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Abstract
Adversarial examples are commonly created by solving a
constrained optimization problem, typically using sign-based
methods like Fast Gradient Sign Method (FGSM). These at-
tacks can benefit from momentum with a constant param-
eter, such as Momentum Iterative FGSM (MI-FGSM), to
enhance black-box transferability. However, the monotonic
time-varying momentum parameter is required to guarantee
convergence in theory, creating a theory-practice gap. Addi-
tionally, recent work shows that sign-based methods fail to
converge to the optimum in several convex settings, exac-
erbating the issue. To address these concerns, we propose a
novel method which incorporates both an innovative adaptive
momentum parameter without monotonicity assumptions and
an adaptive step-size scheme that replaces the sign operation.
Furthermore, we derive a regret upper bound for general con-
vex functions. Experiments on multiple models demonstrate
the efficacy of our method in generating adversarial examples
with human-imperceptible noise while achieving high attack
success rates, indicating its superiority over previous adver-
sarial example generation methods.

Introduction
Deep neural networks are known to be vulnerable to ad-
versarial examples, which are imperceptible to the human
eye but mislead the classifier (Szegedy et al. 2014)(Goodfel-
low, Shlens, and Szegedy 2015). Adversarial examples play
a key role in improving model robustness through adversar-
ial training (Madry et al. 2018)(Shafahi et al. 2019)(Pang
et al. 2020)(Cai et al. 2021), thus offering a defense mecha-
nism against unknown adversarial attacks. Generally speak-
ing, crafting high-quality adversarial examples has gar-
nered considerable attention. The generation process is typ-
ically formulated as a constrained optimization problem and
solved using sign-based methods such as FGSM (Good-
fellow, Shlens, and Szegedy 2015), Basic Iterative Method
(BIM)(Kurakin, Goodfellow, and Bengio 2017), Project
Gradient Descent (PGD) (Madry et al. 2018), etc.

To further boost the attack success rate on black-box mod-
els, an effective strategy involves training adversarial ex-
amples with transferability on a white-box surrogate model
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(Papernot, McDaniel, and Goodfellow 2016; Papernot et al.
2017)(Xie et al. 2019). Notably, representative algorithms
derived from FGSM, namely MI-FGSM (Dong et al. 2018)
and Nesterov Iterative FGSM (NI-FGSM) (Lin et al. 2020),
correspond to Heavy-Ball (HB) (Polyak 1964) and Nesterov
Accelerated Gradient (NAG) (Nesterov 1983), respectively.
In particular, MI-FGSM is highly similar to HB, and we will
delve into the relationship between them in the next sec-
tion. HB (also named SGD with momentum) with a constant
momentum parameter has been widely adopted in practice
to improve the generalization performance of deep learn-
ing models (Sutskever et al. 2013)(Goyal et al. 2017). HB
has also shown evidence of being helpful in dampening
oscillations (Ruder 2016), and escaping local minimum or
saddle points (Ochs et al. 2014)(Sun et al. 2019). Inherit-
ing these benefits from HB, MI-FGSM achieves stability in
the update direction, generating adversarial examples with
stronger transferability.

However, from an optimization perspective, the mono-
tonic time-varying momentum parameter is needed for the
convergence analysis. There are two proposals for momen-
tum parameter to guarantee convergence, but completely op-
posite. Specifically, one assumes a strictly monotonically
decreasing schedule (β1,t−1 > β1,t, β1,t → 0) (Kingma
and Ba 2015)(Reddi, Kale, and Kumar 2018)(Wang et al.
2020)(Zhuang et al. 2020) while the other demands an in-
creasing schedule (β1,t−1 < β1,t, β1,t → 1) (Ghadimi,
Feyzmahdavian, and Johansson 2015)(Yang, Lin, and Li
2016)(Tao et al. 2021)(Li, Liu, and Orabona 2022), which
not only creates a theory-practice gap but also causes con-
fusion when selecting hyper-parameters in practice. On the
other hand, (Ghadimi, Feyzmahdavian, and Johansson 2015)
utilizes a constant momentum parameter, which guarantees
the convergence of HB, but relies on strong assumptions of
strong convexity and smoothness in the objective function.
(Alacaoglu et al. 2020) proposes a novel theoretical anal-
ysis framework for Adam-type methods and obtains data-
dependent regret bounds with a constant momentum param-
eter β1, yet, their bound still falls short of the optimal upper
bound with a logarithmic factor gap.

