-
lar MOBO strategy is random scalarization, which maps
the multi-objective problem into a group of single-objective
problems. Another effective strategy is based on efficient
acquisition functions, such as the expected hypervolume
improvement (EHVI) (Couckuyt, Deschrijver, and Dhaene
2014) and predictive entropy search (PES) (Hoffman and
Ghahramani 2015).

However, the data deficiency issue caused by limited
function evaluations still poses a great challenge to the cur-
rent MOBO methods. Most current methods tend to prior-
itize the quality of candidate solutions while ignoring the
quantity of promising samples. Moreover, it is often the case
that the search space expands exponentially as the dimen-
sionality of decision variables increases (Tian et al. 2021),
which further worsens the data deficiency issue. As a result,
most MOBO algorithms for EMOPs are confined to small-
scale variables, typically no more than 10 dimensions, due to
the limitations imposed by function evaluations. For exam-
ple, in the DGEMO experiment (Konakovic Lukovic, Tian,
and Matusik 2020), the number of decision variables varies
between 2 and 7, while in both the PSL-MOBO (Lin et al.
2022) and qNEHVI (Daulton, Balandat, and Bakshy 2021)
experiments, the number of decision variables does not ex-
ceed 6. Concerning PSL-MOBO, a recently proposed Pareto
set learning based MOBO, the preference learning and sur-
rogate model can be quite unstable in expensive scenar-
ios. Such instability leads to significant deviations between
the approximate Pareto set and the true Pareto set. In other
words, the quality of the approximate Pareto set is highly de-
pendent on the accuracy of the surrogate model prediction
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Figure 1: The average prediction MSE profiles for the surro-
gate models in PSL-MOBO, DGEMO, and DA-PSL (Ours)
on DTLZ2 (left: M = 3, d = 6, right : M = 3, d = 20).

Figure 2: Approximate Pareto fronts got by PSL-MOBO and
ground truth PF of DTLZ2 (M = 3, d = 20).

and the performance of the Pareto set learning model. As
shown in Figure 1 (a), the mean-square error (MSE) for the
surrogate models of PSL-MOBO and DGEMO is quite high
in the early stage on 6-dimensional DTLZ2 problem. The
situation becomes even worse when the number of decision
variables is 20 (Figure 1 (b)). This further leads to a sub-
stantial deviation between the learned Pareto front approx-
imation of PSL-MOBO and the ground truth Pareto front
(Figure 2).

On the above-mentioned basis, we propose a novel multi-
objective Bayesian optimization (MOBO) approach that uti-
lizes data-augmented Pareto set learning to address the chal-
lenges posed by limited function evaluations in expensive
multi-objective optimization. The main contributions are
summarized as follows:

• We propose a novel data augmentation method that uti-
lizes Generative Adversarial Networks (GANs) to en-
rich data for Pareto set learning in EMOPs. Specifically,
already-evaluated solutions are categorized as fake and
real optima based on a comparison strategy and utilized
as a training set.

• We design a lightweight dominance prediction model for
estimating the quality of solutions. High-quality solu-
tions screened out by the dominance prediction model
are utilized for better Pareto set learning (PSL) with the
regularity model.

• We have conducted comprehensive experiments on both
synthetic benchmarks and real-world applications, which
demonstrate that our proposed algorithm can achieve
competitive performance compared to several state-of-

the-art MOBO algorithms in EMOPs with a restricted
evaluation budget. Furthermore, we validated the effec-
tiveness and efficiency of the proposed data augmenta-
tion strategy.

