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Abstract

Federated learning (FL) has shown remarkable success in
cooperatively training deep models, while typically strug-
gling with noisy labels. Advanced works propose to tackle
label noise by a re-weighting strategy with a strong assump-
tion, i.e., mild label noise. However, it may be violated in
many real-world FL scenarios because of highly contami-
nated clients, resulting in extreme noise ratios, e.g., >90%.
To tackle extremely noisy clients, we study the robustness
of the re-weighting strategy, showing a pessimistic conclu-
sion: minimizing the weight of clients trained over noisy
data outperforms re-weighting strategies. To leverage models
trained on noisy clients, we propose a novel approach, called
negative distillation (FedNed). FedNed first identifies noisy
clients and employs rather than discards the noisy clients in
a knowledge distillation manner. In particular, clients identi-
fied as noisy ones are required to train models using noisy la-
bels and pseudo-labels obtained by global models. The model
trained on noisy labels serves as a ‘bad teacher’ in knowledge
distillation, aiming to decrease the risk of providing incor-
rect information. Meanwhile, the model trained on pseudo-
labels is involved in model aggregation if not identified as a
noisy client. Consequently, through pseudo-labeling, FedNed
gradually increases the trustworthiness of models trained on
noisy clients, while leveraging all clients for model aggre-
gation through negative distillation. To verify the efficacy
of FedNed, we conduct extensive experiments under various
settings, demonstrating that FedNed can consistently outper-
form baselines and achieve state-of-the-art performance.

Introduction

The rise of federated learning (FL) benefits from its ca-
pacity for large-scale distributed model training in a data-
preserving manner (Kairouz et al. 2021). The server aggre-
gates client models to produce a global model and sends it
back for subsequent training. When the sample annotation
is accurate, the global model can generally exhibit promis-
ing performance, even when the data is somehow non-IID
distributed (Ma et al. 2022). Another challenge in FL is the
label-noise problem. Usually, as each client collects and an-
notates the data by itself, the inaccurate annotation in each
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Figure 1: The test accuracy of the global model by control-
ling the weight of a single client model. We set ten client
models including eight clean ones (with a noise ratio of 0%)
and two extremely noisy ones (with a noise ratio of 99%). K
is the total number of clients, which is ten in this example.

client may be with different degrees (Xu et al. 2022). Dif-
ferent from the label-noise learning in a batch setting, the
server in FL needs to judge the degree of label noise for each
client before model aggregation, because the server has no
information about which client has label noise.

Many efforts have been devoted to alleviating the label-
noise issue in FL (Liang et al. 2023; Yang et al. 2021; Chen
et al. 2020; Wang et al. 2022; Yang et al. 2022; Kim et al.
2022; Xu et al. 2022; Wu et al. 2023a). Advanced works
have shown the promising benefits of assigning different
weights to each client during the model aggregation pro-
cess. The intuition behind these methods is that all client
models have the potential to contribute to the global model
by model aggregation, highlighting the importance of ag-
gregation weights assigned for each client. The basic intu-
ition is built upon a strong assumption that the label noise
on each client is relatively mild. Namely, models trained on
mild noise can benefit global models by aggregation.

However, the strong assumption could be violated in
many practical FL scenarios. For instance, some clients may
be highly contaminated with noise ratios exceeding 90%,
due to unintentional mislabeling or deliberate data poison-
ing. These clients are referred to as ‘extremely noisy’ clients
in the context of this work. Consequently, models trained
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on extremely noisy clients may perform differently on the
same dataset, causing global models to degrade via model
aggregation. We assign different weights used for aggrega-
tion to illustrate the negative impacts of models trained on
extremely noisy clients, as depicted in Figure 1. These ex-
periments show that the performance of the global model
varies with the weight assigned to a client model. Specifi-
cally, for each line plot, we merely change the weight for
one client model, while keeping weights for the left clients
equally '. Our results show that a) models trained on clean
clients contribute to the global model, and b) models trained
on extremely noisy clients lead to severe performance degra-
dation. Namely, we should discard models trained on noisy
clients, i.e., assigning 0 weights to these models rather
than weighing them with an arbitrarily small weight. There-
fore, discarding noisy clients is preferred over re-weighting
clients for the model aggregation process. However, the dis-
carding strategy goes against the intention of FL.