Faced with these challenges, it is natural to question: (1)
Why not investigate the convergence of MI-FGSM using
the theoretical results of HB? (2) Why not directly use HB,
which guarantees convergence, to generate adversarial ex-
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amples? We provide the following two analyses:
The regret bound of HB is insufficient for analyzing

the convergence of MI-FGSM under constrained cases.
In other words, MI-FGSM cannot be equivalently converted
to HB due to the involved coupling among projection (clip-
ping) operation, sign function, momentum parameter, step-
size parameter and gradient normalization. We will thor-
oughly explore the differences between MI-FGSM and HB
in the next section.

Directly employing vanilla HB without the sign func-
tion may not yield high-quality adversarial examples.
Empirical evidence indicates that the use of the sign function
plays a significant role in algorithm performance improve-
ment (Kunstner et al. 2023)(Chen et al. 2023). Meanwhile,
(Liu et al. 2019) also shows that the generation of adversarial
examples can be interpreted by signSGD, which compresses
gradient scales based on the sign function, effectively miti-
gating the negative effects of noise.

In contrast, (Karimireddy et al. 2019) shows that sign-
based methods fail to converge to the optimum in several
convex settings, limiting optimal convergence analysis to
non-convex (Bernstein et al. 2018) and smooth (Crawshaw
et al. 2022) environments. (Gao et al. 2021) find that sign-
based methods only extract the sign of gradient units but
ignore their value difference, which inevitably leads to a de-
viation. Moreover, there is also evidence demonstrating that
sign-based methods seem to have an adverse effect on the
generalization performance of the obtained solutions (Balles
and Hennig 2018).

Fortunately, sign-based methods are inextricably linked to
Adam-type methods (Bernstein et al. 2018)(Zhuang et al.
2020)(Tao et al. 2023). Therefore, the adaptive step-size can
serve as an alternative way to evade the aforementioned con-
flicting theoretical views regarding the sign function. Based
on this insight, our contributions are as follows:

• We propose AdaMSI-FGM, which introduces an adap-
tive momentum parameter under weaker assumptions to
bridge the theory-practice gap mentioned above, and in-
corporates an adaptive step-size scheme to evade the po-
tential negative effects of sign function.

• In the non-smooth convex setting, we derive a data-
dependent regret bound O(

√
T ), with a slight improve-

ment in the suboptimal regret bound O(
√
log(T )T ) ob-

tained by the traditional Adam-type algorithms.
• Through extensive evaluations on diverse models, we

demonstrate the effectiveness of our approach in generat-
ing adversarial examples with higher attack success rates
and human-imperceptible noises.

Related Work
We aim to generate a non-targeted adversarial example, de-
noted as x, from a clean example x0 with the true label y.
The generated adversarial example should satisfy the L∞
norm bound constraint. This process can be formulated as a
constrained optimization problem presented below:

min f(x), s.t.‖x− x0‖∞ ≤ ε, (1)

where f(x) = −J(x, y) for simplicity, and we can learn
adversarial example x directly using the gradient descent di-
rection instead of the gradient ascent direction. J represents
the loss function, typically the cross-entropy loss. ε denotes
the size of adversarial perturbation. x∗ is one of the optimal
solutions.

Preliminaries. We use lower case letters to denote scalars,
lower case bold face letters to denote vectors, upper case
bold face letters to denote matrices. For any vectors a, b ∈
Rd, all standard operations such as ab, a2, a

1
2 , 1

a are as-
sumed to be element-wise. We use diag(a) to denote a
d × d matrix which has a in its diagonal, and the rest of
its element are all 0. We denote the Lp norm (p ≥ 1)
of a by ‖a‖p = (

∑d
i=1 |ai|p)

1
p , the L∞ norm of a by

‖a‖∞ = maxdi=1|ai| For a sequence of vectors {at}Tt=1,
we denote the ith element of at by at,i. For a sequence of
diagonal matrices {At}Tt=1, we use At,i to denote the ith el-
ement in the diagonal of At. We use ∇f(xt) to denote the
gradient of f(·) atxt, further writing as gt for simplicity. We
also use g1:t,i = [g1,i, ..., gt,i] to denote the vector obtained
by concatenating the ith element of the gradient sequence.

Sign-Based Methods for Generating Adversarial
Examples
A large amount of sign-based attack methods have been pro-
posed to solve Problem 1 in past years. FGSM (Goodfellow,
Shlens, and Szegedy 2015) is one of the earliest methods,
which generates an adversarial example x using a one-step
update:

x = x0 − ε · sign(∇f(x0)). (FGSM)