Preliminaries
Expensive Multi-objective Optimization
Without loss of generality, a multi-objective optimization
problem (MOP) can be mathematically stated as follows :

minimize f(x) = (f1(x), f2(x), . . . , fM (x))T

subject to x ∈ Ω (1)

where x = (x1, x2, . . . , xd) is the decision vector with d
variables, f(·): Ω → Λ is the black-box objective function
including M (M ≥ 2) objectives, Ω is the (nonempty) de-
cision space and Λ is the objective space. It is called an ex-
pensive MOP when evaluating f(x) is expensive and time-
consuming computation or high-cost trials are involved. In
such cases, the goal of optimizing an MOP is to approximate
the PF within a limited evaluation budget.
Definition 1 (Pareto dominance) Given two solutions x, y
in the feasible region Ω, x is said to dominate y (denoted as
x ≺ y) if and only if ∀i ∈ {1, 2, ...,M}, fi(x) ≤ fi(y) and
∃j ∈ {1, 2, ...,M}, fj(x) < fj(y). (Yu 1974)

Definition 2 (Pareto optimal) A solution x∗ ∈ Ω is Pareto
optimal if no other solution x ∈ Ω can dominate it.

Definition 3 (Pareto Set and Pareto Front) The solution
set consisting of all the Pareto optimal solutions is called
the Pareto set (PS): PS={x ∈ Ω|∀y ∈ Ω,y ̸≺ x} and the
corresponding objective vector set of the PS is the Pareto
front (PF).

The goal of optimizing an MOP is to approximate the PF
considering the following two sub-goals (Li, Yang, and Liu
2014): 1) proximity: the approximation set is as close as pos-
sible to the Pareto front. 2) distribution: the approximation
set spreads as diversely as possible.

Bayesian Optimization (BO)
For an unknown black-box function f , neither its analyti-
cal form nor its derivatives are available. The central goal of
Bayesian optimization is to design an effective strategy for
selecting promising solutions, which balances exploration
and exploitation. In each iteration of BO, surrogate mod-
els are constructed based on previously evaluated solutions
for each objective independently. Typically, Gaussian pro-
cess models are adopted to approximate f . Subsequently, an
acquisition function is employed to navigate the search di-
rection. The posterior distribution of the surrogate model is
updated based on the latest evaluated solutions, which are
more promising under the specific acquisition function.

Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs) have enjoyed re-
markable success as a generative model capable of learn-
ing complex data characteristics (Goodfellow et al. 2020).
In general, a pair of GANs consists of two neural networks:
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a generator G and a discriminator D. The generator
maps Gaussian noise z ∈ Pz (where Pz represents the dis-
tribution of Gaussian noise z) to a distribution G(z), thereby
synthesizing meaningful instances from a prior distribution.
The discriminator is trained to distinguish between fake
samples x̂ ∈ Px̂ (where Px̂ represents the distribution of
generated data) synthesized by the generator and real sam-
ples xreal provided by the training set. Generally speak-
ing, the generator aims to learn the distribution of train-
ing instances and generate fake instances to deceive the
discriminator, while the discriminator is intended to
distinguish between generative and real samples. Ideally,
the training procedure ends with the discriminator being
unable to distinguish the authenticity of a particular sample.
Specifically, the training process is akin to a game between
the generator and the discriminator, and the loss function
V is defined as follows:

min
G

max
D

V (G,D) =Ex∈Px [logD(x)]

+ Ez∈Pz [log(1−D(G(z)))] (2)

where G(z) denotes the data generated from the input noise
variable z, while D(·) represents the predicted probabil-
ity by the discriminator. The predicted probability tends
towards 0 for fake instances and 1 for genuine instances,
where x represents the data from true instances.

Our Method
Overview
We present a data-augmented Pareto set learning method for
MOBO, denoted as DA-PSL (Algorithm 1 and Figure 3).
DA-PSL includes three core components: data augmentation
with two neural networks, Pareto set learning with regularity
model, and batch selection strategy based on Gaussian pro-
cess models. Firstly, it initializes a set of samples X0 ⊂ X ,
where X ⊂Rd, drawn by employing Latin Hypercube Sam-
pling (LHS) (McKay, Beckman, and Conover 2000). Then,
the three components are invoked iteratively.