In this work, we propose Federated learning via Neg-
ative distillation (FedNed) to deal with the extreme-noise
problem. FedNed first identifies the client models with ex-
treme label noise by model prediction uncertainty (Gal and
Ghahramani 2016), since uncertainty is widely used to mea-
sure whether a model can be trusted (Jiang et al. 2018).
Then, rather than directly discarding them, FedNed utilizes
them through a novel strategy called negative distillation.
In negative distillation, these client models trained on ex-
tremely noisy data act as ‘bad teachers’ when updating the
global model. FedNed keeps the global model’s prediction
different from that of the extremely noisy client models,
which shares the same spirit with negative learning (Kim
et al. 2019), i.e., reducing the risk of providing incorrect in-
formation. As a result, negative distillation produces an even
better global model than the one aggregated by only using
client models. Extensive experiments verify the effective-
ness of the proposed method on the environment of clients
with extremely noisy-labeled data.

Our main contributions are summarized as follows:

* We reveal the severe impacts induced by extremely
noisy clients, posing challenges to existing methods.
Specifically, involving models trained on extremely noisy
clients causes performance degradation of global models.

We propose a novel method called FedNed to tackle
FL with extremely noisy clients. In FedNed, the key
idea called negative distillation is proposed to encourage
the global model’s prediction to be dissimilar to that of
noisy models. A new local optimization strategy is sub-
sequently adopted for identified extremely noisy clients.

We conduct comprehensive experiments to verify the ef-
ficacy of FedNed on benchmarks with extremely noisy
clients, demonstrating that FedNed significantly and con-
sistently outperforms state-of-the-art methods.

Related Work

We first summarize the advancements achieved in the do-
mains of federated learning (FL) and label-noise learning.

'The sum of all weights is 1.
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Then, we summarize the recent work of the joint problem:
label-noise learning in the FL environment.

Federated Learning with Data Heterogeneity

Since the seminal work FedAvg (McMahan et al. 2017)
was proposed, the landscape of FL research has predomi-
nantly revolved around addressing challenges of data het-
erogeneity (Ma et al. 2022), where data distributions shift
with clients, i.e., non-IID data.

Advanced works have achieved outstanding improve-
ments through various approaches, under an assumption that
client data are noise free. FedProx (Li et al. 2020) introduces
a regularization mechanism into the local training process
by employing a proximal term, effectively enhancing con-
vergence behavior. SCAFFOLD (Karimireddy et al. 2020)
mitigates client drift by incorporating supplementary control
variates, ensuring stable convergence. FedDyn (Acar et al.
2021) dynamically regulates the training process of neural
network models across devices, allowing for efficient train-
ing while remaining robust to diverse scenarios. Recently,
FedNH (Dai et al. 2023) marks an important stride by en-
hancing the efficacy of local models in both personaliza-
tion and generalization. It is achieved through the incor-
poration of uniformity and class semantics in class proto-
types, thereby improving overall model stability and effec-
tiveness across diverse clients. FedNP (Wu et al. 2023b) ef-
ficiently estimates the inaccessible ground-truth global data
distribution using a probabilistic neural network, mitigat-
ing performance degradation induced by data heterogeneity.
Advanced works propose to share privacy-free data among
clients to tackle data heterogeneity (Tang et al. 2022; Yang
et al. 2023), achieving promising performance.

Label-Noise Learning

In numerous real-world scenarios, data annotation often
gives rise to the challenge of noisy labels. A considerable
number of methods for label-noise learning can be catego-
rized into the following groups (Song et al. 2022): sample
selection (Yao et al. 2021; Karim et al. 2022), loss func-
tion adjustment (Ghosh, Kumar, and Sastry 2017; Shu et al.
2019), regularization (Xia et al. 2020; Lukasik et al. 2020),
and robust model architecture (Han et al. 2018b,a). Among
these works, the line of sample selection is the most related
approach, as we perform model selection to defy label noise.

Early methods primarily rely on the trick of small risk (or
loss), sharing the same spirit with model selection using un-
certainty (Jiang et al. 2018). For instance, co-teaching (Han
et al. 2018b) adopts sample selection by two distinct models,
wherein the clean samples selected by one model are used
to train another. Similarly, DivideMix (Li, Socher, and Hoi
2019) effectively employs the small loss trick to select clean
samples, subsequently integrating semi-supervised learning
by treating the unselected samples as unlabeled. Recently,
contrastive learning approaches have been involved in sam-
ple selection. Jo-SRC (Yao et al. 2021) utilizes contrastive
learning to estimate the likelihood of sample cleanliness or
out-of-distribution by training the network with dual pre-
dictions and introducing a joint loss with consistency reg-
ularization to improve model generalization. Unicon (Karim
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et al. 2022) employs a uniform selection mechanism, cou-
pled with contrastive learning, to tackle imbalanced sample
selection and prevent the memorization of noisy labels.