However, even with prior knowledge of the model’s struc-
ture, the adversarial examples generated by FGSM often
fail to achieve high attack success rates. To tackle this is-
sue, (Kurakin, Goodfellow, and Bengio 2017) propose BIM,
which is an iterative extension of FGSM:

xt+1 = xt − αT · sign(∇f(xt)), (BIM)

where αT = ε
T . To further improve the attack success rates

on white-box models, (Madry et al. 2018) propose PGD by
incorporating random noise initialization into BIM. How-
ever, improving the success rate for white-box attacks comes
at the cost of decreased success rates for black-box attacks.
To address this trade-off, (Dong et al. 2018) introduce MI-
FGSM, which utilizes momentum to enhance transferability
of adversarial examples without sacrificing performance on
white-box models:

mt = µmt−1 +
∇f(xt)
‖∇f(xt)‖1

,

xt+1 = xt − αT · sign(mt),

(MI-FGSM)

where m−1 = 0 and the momentum parameter µ is sug-
gested as a constant value. Under the intuition of using bet-
ter optimization methods to generate adversarial examples,
(Lin et al. 2020) modify the gradient calculation position of
MI-FGSM, and propose NI-FGSM to enhance transferabil-
ity. Nevertheless, there is still no convergence analysis for
both MI-FGSM and NI-FGSM.
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Momentum Methods with Convergence Guarantee
MI-FGSM is inspired by the concept of momentum, which
can be traced back to HB method (Polyak 1964). The iterates
of HB are given by

xt+1 = xt − αt∇f(xt) + βt(xt − xt−1), (HB)

where x−1 = x0, αt = α√
t
, α > 0. Compared to the update

rules of SGD: xt+1 = xt − αt∇f(xt), HB adds a mo-
mentum term: βt(xt − xt−1), which allows the algorithm
to maintain inertia when the gradient is small and overcome
the obstacles such as saddle points and local optima. The
constant parameter βt ≡ (

√
L − √µ/

√
L +

√
µ)2 is rec-

ommended to achieve a linear convergence rate, while the
knowledge of the Lipschitz constant L and strongly convex
coefficient µ are generally inaccessible. In order to obtain
the optimal convergence rate under general convex environ-
ments, (Ghadimi, Feyzmahdavian, and Johansson 2015) in-
troduced a monotonically increasing momentum parameter
schedule βt = t/(t + 2). Furthermore, (Tao, Wu, and Tao
2022) generalized this setting to non-smooth convex case.

In deep neural network literature, however, HB method
is more often rewritten as SGD with Momentum (SGDM)
(Sutskever et al. 2013), which is widely used in deep learn-
ing libraries like PyTorch and TensorFlow. The update pro-
cedure is formalized as follows:

mt = β̂tmt−1 +∇f(xt),
xt+1 = xt − αtmt,

(SGDM)

where m−1 = 0. It is worth noting that HB can be one-to-
one mapped to SGDM by setting β̂t = αt−1

αt
βt under un-

constrained cases, which indicates that a time-varying mo-
mentum parameter is indispensable for SGDM to inherit the
convergence results of HB. Meanwhile, another momentum
technique named First Moment Estimate (FME) is widely
used in Adam-type algorithms. FME is obtain by remov-
ing the second moment estimate in Adam (Kingma and Ba
2015):

mt = β1,tmt−1 + (1− β1,t)∇f(xt),
xt+1 = xt − αtmt,

(FME)

where m−1 = 0. Unlike HB, FME does not have an equiv-
alent conversion relation with SGDM, making the conver-
gence analysis of HB not applicable to FME. Adam variants
require a decreasing β1,t → 0 schedule to derive O(

√
T ) re-

gret bound in theory, but a constant β1,t ≡ 0.9 is commonly
used in practice. (Alacaoglu et al. 2020) bridge this gap
by deriving suboptimal O(

√
log(T )T ) regret bound with a

constant β1. However, (Li, Liu, and Orabona 2022) demon-
strate that the last iterate of FME can only obtain a subopti-
mal convergence rate for any constant momentum parameter
β, which alone kills the possibility of any advantage of FME
with constant momentum, unless stronger assumptions are
used.

Remark. The generation of adversarial examples using
MI-FGSM can be seen as analogous to training neural net-
work models with HB (or SGDM). There is a clear connec-
tion between MI-FGSM and SGDM in their update rules,

with the main difference being the use of the sign function
and gradient normalization. While MI-FGSM can be ap-
proximately equivalent to HB under unconstrained cases, the
convergence analysis of MI-FGSM is significantly hindered
in the adversarial attack Problem 1 with box constraints, par-
ticularly due to the coupling between the projection (clip-
ping) operation and the sign function.

Methodology
To address the theory-practice gap caused by the momen-
tum parameter and overcome the non-convergence issue of
sign-based methods in convex cases, we propose AdaMSI-
FGM. This novel approach combines adaptive HB momen-
tum parameter and adaptive step-size to generate adversarial
examples.