Data Augmentation
In order to better approximate the true PS, we propose
a data augmentation strategy that is summarized in Algo-
rithm 2. Specifically, it utilizes Generative Adversarial Net-
works (GANs) to enrich data and a dominance prediction
model to screen out high-quality samples. Initially, the shift
based density estimation (SDE) (Li, Yang, and Liu 2013) is
adopted to calculate the fitness value:

Fit(p) = min
q∈Y k\p

√√√√ M∑
i=1

(max{0, fi(q)− fi(p)})2 (3)

Here, p and q denote the solutions in Y k, and fi(p) denotes
the i-th objective value of p. The SDE considers the qual-
ity of samples in terms of convergence and diversity. A set
of T (e.g., |Xk|

3 ) candidate solutions in {Xk,Y k} with bet-
ter SDE values, are treated as real Pareto optimal samples,
while the remaining are considered as fake ones.

Algorithm 1: Data-Augmented Pareto Set Learning
for Multi-Objective Bayesian Optimization

input : black-box function
f(x) = (f1(x), ..., fM (x)), number of
iterations K, batch size B, number of initial
solutions N

output: final solutions {XK ,Y K}, Pareto front Pf

1 Initial N solutions {X0,Y 0} by LHS
2 for k← 0 to K − 1 do
3 Train surrogate model GP k

i based on {Xk,Y k}
for each objective fi, i = 1, ...,M

4 XDP
k ,Xreal

k ← Data augmentation based on
{Xk,Y k} (Algorithm 2)

5 XPSL
k ← Pareto set learning based on XDP

k and
Xreal

k (Algorithm 3)
6 XB

k ← Batch selection based on GP k, XPSL
k

and {Xk,Y k}
7 Evaluate and update Xk+1 ←Xk ∪XB

k , Y k+1

← Y k ∪ f(XB
k )

8 Approximate the Pareto front Pf by non-dominated
solutions in Y K

Algorithm 2: Data Augmentation
input : all already-evaluated solutions in the k-th iteration

{Xk,Y k}, number of real samples T
output: solutions after data augmentation XDP

k

1 Fitness← Calculate the fitness of each solution in
{Xk,Y k} by Eq. 3

2 Xreal
k ← Select top T candidate solutions with maximal
Fitness

3 Xfake
k ←Xk \Xreal

k

4 µ← mean(Xreal
k ) /*Mean vector*/

5 Σ← cov(Xreal
k ) /*Covariance matrix*/

6 Xinput
k ←
{Xreal

k ∪Xfake
k , {real}T×1 ∪ {fake}(len(Xk)−T )×1}

/* Xinput
k is a tuple composed of decision variables and

labels*/
7 Train a GAN with Xinput

k andN (µ,Σ) and save its
generator G /*Training details can be found in
Appendix A.1*/

8 XGAN
k ← Generate solutions by µ, Σ, Xreal

k and G

9 XDP
k ←DPmodel(X

GAN
k ,Xreal

k ) /*Training and
selection details can be found in Appendix A.2*/

Generation via GANs. The mean vector and covariance
matrix of real samples are computed as µ and Σ, respec-
tively. We utilize a combination of real and fake samples
with their corresponding labels, along with a multivariate
normal distribution N (µ,Σ), as the training data of GANs.
N (µ,Σ) is also the input of the generator G. We subse-
quently obtain solutions XGAN

k , where |XGAN
k | = 1000,

for all problems. However, it is worth noting that there is
a risk of model collapse during the training of GANs (Ar-
jovsky, Chintala, and Bottou 2017), which may result in

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14204



𝐗𝑘 GAN 𝐗𝑘
𝐺𝐴𝑁 DP Model

Reg. Model መ𝐟(𝐗𝑘
𝑃𝑆𝐿 )