Federated Learning on Noisy-Labeled Data

The management of noisy-labeled local data from diverse
clients poses a novel challenge within the field of FL (Liang
et al. 2023). Specifically, advanced FL methods for data het-
erogeneity typically struggle with noisy labels, while tradi-
tional label-noise learning approaches are no longer robust
when facing distributed data.

One straightforward approach is to reserve clean data on
the server to identify noisy clients. Among these methods,
quantifying each client’s noise ratio is used to identify low-
noise ratio clients (Yang et al. 2021). The server can subse-
quently aggregate the client models based on the ranking of
estimated noise ratios. Similarly, FOCUS (Chen et al. 2020)
assigns different weights to clients based on the credibility
of their local data. However, these methods make a strong
assumption that the server holds clean labeled data.

Advanced works make a great attempt to weaken the as-
sumption when estimating noise rate. For instance, Fed-
NoiL (Wang et al. 2022) utilizes prediction confidence to
estimate the noise ratio, which is then normalized to weight
client models during model aggregation. FedCorr (Xu
et al. 2022) adopts local intrinsic dimension to differen-
tiate between clean and noisy clients, utilizing the esti-
mated noise rate as a regularization coefficient to constrain
model updates. FedNoRo (Wu et al. 2023a) initially identi-
fies noisy clients through normalized local losses, followed
by distance-aware model aggregation in the second stage.
RoFL (Yang et al. 2022) assesses distances between pro-
totypes to facilitate model aggregation. FedRN (Kim et al.
2022) identifies some reliable neighbors and employs their
mixture model to enhance clean sample selection. However,
the intuition behind these methods is that all client models
can contribute to the global model, which may no longer
hold under extremely noisy scenarios.

Proposed Method

In this section, we detail how the proposed method FedNed
endows FL with robustness against extremely noisy clients.

Problem Definition

In the typical FL environment (McMahan et al. 2017), a col-
lection of K clients collaborates with a central server to train
a global model. Each client collects its local dataset, denoted
as Dy, which may contain noisy-labeled samples with an un-
known noise ratio. Regarding the noise ratio, existing works
assume that it would never surpass a certain threshold, i.e.,
mild label noise. Many practical scenarios highlight the im-
portance and urgency of relaxing the strong assumption to
that of extreme label noise.

In our work, the noise ratio ranges from 0% to 100%,
where clients are categorized as ‘extremely noisy clients’ if
their uncertainties exceed a certain threshold. Our focus is
mainly on these extremely noisy clients, since this complex
scenario is rarely discussed in the literature.
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Algorithm Overview

The overall training process of FedNed is illustrated in Fig-
ure 2. The server identifies the extremely noisy clients in
each round (c.f. Section Identification of Extremely Noisy
Clients) and excludes their uploaded models during model
aggregation. Subsequently, a novel negative distillation pro-
cedure (c.f. Section Negative Distillation) is employed to
further enhance the global model’s performance by incor-
porating information from the extremely noisy models. On
the server, we utilize a public dataset Dy, for both the iden-
tification step and the negative distillation step. To address
the privacy issue in FL, Dy can be a public dataset with-
out label annotation. Local training on each client also takes
into account the identification result on the server in the pre-
vious round. If a client is identified as extremely noisy, an
additional local model is updated and uploaded (c.f. Section
Client-Side Training).

Identification of Extremely Noisy Clients

The first step is to identify the client models trained with ex-
treme label noise. In each communication round, the server
randomly selects a subset of clients denoted as A!. Subse-
quently, the selected clients are divided into two categories:
mildly noisy (MN) clients indexed by C! and extremely
noisy (EN) clients indexed by N. EN clients are updated
on local extremely noisy-labeled data.

Following previous work (Jiang et al. 2018), we em-
ploy model uncertainty (Gal and Ghahramani 2016) to iden-
tify models with high risk, i.e., trained with noisy-labeled
data. Specifically, client models with high uncertainty are
regarded as EN clients. Denoting w, as the parameter of lo-
cal model at client k£ for the ¢-th round, the probability of
model for class ¢ can be calculated by:

p(y = clx, Dy) = / ply = clx, w)p(w|Dp)dw (1)

T
1 ~
~ T E Py = clx, W), 2
t=1

where x € Dy is input data with its label y, p(y = c|x, w)
stands for the probability label c predicted by model with pa-
rameter w, p(w|Dy,) represents the distribution of applying
Dropout operation to models trained on local data Dy, dur-
ing inference, 7" is the times to perform inference for each
sample, and w; denotes parameters sampled from p(w|Dy,).
Built upon p(y = ¢|x, Dy ), we calculate the uncertainty Uy,
for client k& by averaging over all samples and classes:

C
-1
m Z Z p(y = C|X7'Dk) logp(y = C|X, Dk)~

c=1xeDy
3)

We select the clients whose uncertainty Uy, is greater than a
threshold A as the EN clients.