Adaptation of Momentum Parameter
The two existing proposals of momentum parameters as-
sume monotonic time-varying schedule βt to guarantee con-
vergence. However, a constant momentum parameter β is
generally used in practice. To bridge this gap, we introduce
a novel adaptive parameter β1,t for HB momentum without
the monotonicity assumption, which is well-designed as fol-
lows

β1,t = st−1/(st + 1), (2)

st = λ
t
2 ‖gt‖1, (3)

where the structure of Equation 2 is inspired by the the-
oretical analysis of traditional HB momentum methods
(Ghadimi, Feyzmahdavian, and Johansson 2015), and Equa-
tion 3 relies on the hyper-parameter λ ∈ (0, 1) and the L1

norm of gradient information. By incorporating Equation 3
into Equation 2, we obtain

β1,t =
λ

t−1
2 ‖gt−1‖1

λ
t
2 ‖gt‖1 + 1

. (4)

From Equation 4, it can be observed that the proposed
momentum parameter β1,t automatically adapts to the real-
time variation in the coupling of the current gradient, the
latest gradient, and the time-step. This provides a more gen-
eral and flexible condition compared to the monotonicity as-
sumption and resolves the challenge of momentum parame-
ter selection in practice.

Adaptation of Step-Size
MI-FGSM has shown remarkable effectiveness in adversar-
ial attacks. However, from a theoretical point of view, there
are still gaps in our knowledge, particularly regarding the
inability of sign-based methods to converge to the optimum
in convex environments (Karimireddy et al. 2019). To tackle
this issue, we found a breakthrough from the connection be-
tween sign function and adaptive step-size.

Adaptive step-size has attracted widespread attention as
its benefits for sparse optimization (Duchi, Hazan, and
Singer 2010) and its ability to yield tighter data-dependent
regret bounds (Kingma and Ba 2015)(Reddi, Kale, and Ku-
mar 2018). Correspondingly to previously mentioned FME,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14134



adaptive step-size is also referred to as Second Moment Es-
timate (SME), which can be formalized as follows

vt = β2,tvt−1 + (1− β2,t)g2t , (SME)

where β2,t is generally chosen from {0.99, 0.999} in prac-
tice. From a theoretical perspective, setting 1− 1

t ≤ β2,t ≤
1− γ

t , 0 < γ ≤ 1, effectively solves the divergence problem
of Adam as proposed by (Reddi, Kale, and Kumar 2018). In
particular, when setting γ = 1, that is β2,t = 1− 1

t , we have

vt =
1

t

t∑
j=1

g2j . (5)

According to the above settings, Adam with both FME
and SME degenerates into AdaGrad (Duchi, Hazan, and
Singer 2010) with FME. One potential advantage of adap-
tive step-size methods is the “sparse noise reduction” ef-
fect highlighted by (Bernstein et al. 2018), more importantly,
they introduce an intriguing connection between Adam and
signSGD:

Adam ∼ FME/SME =
mt√
vt
, (6)

signSGD ∼ sign(gt) =
gt√
g2t
. (7)

Based on this fact, setting the time-varying parameters
in FME and SME to zero (β1,t → 0 and β2,t → 0) re-
sults in Adam being converted to signSGD. (Zhuang et al.
2020) also report that update direction in Adam is close
to “sign descent” in low-variance case. It is worth not-
ing that even though the sign function is a key motivation
behind Adam-type methods, Adam still outperforms sign-
based methods in full batch scenarios (Kunstner et al. 2023).
What’s worse, (Karimireddy et al. 2019) demonstrated that
sign-based methods fail to converge to the optimum in sev-
eral convex settings. As a result, we suggest using SME, the
most representative adaptive step-size scheme, as a replace-
ment for the key role of a sign function in adversarial attacks.

By integrating the adaptive momentum parameter and
adaptive step-size together, the proposed AdaMSI-FGM is
summarized in Algorithm 1.

Convergence Analysis
To solve the constrained optimization Problem 1 and further
complete the convergence analysis, our AdaMSI-FGM can
be simplified as

xt+1 = Pχ

{
xt − αtV̂

−1
t gt + βt(xt − xt−1)

}
, (8)

where Pχ denotes projection operator onto the convex set
χ : {x|‖x−x0‖∞ ≤ ε} and plays the same role as clipping
operation. Under such a situation, it is not difficult to observe
that

‖xt − x∗‖∞ ≤ ε, (9)

where {xt} generated by Equation 8. Moreover, we also
need to provide an assumption that has been prevalent in
previous convergence analysis, as shown below.