𝐗𝑘
𝐷𝑃

𝐗𝑘
𝑃𝑆𝐿 GP Models

𝐗𝑘
𝐷𝑃

𝐗𝑘+1
Batch Selection

𝐗𝑘
𝑟𝑒𝑎𝑙

Data Augmentation

Pareto Set Learning Gaussian Process

Solution ℝ𝑑

Esitimated Objective ℝ𝑀

𝐗𝑘
𝑟𝑒𝑎𝑙

𝐗𝑘
𝑓𝑎𝑘𝑒

Figure 3: Flow Chart of Data-Augmented Pareto Set Learning for MOBO. (a) Data Augmentation. The already-evaluated
solutions are partitioned into real and fake samples, and a multivariate normal distribution is constructed using the real
samples. The aforementioned data is utilized to train Generative Adversarial Networks (GANs), and new samples are generated
from the generator. The trained dominance prediction model (DP Model) subsequently selects a batch of promising samples
using a voting-score strategy. (b) Pareto Set Learning. The promising samples are employed to construct a regularity model
via the local principal component analysis algorithm (Kambhatla and Leen 1997). The regularity model approximates the true
Pareto set, and new solutions are sampled in the approximate Pareto set. (c) Batch Selection Strategy. The expected hypervolume
improvement (EHVI) is employed as the acquisition function for batch selection. Furthermore, sequential greedy selection is
utilized as an approach for batch selection to conserve computing resources.

generating suboptimal solutions. In order to mitigate this
risk, we propose to add several samples as complements to
GANs, which are generated by genetic operators such as
crossover and mutation. Further details on the architecture
and training process can be found in Appendix A.1.

Discrimination via Dominance Prediction Model. It is
favorable to screen out the high-quality solutions from G
for better data augmentation. Specifically, we utilize Xreal

k

as reference solutions to evaluate XGAN
k . The relationship

between each solution of Xreal
k and XGAN

k , i.e., whether it
is dominated, non-dominated, or dominates other solutions,
is crucial for selection. We use a voting-score strategy and
reserve the top |XDP

k | solutions with higher scores to build
the Pareto set learning model, where |XDP

k | is set to 100.
More details can be found in Appendix A.2.

Discussion. Several data augmentation methods have been
introduced for tackling MOPs. Both GMOEA (He et al.
2020) and DDMOPSO-A (Zhang et al. 2021) utilize GANs
for data augmentation. GMOEA lacks customization for
EMOPs, as it primarily targets general MOPs. Additionally,
DDMOPSO-A is less suitable for solving EMOPs since it
is an offline data-driven algorithm where newly evaluated
solutions are not included in data augmentation. DK-RVEA
(Liu and Wang 2022) proposes an unconventional data aug-
mentation strategy by reusing old samples. Thus, it is unable
to generate sufficient training data for the PSL model.

In contrast to the existing methods, our proposed data
augmentation for PSL differs in two aspects: 1) For GANs,
we introduce an imbalanced distribution of the real and
fake samples in a greedy manner. In addition, the input la-
tent variables of generator follow a N (µ,Σ) distribution
in the real samples distribution. 2) A lightweight dominance
prediction (DP) model is adopted for selecting high-quality
samples. DP exhibits better stability than other classification

models (e.g., CSEA, MCEA/D (Sonoda and Nakata 2022)),
as it considers the relationship between each generated solu-
tion and all the already-evaluated solutions.

Pareto Set Learning with Regularity Model
Model Construction. In DA-PSL, we utilize a regularity
model from (Zhang, Zhou, and Jin 2008) as the Pareto set
learning model. We choose to employ eigendecomposition
(Kambhatla and Leen 1997) to partition XDP

k ∪ Xreal
k , as

opposed to the K-means clustering method (Hartigan and
Wong 1979). This is due to that the centroid of each cluster
should be a (M−1)-dimensional hyper-rectangle rather than
a point, as indicated in the below property:

Theorem 1 (Claus Hillermeier (Hillermeier 2001))
Under certain (mild) conditions, the PF and PS of a
continuous MOP both distribute on a piecewise continuous
(M − 1)-dimensional manifold, respectively.

Next, further details are presented. Initially, we partition
XDP

k ∪Xreal
k into P disjoint clusters S1, S2, ..., SP based

on Euclidean distance from each individual to the center of
the clusters. This process is performed iteratively until each
group is no longer updated. Subsequently, we calculate the
mean values for each cluster:

x̄j =
1

|Sj |
∑
x∈Sj

x (4)

Then the covariance matrix Cj for each cluster is calculated
and the first M − 1 principal components (Hastie and Stuet-
zle 1989) of Cj are preserved:

Cj =
1

|Sj | − 1

∑
x∈Sj

(x− x̄j)(x− x̄j)T

U = U j
1 , U

j
2 , ..., U

j
M−1

(5)
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Algorithm 3: Pareto Set Learning

input : solutions selected by DPmodel X
DP
k , real

samples Xreal
k

output: solutions generated by PSL model XPSL
k

1 PSmodel ← LocalPCA(XDP
k ∪Xreal

k );
2 XPSL

k ← ∅;
3 for i← 1 to N do
4 Use PSmodel to generate one solution, namely s;
5 XPSL

k ←XPSL
k ∪ {s};

where U j
i is an eigenvector associated with the i-th largest

eigenvalue of Cj . The projection Φj of Sj is calculated:

Φj = (x− x̄j)TU j ,Φj ∈ [aj , bj ] (6)

where aj and bj denote the lower and upper boundaries of
Φj . Through the above processing, an (M − 1)-dimensional
Pareto set learning model Ψj for Sj is defined as follows:

Ψj = {x ∈ Rd|x = x̄j +
M−1∑
i=1

ηjiUi} (7)

where ηji is randomly sampled from [aji − 1
4 (b

j
i − aji ),

bji +
1
4 (b

j
i − aji )], the purpose of 50% extension along the

boundaries of Ψj is to provide a better promising approxi-
mation to the whole PS.

Solutions generation. We sample |XPSL
k | solutions on

the Pareto set learning model Ψj according to the propor-
tion of individuals in each cluster, where |XPSL

k | is set to
1000 for all problems:

x = x̄j +
M−1∑
i=1

ηjiUi + γ, γ =
d∑

i=M

λj
iU

j
i ϵi (8)

where ϵi and λi (i = M to d) denote independent N (0, 1)
noises and the d−M +1 smallest eigenvalues, respectively,
so that γ is a small perturbation for better diversity.

Discussion. As mentioned previously, the approximation
accuracy of the PSL model in PSL-MOBO may not be satis-
factory on some complicated problems. This phenomenon
may be attributed to the instability of the PSL model in
learning preference mapping and the Pareto set features. Dif-
ferent from PSL-MOBO, we introduce the regularity model
(RM) for Pareto set learning in MOBO due to two reasons:
1) RM exhibits superior stability in optimization, particu-
larly when solving complicated problems; 2) RM is more
computationally efficient compared to PSL-MOBO. Addi-
tional details are presented in Appendix E.1.

Selection Strategy
Gaussian Process. We construct independent Gaussian
Process (GP) models to model each objective (Daulton,
Balandat, and Bakshy 2020). For a single-objective GP

model, there exists a prior distribution, which can be de-
fined as f(x) ∼ N (m(x), k(x,x)), where m and k de-
note the mean function m : X ⊂ R and the kernel func-
tion k : X × X ⊂ R, respectively. The GP posterior dis-
tribution is updated by maximizing the log marginal like-
lihood log p(y|x,θ), where θ denotes the parameters of
the kernel function, with the already-evaluated solutions
{X,Y }. Finally, we obtain the posterior distribution of the
GP as f(x) ∼ N (µ(x),Σ(x,x)), where the kernel vec-
tor is µ(x) = m(x) + kK−1Y and the kernel matrix is
Σ(X) = k(x,x) − kK−1kT , with k = k(x,X ) and
K = k(X,X) (we apply the Matern 5/2 kernel in our
method).

Batch Selection. We select a small subset XB
k = {xb|b =

1, ..., B} from the solutions sampled by the PSL model
according to the hypervolume (HV) indicator (Zitzler and
Thiele 1999). Given a solution set S ⊂ Rd and a reference
vector set r ⊂ Rd, HV (S) is defined as follows:

HV(S) = Λ({q ∈ Rd|∃p ∈ S : p ≤ q and q ≤ r}) (9)
where Λ(·) denotes the Lebesgue measure. Our batch selec-
tion strategy aims to maximize the hypervolume improve-
ment (HVI) of XB

k with respect to {Xk,Y k}:
HVI(f̂(XB

k ),Y k) =HV(Y k ∪ f̂(XB
k ))

−HV(f̂(XB
k )) (10)

where f̂(·) represents the estimated objective value. To save
computing resources, we adopt the widely-used sequential
greedy selection in maximizing Eq. 10. The selected subset
XB

k is evaluated by true FE. The resulting {XB
k ,Y

B
k } is

unioned with {Xk,Y k} to obtain {Xk+1,Y k+1}.