It is worthwhile to note that client models identified as
noisy are used to perform model aggregation in previous
works (Wu et al. 2023a; Wang et al. 2022), while we identify
noisy clients to perform negative distillation.
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Figure 2: The architecture overview of the proposed FedNed. In each round, the server identifies the mildly noisy (MN) and
extremely noisy (EN) client models via MC dropout and prediction uncertainty. Negative distillation is then utilized to incor-

porate EN client models for a better global model.

Negative Distillation

Building upon the observation and analysis presented in Fig-
ure 1, the integration of EN clients into model aggrega-
tion with arbitrary weights emerges as detrimental to the
generalization performance of the global model. Opting for
a straightforward solution that involves discarding the EN
clients offers a protective measure to maintain the integrity
of the global model. However, these clients could potentially
hold information beneficial to enhance the global model.
Apparently, the EN clients are trained on the local datasets
with extremely noisy labels, leading to their diminished ca-
pacity for accurate predictions. Thus, leveraging the incor-
rect predictions generated by EN clients may compel the
global model to diverge from their predictions. Avoiding
incorrect predictions is widely used in negative learning,
which aims to reduce the risk of providing incorrect in-
formation. In this paper, we implement this idea by the
concept of negative distillation, making the global model’s
prediction diverge from those offered by the identified EN
clients. Negative distillation is utilized to incorporate EN
client models for a better global model.

Inspired by FedDF (Lin et al. 2020), we leverage knowl-
edge encoded in EN by knowledge. In contrast to FedDF’s
strategy of ensembling all client models for global model
improvement, we consider the client models from EN clients
as the ‘bad teacher’. The goal is to make the student
model (e.g., the global model) remain distant from the ‘bad
teacher’. The server initializes the student model by aggre-
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gating solely the MN client models:

N,
g+l — Z NE ¢

w
t ko
kecCt N

“4)

where Ny, is the number of training samples in client k& and
N* =3, cct Ni is the total number of training samples of
the selected MN clients in round ¢.

The initial student model is solely aggregated by MN
client models, thereby preventing being affected by EN
client models during model aggregation. Subsequently, the
student model is updated by optimizing the negative distil-
lation loss function £,,4:

1

NPyl

t+1

; StJrl X Wy

)

d[f(x )]

keNt xeDy

where d(u,v) := KL][o(u),o(v)] is the distance based
on KL divergence with o (+) the softmax activation function,
f(x;w) = {f1, fa, ..., fc} stands for the output probability
vector, and g(x;w) = {f; ', f5 ', ..., fo'} are the recip-
rocals of the output. KL(u,v) = (o(u),o(v)) is the dis-
tillation loss and o is the softmax function. This loss com-
pels the student model’s predictions to diverge from those of
each EN client model. The reciprocals of the output from
EN client models could include knowledge from student
models, given that these models tend to produce incorrect
predictions consistently. In this manner, the student model
is enhanced by avoiding wrong knowledge from the ‘bad
teacher’. Finally, the updated student model is sent back to
each client as the global model wi+!,

), 9( ®)
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Algorithm 1: Federated Negative Distillation

Input: T} is the number of warm-up rounds; 7' is the
total number of rounds; ) is the threshold for
selecting EN clients; and K is the total
number of clients.

Output: The global model w” in round T’

1 Initialize local model wg for each client;
2 fort =1to 7T do
// Clients execute:
fork=1,..., K do
Update local model wffl by Eq. (7);
Send wi " to the server;
if k € Nt and t > T, then

L

// Server executes:
Randomly select a set of active clients A?;
Select Ct and Nt by Eq. (3);
Aggregate local models to s'*! by Eq. (4);
if t > Tj then

| Update w't! by Eq. (5);
else

L wt+1 — St+1;

Send w*t! and AVt to clients.

~

Update local model wi " by Eq. (6);

Send V/\\/?_l to the server;

®w N S N e W

10
11
12
13

14
15

16

Client-Side Training

Once the server has identified the EN clients in round ¢, the
subsequent client training in round ¢ + 1 is tailored to ad-
dress their unique characteristics. Given that the data in EN
clients is predominantly noisy, we employ a straightforward
approach of training two distinct local models for each EN
client. The first local model is trained by discarding the noisy
labels entirely and updated in an unsupervised manner. This

unsupervised local model is denoted as vAvfjl, which is up-
dated by:

(6)

where DF is the local dataset with pseudo-labels assigned
by the global model w' at round ¢. The second local model
continues to train on the original local dataset Dy:

with « wi — V. l(w'; DF).

