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Abstract
As a new paradigm to erase data from a model and protect
user privacy, machine unlearning has drawn significant atten-
tion. However, existing studies on machine unlearning mainly
focus on its effectiveness and efficiency, neglecting the secu-
rity challenges introduced by this technique. In this paper, we
aim to bridge this gap and study the possibility of conduct-
ing malicious attacks leveraging machine unlearning. Specif-
ically, we consider the backdoor attack via machine unlearn-
ing, where an attacker seeks to inject a backdoor in the un-
learned model by submitting malicious unlearning requests,
so that the prediction made by the unlearned model can be
changed when a particular trigger presents. In our study, we
propose two attack approaches. The first attack approach does
not require the attacker to poison any training data of the
model. The attacker can achieve the attack goal only by re-
questing to unlearn a small subset of his contributed training
data. The second approach allows the attacker to poison a few
training instances with a pre-defined trigger upfront, and then
activate the attack via submitting a malicious unlearning re-
quest. Both attack approaches are proposed with the goal of
maximizing the attack utility while ensuring attack stealth-
iness. The effectiveness of the proposed attacks is demon-
strated with different machine unlearning algorithms as well
as different models on different datasets.

Introduction
Recently, some prominent regulations (e.g., GDPR (Otto
2018) and the California Consumer Privacy Act (Pardau
2018)) have given users the right to erase the impact of their
sensitive information from the trained models to protect their
privacy. To erase data from a model, a naive approach is to
fully retrain the model from scratch after removing the data
from the training set. However, the naive approach is com-
putationally expensive, and it is impractical in many real-
world applications. To tackle this issue, significant attention
has been paid to machine unlearning (Cao and Yang 2015;
Bourtoule et al. 2021; Neel, Roth, and Sharifi-Malvajerdi
2021; Guo et al. 2019; Golatkar, Achille, and Soatto 2020;
Izzo et al. 2021), a technique that aims to erase (or unlearn)
data from the model and generate an unlearned model with-
out needing to retrain it from scratch. Existing studies on
machine unlearning either post-process the model to ensure
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the unlearned model is statistically close to that retrained
from scratch (Warnecke et al. 2021; Thudi et al. 2022a; Neel,
Roth, and Sharifi-Malvajerdi 2021) or devise novel retrain-
ing algorithms that offer greater efficiency than starting the
training anew (Bourtoule et al. 2021).

However, existing studies on this technique mainly focus
on enhancing unlearning effectiveness and efficiency, ne-
glecting the security challenges introduced by it. It is possi-
ble that some users who contribute training data have mali-
cious intentions, and they may conduct attacks by submitting
deceptive unlearning requests to induce malicious behavior
in the unlearned model. In this paper, we consider an impor-
tant attack form called backdoor attack, where an attacker
aims to inject a hidden backdoor into a machine learning
model via some methods, such as poisoning its training set,
so that the prediction of the attacked model can be changed
when a particular trigger presents in the inference phase.
While backdoor attacks have drawn significant attention in
recent years, no studies have yet explored the feasibility of
conducting such attacks via machine unlearning. This gap
raises an important question: Is it possible to have a target
model exhibit the backdoor behavior via erasing some of its
training data using machine unlearning? The study on this
question can help us recognize the potential risks associated
with machine unlearning and further facilitate the develop-
ment of new mechanisms to address them.

To fill the research gap and answer the above question,
in this paper, we propose a novel backdoor attack approach,
which does not require the attacker to poison any training
data of the victim model to achieve the attack goal. Instead,
the attacker only needs to submit an unlearning request to
erase a subset of his contributed training data. In this ap-
proach, the unlearning subset and the backdoor trigger are
derived based on an optimization problem with the objec-
tive of maximizing the attack utility while minimizing the
number of instances in the unlearning subset. This objec-
tive guarantees not only the attack effectiveness but also its
stealthiness. However, the number of unlearning instances is
a discrete value, which makes it hard to solve the optimiza-
tion problem. To handle this challenge, we use a continu-
ous and differentiable sigmoid function to approximate the
discrete number of unlearning instances, and then solve the
optimization problem via the gradient-based method.

In addition to the above attack approach, we also study
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another approach that first poisons a few training instances
with a pre-defined trigger in the data-gathering stage and
then achieve the attack goal via unlearning a subset of train-
ing instances. The second attack approach provides the at-
tacker with high flexibility in choosing the backdoor trigger.
The performance of the proposed attack approaches is evalu-
ated with different machine unlearning algorithms as well as
different machine learning models on different datasets. The
experimental results show that our attacks can achieve high
attack success rates with good stealthiness via unlearning a
small subset of training instances.

Background and Related Work
Machine Unlearning. Machine unlearning (Cao and Yang
2015; Bourtoule et al. 2021; Neel, Roth, and Sharifi-
Malvajerdi 2021; Guo et al. 2019; Golatkar, Achille, and
Soatto 2020; Izzo et al. 2021; Brophy and Lowd 2021; War-
necke et al. 2021; Thudi et al. 2022a), also known as se-
lective forgetting, refers to erasing the impact of a subset
of the training data from a trained model. Existing unlearn-
ing methods can be generally categorized into two groups:
approximate unlearning and exact unlearning. The approx-
imate unlearning ensures that the distribution of the un-
learned model and that of the model retrained from scratch
are similar, while the exact unlearning guarantees the output
space of the unlearned models is indistinguishable from that
of the fully retrained model (Xu et al. 2023). In the follow-
ing, we briefly describe some popular unlearning methods.
• First-order and Second-order based unlearning (War-

necke et al. 2021). These two approximate unlearning
methods both transform changes in the training data into
closed-form parameter updates to derive the unlearned
model. The first-order based unlearning method adopts
the first-order Taylor Series of the model, while the
second-order based method employs the inverse Hessian
matrix of second-order derivatives for parameter updates.