Experiments and Results
Synthetic Benchmarks and Real-world Applications.
At first, we conduct a series of experiments on several
widely-used synthetic multi-objective benchmarks, includ-
ing ZDT1-3 (Zitzler, Deb, and Thiele 2000) and DTLZ2-7
(Deb et al. 2005). The considered problems in the experi-
ments have 2 and 3 objectives, and the number of decision
variables varies from 10 to 50. Notably, we present the re-
sults for a specific instance where d = 20, and additional
results can be found in Appendix E.2. Subsequently, we fur-
ther assessed the scalability of DA-PSL by adopting seven
real-world engineering design problems.

Baselines and Implementation. Several SOTA and clas-
sical methods are considered for experimental compari-
son, including NSGA-II (Deb et al. 2002), MOEA/D-EGO
(Zhang et al. 2009), TSEMO (Bradford, Schweidtmann,
and Lapkin 2018), USeMO-EI (Belakaria et al. 2020),
DGEMO (Konakovic Lukovic, Tian, and Matusik 2020),
PSL-MOBO (Lin et al. 2022), qNparEGO (Knowles 2006),
qEHVI (Daulton, Balandat, and Bakshy 2020) and qNE-
HVI (Daulton, Balandat, and Bakshy 2021). The implemen-
tations come from PSL-MOBO and DGEMO’s open-source
link, and BoTorch (Balandat et al. 2020). We implement DA-
PSL 1 in Pytorch.

1https://github.com/ilog-ecnu/DAPSL
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Figure 4: The HV values w.r.t. the number of FEs of 10 algorithms on synthetic test functions and real-world applications.

Experiment Settings. We initialize 100 solutions via
Latin hypercube sampling for true FEs and proceed to exe-
cute BO for 20 batches with batch size 5 for each algorithm.
Additionally, we ensure statistical rigor by running all meth-
ods 10 times independently. The HV indicator (Eq. 9) is used
for evaluating the quality of 200 solutions in total. To ensure
fair evaluation, we adopt the same reference point for each
algorithm. More details are shown in Appendix B.

Experimental Results And Further Discussion
MOBO Performance. Figure 4 presents a comparison of
the hypervolume indicator with respect to FE. Our pro-
posed DA-PSL approach exhibits superior performance on
most synthetic benchmarks in terms of both convergence
speed and final values. Moreover, DA-PSL achieves excel-
lent performance on real-world applications (RE) as well.
Notably, DA-PSL outperforms PSL-MOBO, a recently pro-
posed Pareto set learning method, on all types of problems.
These results clearly establish the validity and superiority
of our DA-PSL approach. Further details, including running
time, ablation study, and additional experiments and discus-

sions are shown in Appendix E.1, E.5, E.6, E.7, etc.

Validity of Data-Augmented Pareto Set Learning. The
Pareto fronts approximated by DA-PSL and PSL-MOBO
under the posterior mean are presented in Figure 5. It is
evident that DA-PSL can better capture the salient charac-
teristics of the ground truth PF, compared to PSL-MOBO,
across synthetic benchmarks as well as real-world applica-
tions. For instance, PSL-MOBO only approximates a por-
tion of the ground truth PF, whereas DA-PSL can effectively
capture almost all the features of ZDT1. Moreover, our ap-
proach demonstrates satisfactory exploitation on the rocket
injector design problem (RE5) (Vaidyanathan et al. 2003),
which has a complex PF due to the Pareto optimal solutions
being grouped into several regions, while PSL-MOBO only
achieves good convergence on a few regions of RE5. Ad-
ditionally, we include the non-dominated solutions without
data augmentation strategy, which clearly fail to achieve sat-
isfactory convergence and diversity on many problems, sim-
ilar to PSL-MOBO. Further, we provide a detailed analysis
of the superiority of DA-PSL in Appendix E.3.
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Figure 5: Approximate Pareto fronts obtained by DA-PSL
and PSL-MOBO, and non-dominated solutions without data
augmentation strategy.