Wi wh — Vi b(wt; D),

(N

These two local models are sent to the server for global
model updating, with the expectation that they contribute to
the global model through both model aggregation and nega-
tive distillation, respectively.

In summary, during the local training round ¢t + 1, ev-
ery client acquires an updated supervised model wt,:“l on its
local dataset Dy, while only the EN clients acquire the ad-
ditional unsupervised models W' trained on the pseudo-

labeled local dataset Dy, Hence, a total k + |\, | models are
uploaded to the server in each round. Given the relatively
small number of EN clients, the incurred communication
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cost remains manageable. The ablation study confirms the
efficacy of this client-side training approach.

In addition, in order to prevent an MN client that being
wrongly identified as an EN client during the early training
phase, we conduct a warm-up training phase in the first few
rounds. During this phase, the server exclusively aggregates
the MN clients without any intervention of the client train-
ing. Algorithm 1 shows the entire training process for both
clients and the server.

Experiments
Experimental Settings

Datasets In the experiments, we adopt CIFAR-10 and CI-
FAR100 (Krizhevsky and Hinton 2009) to verify the effi-
cacy of the proposed method. To accommodate the setting of
FL with extremely noisy clients, we preprocess the training
data through the following steps: (1) First, we distribute the
training data across each client in a non-I1ID manner. Follow-
ing the widely used strategy for generating non-IID clients
(Yurochkin et al. 2019), we utilize Dirichlet distribution with
a parameter that controls the degree of data heterogene-
ity. (2) Then, we assign different noise ratios to individual
clients, with a subset categorized as extremely noisy clients.
The noise ratio for each client is drawn from a Beta distribu-
tion Beta(a, 3). (3) We add label noise to each client based
on the assigned noise ratio from the Beta distribution. Due to
data heterogeneity, we impose uniform noise on each client
only for the classes represented within a client’s local data.

For the public dataset Dy on the server, we use differ-
ent datasets from the clients’ local data. We use 128 images
from CIFAR-100 as Dy; for training CIFAR-10, and 128 im-
ages from ImageNet (Russakovsky et al. 2015) as Dy for
training CIFAR-100. All images are randomly selected from
the dataset. We simply use the official testing data split by
the benchmark for global model testing.

Training Details We use ResNet-18 for CIFAR-10, and
ResNet-50 for CIFAR-100 as the base model. All the com-
pared FL methods are implemented with the same model
architecture. All experiments are run by PyTorch on two
NVIDIA GeForce RTX 3090 GPUs. By default, we run 100
communication rounds to present the experimental results.
The total number of clients is set at 20, and an active client
ratio 50% is maintained in each round. For local training, the
batch size is set at 32. We use SGD with a learning rate 0.05
as the optimizer for optimization processes. The threshold A
for the identification of EN client is set at 0.12 .

Comparison with SOTA Methods

We compare the proposed FedNed with two groups of meth-
ods. (1) FL baseline methods for data heterogeneity: FedAvg
(McMahan et al. 2017), FedProx (Li et al. 2020), SCAF-
FOLD (Karimireddy et al. 2020) and FedDyn (Acar et al.
2021); and (2) Methods for FL with label noise: FedCorr
(Xu et al. 2022), RoFL (Yang et al. 2022), and FedNoRo
(Wu et al. 2023a). We also evaluate the robustness of the
proposed method by varying the data distribution with dif-
ferent noise distributions (Beta) and data heterogeneity dis-
tributions (Dirichlet). The number of EN clients drawn from
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Method CIFAR-10 CIFAR-100

Beta (0.1,0.1) (0.1,0.3) (0.3,0.5) (0.1,0.1) (0.1,0.3) (0.3,0.5)
Dirichlet 0.7 10 0.7 10 0.7 10 | 07 10 0.7 10 0.7 10
FedAvg 61.51 69.26 7543 77.86 69.79 7134 | 36.81 3938 38.57 3991 36.86 38.77
FedProx 69.81 74.69 7772 8031 71.77 7587 | 40.10 42.81 41.04 4239 39.52 4232
SCAFFOLD 64.07 6842 7596 76.83 7021 7341 | 39.64 41.19 40.14 40.72 40.11 4145
FedDyn 66.04 6941 7641 8024 7257 7647 | 28.81 30.04 28.98 31.54 28.70 31.33
RoFL 71.64 79.05 77.03 81.26 77.58 79.04 | 43.28 46.07 4936 4941 4595 4642
FedCorr 74.10 78.35 8191 85.10 74.55 80.06 | 40.24 4433 52.76 5749 47.03 51.23
FedNoRo 80.25 80.63 8241 84.11 77.67 77.83 | 46.33 47.15 4841 48.69 47.02 47.56
FedNed (Ours) 82.83 85.12 84.97 86.84 79.43 82.64 | 47.85 4832 53.74 5793 48.21 49.68