Algorithm 1: Adaptive Momentum and Step-size Iterate Fast
Gradient Method (AdaMSI-FGM)

Input: x0; {αt}Tt=1; {β2,t}Tt=1; {ξt}Tt=1; ε; λ.
Initialize: x0 = x1, v0 = 0 and s0 = s1 + 1.
for t = 1 to T do
gt = −∇J(xt, y)
vt = β2,tvt−1 + (1− β2,t)g2t
V t = diag(vt)

V̂ t = V
1
2
t + ξtI

st = λ
t
2 ‖gt‖1

β1,t = st−1/(st + 1)

xt+1 = Clipεx0

{
xt − αtV̂

−1
t gt + β1,t(xt − xt−1)

}
end for
Output: xT+1.

Assumption 1. Assume that there exists constant G1 > 0
and G∞ > 0 such that

‖gt‖1 ≤ G1, ‖gt‖∞ ≤ G∞, ∀t ≥ 1.

Note that we do not consider the standard global smooth-
ness assumption, i.e., the gradient Lipschitz continuity of the
object function, as it is far from being satisfied in deep neural
network training. Furthermore, the proof of the regret bound
for AdaMSI-FGM relies on the following lemmas.

Lemma 1. Suppose that ∀y ∈ Rd and xt ∈ χ, then we
have

〈y − xt,x− xt〉 ≤ 0,

for ∀x ∈ χ if and only if xt = Pχ(y).

The details of the proof can be found in (Bertsekas, Nedić,
and Ozdaglar 2003).

Lemma 2. Suppose that 1 − 1
t ≤ β2,t ≤ 1 − γ

t for some
0 < γ ≤ 1, and t ≥ 1, then we have

d∑
i=1

T∑
t=1

g2t,i√
tVt,i +

√
tξt

≤
d∑
i=1

2(2− γ)
γ

(
√
TVT,i +

√
TξT ).

The details of the proof can be found in (Mukkamala and
Hein 2017).

Theorem 1. Let Assumption 1 , Lemma 1 and 2 hold,
let {xt}Tt=1 be generated by Equation 8. Suppose αt =

α
(st+1)

√
t
, 0 < α and 0 < λ < 1, then we have the following

bound on the regret:

T∑
t=1

[f(xt)− f(x∗)] ≤
dε2G∞G

2
1

2α(1− λ)2

+

[
ε2

2α
+

2α(2− γ)
γ

] d∑
i=1

(
√
TVT,i +

√
TξT ).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14135



It is easy to observe that the regret bound above is mainly
determined by the first term, optimizing this bound by taking
α = ε

2

√
γ

2−γ . Moreover, note that for β2,t = 1 − 1
t , that

is γ = 1, we recover the step-size from AdaGrad, which
is beneficial for sparse gradients (Duchi, Hazan, and Singer
2010). See appendix for proof details.
Corollary 1. Let Assumption 1 , Lemma 1 and 2 hold, let
{xt}Tt=1 be generated by Equation 8. Suppose γ = 1, αt =

ε
2(st+1)

√
t
, ξt = δ√

t
, δ > 0 and 0 < λ < 1, then we have the

following bound on the regret:
T∑
t=1

[f(xt)− f(x∗)] ≤ 2ε
d∑
i=1

(‖g1:T,i‖2 + δ) +
dεG∞G

2
1

(1− λ)2
.

The above corollary implies that AdaMSI-FGM obtains
anO(

∑d
i=1 ‖g1:T,i‖2) regret bound, which isO(

√
T ) in the

worst case. From this regret bound, we gain several insights:
• If λ = 0, momentum will be removed from AdaMSI-

FGM, which does not affect the essence of the regret
bound in the worst case. However, whether the optimal
lower bound will be damaged remains an open problem.
On the other hand, the value choice of λ should not be too
close to 1 for a tighter regret bound, otherwise the second
term of regret bound may grow well beyond O(

√
T ).

• Due to the use of adaptive step-size, the regret bound
of AdaMSI-FGM is data-dependent and becomes tighter
whenever the gradients are small or sparse such that
‖g1:T,i‖2 � G∞

√
T . In addition, this bound can be eas-

ily translated into a data-dependent O( 1√
T
) convergence

rate for stochastic convex optimization using the online-
to-batch conversion (Kakade and Tewari 2008).

• The derived regret bound eliminates the logarithmic fac-
tor present in the optimal O(

√
T ) regret bound and the

O(
√
log(T )T ) bound obtained by traditional Adam-type

methods. The logarithmic factor arises when bounding∑T
t=1 αt ‖mt‖2V̂ −1

t
in Adam variants, which does not oc-

cur in AdaMSI-FGM since it uses HB momentum instead
of FME momentum with themt term.

Experiments
We conduct extensive experiments on the ImageNet dataset
to validate the effectiveness of the proposed methods.

Experimental Setting
Dataset. We randomly select 500 images from ILSVRC
2012 validation set.