Related Work
Multi-objective Bayesian Optimization (MOBO) is a
powerful tool that combines the principles of Bayesian op-
timization and multi-objective optimization to solve multi-
objective problems. One popular MOBO strategy is the ran-
dom scalarization algorithm, which scalarizes the multi-
objective problem into a distribution of single-objective
problems. These approaches reduce the difficulty of opti-
mization and apply classical single-objective BO to deal
with, such as ParEGO (Knowles 2006) and TS-TCH (Paria,
Kandasamy, and Póczos 2020). However, an intuitive weak-
ness of these methods is that their performance is dependent
on the quality of random scalarization (Daulton et al. 2022).
Another effective strategy is based on efficient acquisition
functions, such as the expected hypervolume improvement
(EHVI) and predictive entropy search (PES). EHVI is re-
garded as an extension of the popular expected improvement
(EI) (Močkus 1975b), which aims to produce a satisfactory
coverage of the true Pareto front. PES is an alternative to
EHVI and shows competitive performance. The represen-
tative algorithms include PESMO (Hernández-Lobato et al.
2016), MESMO (Belakaria, Deshwal, and Doppa 2019), and
PFES (Suzuki et al. 2020).

There are two streams of works related to EHVI, re-
ferred to as sequential selection (Emmerich, Giannakoglou,

and Naujoks 2006) and batch selection (Zhang et al. 2009).
Sequential selection methods choose one solution for true
function evaluation (FE) and update the surrogate model
during each iteration. They usually tend to achieve better
performance at the expense of time. Although a series of
works focus on efficient EHVI computation in sequential se-
lection (Hupkens et al. 2015), the time complexity increases
with the number of objectives and the dimension of decision
variables (Yang et al. 2019).

Batch selection methods usually choose a batch of solu-
tions in a sequential greedy manner for true function evalua-
tion (FE) before updating the surrogate model. Instead of di-
rectly selecting B solutions, the sequential greedy approach
integrates over the posterior of the unevaluated samples cor-
responding to the already selected ones in the current batch
and adds the best one into the batch one by one, greatly re-
ducing time complexity with empirical and theoretical guar-
antees (Wu and Frazier 2016). DGEMO considers the diver-
sity of both decision and objective space in the batch selec-
tion strategy. qNEHVI scales EHVI to highly parallel eval-
uations of noisy objectives. PSL-MOBO proposes a Pareto
set learning model to map preference to its corresponding
Pareto solution.

Pareto Set Learning (PSL) is an effective method for
EMOPs from an infinite set approximation perspective,
while most current approaches attach importance to a fi-
nite Pareto optimal set (Sazanovich et al. 2021). Most ap-
proaches focus on each solution itself and treat each of them
as an independent individual. Nonetheless, the relationship
between solutions provides crucial information for approx-
imating the ground truth Pareto front (PF) and Pareto set
(PS). Inspired by this phenomenon, PSL-MOBO incorpo-
rates preference information into deep neural networks and
utilizes a Gaussian process model to predict the objectives of
a given black-box function. Furthermore, PSL-MOBO up-
dates model parameters with gradient descent and ultimately
constructs a Pareto set model, which is regarded as a gener-
alization of the decomposition-based multi-objective opti-
mization algorithm (MOEA/D) (Zhang and Li 2007).

Conclusion
Given a limited number of function evaluations, accurately
approximating the true Pareto set is a significant challenge
due to data deficiency. In this study, we present a novel
data-augmented Pareto set learning approach to expensive
multi-objective optimization. To be specific, the data aug-
mentation component includes two neural networks: GANs
for generating samples and a dominance prediction model
for screening samples. Additionally, we generalize the reg-
ularity model for Pareto set learning in expensive multi-
objective Bayesian optimization. The core advantage of our
approach lies in providing a sufficient number of high-
quality samples for Pareto set learning, which differs from
previous methods. Experimental results on both synthetic
benchmarks and real-world applications illustrate that our
proposed method outperforms classical and state-of-the-art
approaches on most of the problems.
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