Table 1: Numerical comparison between the proposed FedNed and other FL. methods with extremely noisy clients. The best
results are highlighted in bold, while the second-best results are underlined.

three Beta distributions (0.1, 0.1), (0.1, 0.3), and (0.3, 0.5)
are about 5-6, 2-4, and 1-2, respectively, among a total num-
ber of 20 clients, where the Beta distribution (0.1, 0.3) has
the overall minimum noise ratio.

Table 1 shows the comparative results. Evidently, label
noise-oriented FL. methods (e.g. RoFL, FedCorr, FedNoRo,
and FedNed) consistently yield superior results compared to
the FL baselines (e.g. FedAvg, FedProx, SCAFFOLD, and
FedDyn), as the latter solely address the challenge of data
heterogeneity. By comparing FedNed with methods for FL.
with label noise, FedNed notably outperforms the second-
best method by approximately 2%-3% on CIFAR-10, and
generally exhibits better performance on CIFAR-100. In ad-
dition, it can be observed that FedNed is less sensitive to
the degree of data heterogeneity. FedNed also demonstrates
promising performance with different noise distributions.

Model Validation

We further delve into specific aspects related to how FedNed
addresses the extreme noise challenge in FL.

Ablation Study We conduct an ablation study to assess
the impact of three essential components in FedNed: the
identification of extremely noisy clients (Id.), negative distil-
lation (ND), and local pseudo-labeling (LPL). The ablation
study is carried out on CIFAR-10 with twenty clients includ-
ing five EN clients (with noise ratio of 99%). The baseline
without any component reverts to FedAvg which simply ag-
gregates client models on the server. With the inclusion of
the identification of extremely noisy clients, we aggregate
solely the identified MN clients for the global model. When
negative distillation is employed, the selected EN clients
are utilized by optimizing the global model via Equation
(5). Regarding client-side training, if local pseudo-labeling
is not adopted, we directly update the local model on its
local dataset, regardless of the identification result on the
server. Conversely, in cases where local pseudo-labeling is
employed, we update and upload two local models for each
identified EN client (c.f. Section Client-Side Training).
Table 2 shows the result of the ablation study. The most
significant improvement is observed when identifying ex-
tremely noisy clients, supporting our conclusion that exclud-

Id ND LPL Acc.
X X X 74.26
v X X 79.95
v v X 81.91
v X v 81.30
v 4 4 82.07

Table 2: Ablation study of major components in FedNed.

ing them produces better outcomes than aggregating. Nega-
tive distillation results in an additional performance boost of
approximately 2%, while local pseudo-labeling contributes
around 1.5%. This validates the effectiveness of FedNed in
handling extremely noisy clients. The highest performance
is achieved when all components are used together.

Effectiveness of EN Client Identification via Uncertainty
One key factor that leads to the success of FedNed is the ac-
curacy of EN client identification. In this regard, we evaluate
the effectiveness of employing model prediction uncertainty
with MC dropout as a distinguishing measure in FedNed to
differentiate between MN and EN clients. Figure 3 shows
the histogram of model prediction uncertainty calculated by
Equation (1) for both MN and EN clients. It can be observed
that the uncertainty values significantly vary between MN
and EN clients, allowing for the establishment of the thresh-
old X\ within the range of (0.12,0.14) for easy segregation.

Effectiveness of Negative Distillation We have shown
the accuracy improvement of utilizing negative distillation
to further improve the global model by incorporating the
knowledge of EN client models. In this context, we delve
deeper into analyzing the nature of this improvement. Fig-
ure 4 shows the t-SNE comparison between features of a
global model before and after the employment of negative
distillation trained on CIFAR-10. This affirms that the en-
hancement induced by negative distillation stems from an
improved feature representation of the global model, aiding
in more coherent grouping of similar types of features.
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Figure 3: Histogram of model prediction uncertainty for
both MN and EN clients, where the uncertainty is accumu-
lated over all training rounds.
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Figure 4: Comparison in the feature spaces plotted with t-
SNE. (a) FedNed without negative distillation on the server,
(b) FedNed with negative distillation on the server.