Models. We consider eight pre-trained models from the
torchvision library (Paszke et al. 2019) on ImageNet
dataset. These models include ResNet34 (ResNet) (He et al.
2016a), EfficientNet-b0 (EfficientNet) (Tan and Le 2019),
GoogLeNet (GoogLeNet) (Szegedy et al. 2015), MNASNet-
0-5 (MNASNet) (Tan et al. 2019), MobileNet-v3-small (Mo-
bileNet) (Howard et al. 2019), ShuffleNet-v2-x0-5 (Shuf-
fleNet) (Ma et al. 2018), SqueezeNet-1-1 (SqueezeNet) (Ian-
dola et al. 2016) and VGG11 (VGG) (Simonyan and Zisser-
man 2015). All eight models are used as both source models

for generating adversarial examples and target models for
testing these adversarial examples.

Baselines. We select the popular adversarial attack meth-
ods PGD (Madry et al. 2018), AutoAttack (Croce and Hein
2020), MI-FGSM (Dong et al. 2018) and NI-FGSM (Lin
et al. 2020) as our baselines. Our focus is on transfer-based
attacks, where no query access to the target model is granted.
Therefore, we do not compare with query-based methods.

Infrastructure. The experiments are conducted on a sin-
gle NVIDIA GeForce RTX 3060 GPU. Some experiments
follow (Kim 2020) to support the state-of-the-art baselines.
The software versions used are Ubuntu 18.04.1, Python
3.7.12, PyTorch 1.11.0, and Torchvision 0.12.0.

Hyper-Parameters. Although more iterations are favor-
able to convergence (Pintor et al. 2022) and targeted attacks
(Zhao, Liu, and Larson 2021), the traditional iteration set-
ting T = 10 is adopted since we focus on non-targeted
transferable attacks. The maximum of L∞ norm perturba-
tion ε = 4/255, and the batch-size is set to 64 for all algo-
rithms. For MI-FGSM and NI-FGSM, we adopt the default
momentum parameter µ = 1 and step-size αT = 4/255/10.
For PGD, the step-size αT = 4/255/10. For AdaMSI-FGM,
we set αt ≡ 1/255/10, λ = 0.6, β2,t = 1− γ

t where γ = 1,
and ξt = δ√

t
where δ = 1e− 16.

Metric. The standard evaluation metric for adversarial at-
tacks, Attack Success Rate (ASR), is used to assess the qual-
ity of the adversarial example. Higher ASR values indicate
better adversarial example quality.

Results of Adversarial Attacks
Comparison with Classic Attacks. The attack success
rates against the considered models are presented in Ta-
ble 1. From the table, we observe that all algorithms ex-
hibit strong white-box attack performance, achieving nearly
100% ASRs against all white-box models. By integrating
HB momentum with parameter adaption and adaptive step-
size scheme, our AdaMSI-FGM outperforms both PGD and
AutoAttack in black-box attacks. Notably, our method con-
sistently achieves 2% ∼ 17.8% higher ASRs than PGD and
AutoAttack under black-box attack cases, demonstrating the
effectiveness of the proposed algorithm.

Comparison with Momentum Attacks. Our algorithm
is improved from MI-FGSM to bridge the theory-practice
gap and guarantee convergence, therefore, we mainly com-
pare it to MI-FGSM and follow the experiment presented
in (Dong et al. 2018). Seven models are introduced into the
experiment which are Inception v3 (Inc-v3) (Szegedy et al.
2016), Inception v4 (Inc-v4), Inception Resnet v2 (IncRes-
v2) (Szegedy et al. 2017), Resnet v2-101 (Res-101) (He
et al. 2016b) and the other three of which are adversari-
ally trained models—Inc-v3ens3, Inc-v3ens4, IncRes-v2ens
(Tramèr et al. 2018). The results are shown in Table 2, it can
be seen that our algorithm has stronger attack performance
against the adversarially trained model than MI-FGSM. Be-
sides, we also test MI-FGSM, NI-FGSM and AdaMSI-FGM
with the eight normally trained models used in Table 1. We
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Model Attack ResNet EfficientNet GoogLeNet MNASNet MobileNet ShuffleNet SqueezeNet VGG

ResNet
PGD 100.0∗ 36.6 40.4 43.4 40.2 50.6 52.6 46.6

AutoAttack 100.0∗ 34.6 40.2 42.8 40.8 50.0 54.0 48.4
Ours 100.0∗ 51.2 55.4 54.6 46.8 55.2 65.0 62.4

EfficientNet
PGD 42.8 99.4∗ 40.8 54.4 48.0 51.0 53.4 49.2

AutoAttack 41.8 100.0∗ 40.0 53.2 48.0 51.2 53.8 49.2
Ours 58.0 99.0∗ 53.2 67.0 59.4 60.8 63.2 61.4