Influence of the Number of Extremely Noisy Clients In
this study, we have made an implicit assumption that the
number of EN clients should be kept limited. The rationale
behind this assumption is that excessive EN clients could
lead to a notable increase in the overall noise ratio across all
clients, which could render the attainment of a robust global
model unfeasible. Therefore, in all previous experiments, we
only set a few EN clients. Nonetheless, an intriguing curios-
ity led us to investigate the performance of FedNed when the
number of EN clients increases substantially, possibly even
constituting up to half of the client population. In this explo-
ration, we set the total number of clients to twenty and vary
the number of EN clients within the range of [1,3,5,7,9].
Figure 5 shows the performance degradation in accuracy as
the number of EN clients increases, compared with all the
other FL. methods for label noise. An unexpected observa-
tion emerges: despite the continuous increase in the number
of extremely noisy (EN) clients, the accuracy of FedNed re-
mains stable, while the accuracy of other methods experi-
ences a significant decline. It notably outperforms the base-
lines under these challenging circumstances. This character-
istic significantly positions FedNed as a potent solution to
handling extreme scenarios where many noisy clients exist.

Public Dataset Selection Considerations for further ex-
ploration include investigating the role of public datasets
in FedNed. We believe that the effectiveness of the method
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Figure 5: Comparison of performance among methods as the
number of extreme noise clients increases.

Public dataset CIFAR-10
CIFAR-100 84.97 (2.56 1)
MNIST 84.89 (2.48 1)

Synthetic data 83.60 (1.19 1)

Table 3: The summary of the results with various public
datasets shows the degree to which FedNed outperforms
FedNoRo, as indicated in parentheses.

is not dependent on the choice of public datasets. We’ve
tried i) MNIST and ii) synthetic data generated by BigGAN
adopted in FedDF. The results are slightly lower than when
CIFAR-100 was used as the public dataset but still higher
than the second-best method, FedNoRo. Table 3 shows the
results obtained using different public datasets, showcasing
the adaptability of our proposed method.

Concluding Remarks

Conclusion This paper addresses the critical challenge of
handling noisy labels in federated learning (FL), especially
in scenarios with highly contaminated clients experiencing
extreme label noise. The proposed solution, FedNed, distin-
guishes extremely noisy clients and incorporates them into
a knowledge distillation framework, optimizing their con-
tributions. The negative distillation process, coupled with
identification by MC dropout and local pseudo-labeling, en-
hances the trustworthiness of the global model from noisy
clients while engaging all clients for aggregation. FedNed
not only outperforms existing baselines but also establishes
a new state-of-the-art in FL across diverse settings.

Limitations Although the proposed FedNed mitigates
performance degradation induced by extremely noisy clients
in FL, a potential limitation lies in the degeneration of
FedNed to FedAvg when no extremely noisy clients exist.
One possible strategy involves treating FedNed as a plug-
and-play module to identify extremely noisy clients, inte-
grating with methods designed for handling mild label noise.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Acknowledgments

This study was supported in part by the National Natu-
ral Science Foundation of China under Grants 62376233,
U21A20514, 62006202 and 62376235; in part by the
FuXiaQuan National Independent Innovation Demonstra-
tion Zone Collaborative Innovation Platform under Grant
3502ZCQXT2022008; in part by NSFC / Research Grants
Council (RGC) Joint Research Scheme under Grant
N_HKBU214/21; and in part by the General Research Fund
of RGC under Grants 12201321 and 12202622; in part by
Guangdong Basic and Applied Basic Research Foundation
No. 2022A1515011652.

References

Acar, D. A. E.; Zhao, Y.; Navarro, R. M.; Mattina, M.; What-
mough, P. N.; and Saligrama, V. 2021. Federated Learning
Based on Dynamic Regularization. In /CLR.

Chen, Y.; Yang, X.; Qin, X.; Yu, H.; Chen, B.; and Shen,
Z. 2020. FOCUS: Dealing with label quality disparity in
federated learning. arXiv preprint arXiv:2001.11359.

Dai, Y.; Chen, Z.; Li, J.; Heinecke, S.; Sun, L.; and Xu, R.
2023. Tackling data heterogeneity in federated learning with
class prototypes. In AAAL

Gal, Y.; and Ghahramani, Z. 2016. Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In ICML.

Ghosh, A.; Kumar, H.; and Sastry, P. S. 2017. Robust loss
functions under label noise for deep neural networks. In
AAAL

Han, B.; Yao, J.; Niu, G.; Zhou, M.; Tsang, 1.; Zhang, Y.;
and Sugiyama, M. 2018a. Masking: A new perspective of
noisy supervision. In NeurIPS.

Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I.; and Sugiyama, M. 2018b. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In
NeurlPS.

Jiang, H.; Kim, B.; Guan, M.; and Gupta, M. 2018. To trust
or not to trust a classifier. In NeurIPS.

Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2021. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1-2): 1-210.

Karim, N.; Rizve, M. N.; Rahnavard, N.; Mian, A.; and
Shah, M. 2022. Unicon: Combating label noise through uni-
form selection and contrastive learning. In CVPR.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich,
S.; and Suresh, A. T. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In ICML.

Kim, S.; Shin, W.; Jang, S.; Song, H.; and Yun, S.-Y. 2022.
FedRN: Exploiting k-Reliable neighbors towards robust fed-
erated learning. In CIKM.

Kim, Y.; Yim, J.; Yun, J.; and Kim, J. 2019. Nlnl: Negative
learning for noisy labels. In ICCV.

14191

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple lay-
ers of features from tiny images. In Technical Report, 32-33.
University of Toronto.

Li, J.; Socher, R.; and Hoi, S. C. 2019. DivideMix: Learning
with noisy labels as semi-supervised learning. In ICLR.

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020. Federated optimization in heteroge-
neous networks. Proceedings of Machine Learning and Sys-
tems, 2: 429-450.

Liang, S.; Huang, J.; Zeng, D.; Hong, J.; Zhou, J.; and Xu, Z.
2023. FedNoisy: Federated noisy label learning benchmark.
arXiv preprint arXiv:2306.11650.

Lin, T.; Kong, L.; Stich, S. U.; and Jaggi, M. 2020. Ensemble
distillation for robust model fusion in federated learning. In
NeurIPS.

Lukasik, M.; Bhojanapalli, S.; Menon, A.; and Kumar, S.
2020. Does label smoothing mitigate label noise? In ICML.
Ma, X.; Zhu, J.; Lin, Z.; Chen, S.; and Qin, Y. 2022. A
state-of-the-art survey on solving non-IID data in federated

learning. Future Generation Computer Systems, 135: 244—
258.

McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In AISTATS.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; and Bernstein,
M. 2015. ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3): 211-252.
Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; and
Meng, D. 2019. Meta-weight-net: Learning an explicit map-
ping for sample weighting. In NeurIPS.

Song, H.; Kim, M.; Park, D.; Shin, Y.; and Lee, J.-G. 2022.
Learning from noisy labels with deep neural networks: A
survey. IEEE Transactions on Neural Networks and Learn-
ing Systems.

Tang, Z.; Zhang, Y.; Shi, S.; He, X.; Han, B.; and Chu, X.
2022. Virtual homogeneity learning: Defending against data
heterogeneity in federated learning. In ICML.

Wang, Z.; Zhou, T.; Long, G.; Han, B.; and Jiang, J.
2022.  Fednoil: A simple two-level sampling method
for federated learning with noisy labels. arXiv preprint
arXiv:2205.10110.

Wu, N.; Yu, L.; Jiang, X.; Cheng, K.-T.; and Yan, Z. 2023a.
FedNoRo: Towards noise-robust federated learning by ad-
dressing class imbalance and label noise heterogeneity. In
IJCAL

Wu, X.; Huang, H.; Ding, Y.; Wang, H.; Wang, Y.; and Xu,
Q. 2023b. FedNP: Towards non-IID federated learning via
federated neural propagation. In AAAIL

Xia, X.; Liu, T.; Han, B.; Gong, C.; Wang, N.; Ge, Z.; and
Chang, Y. 2020. Robust early-learning: Hindering the mem-
orization of noisy labels. In ICLR.

Xu, J.; Chen, Z.; Quek, T. Q.; and Chong, K. F. E. 2022.

Fedcorr: Multi-stage federated learning for label noise cor-
rection. In CVPR.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Yang, M.; Qian, H.; Wang, X.; Zhou, Y.; and Zhu, H. 2021.
Client selection for federated learning with label noise.
IEEE Transactions on Vehicular Technology, 71(2): 2193—
2197.

Yang, S.; Park, H.; Byun, J.; and Kim, C. 2022. Robust fed-
erated learning with noisy labels. IEEE Intelligent Systems,
37(2): 35-43.

Yang, Z.; Zhang, Y.; Zheng, Y.; Tian, X.; Peng, H.; Liu, T.;
and Han, B. 2023. FedFed: Feature distillation against data
heterogeneity in federated learning. In NeurIPS.

Yao, Y.; Sun, Z.; Zhang, C.; Shen, F.; Wu, Q.; Zhang, J.; and
Tang, Z. 2021. Jo-SRC: A contrastive approach for combat-
ing noisy labels. In CVPR.

Yurochkin, M.; Agarwal, M.; Ghosh, S.; Greenewald, K.;
Hoang, N.; and Khazaeni, Y. 2019. Bayesian nonparametric
federated learning of neural networks. In ICML.

14192