GoogLeNet
PGD 38.8 33.8 100.0∗ 39.6 41.2 48.6 49.8 43.2

AutoAttack 38.8 33.6 100.0∗ 41.6 41.2 49.2 53.8 44.8
Ours 50.0 42.8 100.0∗ 49.0 45.4 53.6 60.2 54.2

MNASNet
PGD 37.0 36.2 35.4 100.0∗ 45.0 49.8 51.8 42.2

AutoAttack 35.2 32.4 34.4 100.0∗ 45.8 49.6 50.6 41.2
Ours 44.6 46.2 42.4 100.0∗ 57.8 56.6 60.8 52.2

MobileNet
PGD 35.6 36.6 35.6 53.4 100.0∗ 50.4 51.8 42.0

AutoAttack 33.6 32.6 35.0 51.6 100.0∗ 50.8 49.8 40.8
Ours 43.0 48.0 43.4 67.0 100.0∗ 56.4 59.4 51.0

ShuffleNet
PGD 34.0 31.6 34.2 42.2 40.4 100.0∗ 51.0 39.6

AutoAttack 32.4 28.0 34.8 40.4 39.0 100.0∗ 48.8 38.6
Ours 38.6 35.4 37.8 50.2 44.6 100.0∗ 58.6 44.4

SqueezeNet
PGD 37.0 31.8 36.6 43.6 40.4 51.2 100.0∗ 46.4

AutoAttack 33.6 29.8 35.4 40.8 38.2 49.2 100.0∗ 42.2
Ours 43.2 37.8 44.4 50.6 45.8 56.4 100.0∗ 54.8

VGG
PGD 43.8 38.4 39.2 46.8 43.0 49.4 59.0 100.0∗

AutoAttack 42.4 37.0 39.8 46.0 41.6 48.6 58.6 100.0∗

Ours 58.2 53.2 52.2 58.6 48.6 55.2 70.0 100.0∗

Table 1: Attack success rates (%) of adversarial attacks against eight models. ∗ indicates the white-box attacks.

have included the experimental results in supplementary ma-
terials due to page limitations. Our algorithm has improved
in black-box ASRs compared to MI-FGSM and NI-FGSM,
which indicates that it is successful in replacing the sign
function in the momentum attack algorithms with an adap-
tive step-size strategy.

Further Analysis
Convergence Comparison. To compare the convergence
between this method and existing methods, we use BIM
and AdaMSI-FGM to generate the adversarial examples on
ResNet34. As shown in Figure 1, BIM achieving a station-
ary value (but being unable to reduce the score any more),
which is consistent with the point that sign-based method
cannot converge to optimal value. The AdaMSI-FGM curve
declinating to a lower value, indicating our approach has the
impact of accelerating convergence.

Flexibility. The proposed method can be combined with
other existing black-box attack methods such as DI-FGSM
(DI) (Xie et al. 2019) and TI-FGSM (TI) (Dong et al. 2019).
The experimental results of algorithm DI+Ours obtained by
combining DI and AdaMSI-FGM are presented in Table 3.
We observe that the integration of the two algorithms sig-
nificantly improve transferability, demonstrating the effec-
tiveness and flexibility of AdaMSI-FGM. More experimen-
tal results of other composite methods can be found in sup-
plementary materials.

Figure 1: Values of loss vs. iterations. f(x) = −J(x, y).

Human-Imperceptible. We visualize nine adversarial ex-
amples generated by PGD, MI-FGSM and AdaMSI-FGM.
The original images are shown in Figure 2(a). We choose
ResNet34 as source model and Inception v3 as target model.
The resulting adversarial examples are displayed in Figure
2(b), 2(c), and 2(d). It is noteworthy that all of these adver-
sarial noises are human-imperceptible.

Discussion
The generation of adversarial examples using AdaMSI-
FGM can be seen as analogous to training neural network
models with adaptive SGDM, thus the transferability of our
method is inherited from its generalizability in model train-
ing. Furthermore, the adaptive step-size motivates us to au-
tomatically assign different learning rates to each dimension
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Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 MI-FGSM 100.0∗ 44.5 42.9 35.4 13.7 12.8 6.4
Ours 99.3∗ 47.9 43.6 37.5 15.1 13.2 6.8

Inc-v4 MI-FGSM 54.9 99.8∗ 45.8 40.7 16.8 14.8 7.3
Ours 56.1 99.2∗ 46.9 40.7 19.2 16.7 9.3

IncRes-v2 MI-FGSM 59.2 49.5 97.9∗ 45.1 22.9 16.3 11.0
Ours 53.1 45.7 96.1∗ 40.9 25.0 18.6 16.4

Res-101 MI-FGSM 57.9 51.4 49.4 99.3∗ 24.2 21.3 12.0
Ours 56.4 52.1 47.2 96.5∗ 27.7 23.5 14.7

Table 2: Attack success rates (%) of adversarial attacks against seven models. ∗ indicates the white-box attacks.

Model Attack ResNet EfficientNet GoogLeNet MNASNet MobileNet ShuffleNet SqueezeNet VGG

ResNet DI 100.0∗ 44.2 53.2 49.8 45.2 53.6 60.0 54.8
DI+Ours 100.0∗ 57.8 61.8 59.4 48.8 58.4 67.6 66.2

EfficientNet DI 54.2 98.8∗ 50.6 62.4 58.6 56.2 60.4 58.4
DI+Ours 61.2 98.8∗ 62.2 70.8 66.8 63.2 67.0 64.6

GoogLeNet DI 46.8 39.6 100.0∗ 47.6 45.0 50.8 56.0 50.6
DI+Ours 57.6 48.2 100.0∗ 55.8 48.2 57.8 62.4 59.2

MNASNet DI 42.4 42.0 40.0 99.8∗ 54.4 53.2 56.8 47.8
DI+Ours 48.4 50.6 48.0 100.0∗ 63.0 59.2 64.2 58.0

MobileNet DI 38.6 43.8 40.6 61.8 100.0∗ 54.0 56.0 47.8
DI+Ours 45.2 51.4 47.0 73.4 100.0∗ 61.2 63.6 55.8

ShuffleNet DI 37.8 34.4 38.0 47.4 44.6 100.0∗ 56.2 42.2
DI+Ours 39.4 40.2 40.2 53.4 45.8 100.0∗ 63.4 47.6

SqueezeNet DI 41.0 35.8 44.0 50.4 44.6 55.0 100.0∗ 52.2
DI+Ours 46.2 40.6 49.2 58.0 46.6 61.6 100.0∗ 59.6

VGG DI 53.8 47.8 50.8 55.8 47.8 51.6 65.6 100.0∗

DI+Ours 62.8 56.8 60.6 65.4 51.6 58.8 74.0 100.0∗

Table 3: Attack success rates (%) of adversarial attacks against eight models. ∗ indicates the white-box attacks.

(a) Original (b) PGD (c) MI-FGSM (d) Ours

Figure 2: Original images vs. adversarial examples.

of the adversarial noise, which also help our method. Other
superior algorithms in optimization can be used to boost the
adversarial attacks performance, but it needs to be discussed
whether they can avoid the potential threat of the sign func-
tion and ensure convergence

Conclusion
We propose a novel adversarial attack method that guaran-
tees optimal convergence under milder assumptions in gen-
eral convex settings. Specifically, we do not assume the
monotonicity of the momentum parameter or the smooth-
ness of the objective function. Instead, we adaptively ad-
just the momentum and step-size parameters based solely
on gradient information, which not only bridges the theory-
practice gap but also avoids potential issues associated with
the sign function. Under these realistic assumptions, we
obtain a data-dependent O(

√
T ) regret bound, eliminating

the logarithmic factor typically present in Adam-type meth-
ods. Our method successfully generates adversarial exam-
ples with human-imperceptible noises while achieving high
attack success rates, demonstrating its superiority.
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Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I. J.;
Boneh, D.; and McDaniel, P. D. 2018. Ensemble Adver-
sarial Training: Attacks and Defenses. In ICLR 2018. Open-
Review.net.
Wang, G.; Lu, S.; Cheng, Q.; Tu, W.; and Zhang, L. 2020.
SAdam: A Variant of Adam for Strongly Convex Functions.
In ICLR 2020. OpenReview.net.
Xie, C.; Zhang, Z.; Zhou, Y.; Bai, S.; Wang, J.; Ren, Z.; and
Yuille, A. L. 2019. Improving Transferability of Adversarial
Examples With Input Diversity. In CVPR 2019, 2730–2739.
Computer Vision Foundation / IEEE.
Yang, T.; Lin, Q.; and Li, Z. 2016. Unified Convergence
Analysis of Stochastic Momentum Methods for Convex and
Non-convex Optimization. arXiv: Optimization and Con-
trol.
Zhao, Z.; Liu, Z.; and Larson, M. A. 2021. On Success
and Simplicity: A Second Look at Transferable Targeted At-
tacks. In NeurIPS 2021, 6115–6128.
Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.; Dvornek,
N. C.; Papademetris, X.; and Duncan, J. S. 2020. AdaBelief
Optimizer: Adapting Stepsizes by the Belief in Observed
Gradients. In NeurIPS 2020.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14140