• UnrollSGD (Thudi et al. 2022a). As an approximate un-
learning method, UnrollSGD formulates a singular gra-
dient unlearning technique by extending a sequence of
stochastic gradient descent (SGD) updates through a Tay-
lor series. In order to reverse the effect of unlearning data
during the SGD training steps and obtain the unlearned
model, this method adds the gradients of the unlearning
data, computed with respect to the initial weights, to the
final model weights.

• SISA (Bourtoule et al. 2021). SISA is an exact unlearn-
ing method, in which the original training set is divided
into multiple disjoint shards and a training instance is
included in one shard only. When a request to unlearn
a training instance arrives, the model owner only needs
to retrain the affected shard model. The prediction of a
given instance is based on the aggregated prediction of
all isolated shard models.

However, the above studies mainly focus on improving the
effectiveness and efficiency of machine unlearning. They ne-
glect the security challenges introduced by this technique.
Although there are a few recent works exploring the pos-
sibility of conducting malicious attacks leveraging machine

unlearning (Qian et al. 2023; Di et al. 2022; Marchant, Ru-
binstein, and Alfeld 2022), those attacks are quite different
from the attack discussed in this paper.
Backdoor Attacks. The backdoor attack aims to inject a
hidden backdoor into a machine learning model. The poi-
soned model behaves normally on benign instances, but its
predictions change consistently to the attacker’s desired tar-
get class when a particular trigger is used to activate the
injected backdoor. Most backdoor injections (Gu, Dolan-
Gavitt, and Garg 2017; Chen et al. 2017; Barni, Kallas,
and Tondi 2019; Salem et al. 2022; Nguyen and Tran 2021;
Zhang et al. 2022; Li et al. 2021a; Lin et al. 2020; Wang
et al. 2021; Feng et al. 2022) occur during the training pro-
cess, where the attacker contributes a set of training data
embedded with a particular trigger pattern. As a result, the
compromised model exhibits the backdoor behavior when
the same trigger pattern presents in the testing stage. In ad-
dition to those poisoning-based backdoor attacks, there are
some other studies employing alternative methods to inject
backdoors. For example, the attacker might change model
weights directly (Dumford and Scheirer 2020), manipulate
the training order (Shumailov et al. 2021), or inject triggers
during the model compression process (Phan et al. 2022).
However, to the best of our knowledge, there are no existing
backdoor attacks that are conducted via machine unlearning.
Given that machine unlearning seeks to remove data from a
model, injecting a backdoor during the unlearning process is
a more challenging task than conventional backdoor attacks.

Problem Statement
Problem Formulation. We consider a situation where a
model owner (e.g., an organization) utilizes data collected
from consenting users to train machine learning models.
Among these users, we assume that there is an attacker
who aims to perform backdoor attacks by sending malicious
unlearning requests. Simultaneously, the attacker attempts
to disguise himself as an ordinary unlearning requester by
avoiding certain suspicious behaviors, such as requesting the
unlearning of an excessive number of instances or causing a
significant drop in the model’s performance.

Suppose the training dataset collected from consenting
users is denoted by D = {(xi, yi)}Ni=1, where N is the
number of instances in the dataset, and y is the class label
of instance x. The model owner uses D to train a classifier
f(·;θ∗), where θ∗ denotes the original model parameters.
The training data provided by the attacker is Da ⊂ D. The
goal of the attacker is to request the model owner to un-
learn a subset of his training data Du (i.e., Du ⊂ Da) so
that the unlearned model (denoted as fu(·;θu)) can exhibit
backdoor behaviors. Specifically, fu(·;θu) will misclassify
test instances injected with the attacker’s chosen trigger into
his desired target class, but it will make legitimate predic-
tions on test instances without the trigger.
Threat Model. In this paper, we study two potential attack
approaches. The first approach does not require the attacker
to poison the training data D. The attacker conducts the at-
tack only by submitting the unlearning request and asking
the model owner to remove the influence of a set of instances
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Du on f(·;θ∗). Such an attack is stealthy, as there is not any
poisoned data in the training dataset. However, to achieve
the attack goal, the attacker needs to derive an appropriate
Du as well as a trigger that can be utilized in the testing
stage. For the second attack approach, we assume that the at-
tacker can poison a few training instances by injecting a pre-
defined trigger to them when submitting Da to the model
owner. However, the trigger in those poisoned instances is
dormant before the unlearning process. The attacker aims to
activate the trigger at an appropriate time by requesting the
model owner to unlearn a set of instances (i.e., Du). While
the second attack approach also necessitates that the attacker
to identify an Du to accomplish his objective, it provides in-
creased flexibility in selecting the trigger.

We consider both white-box and black-box settings for the
above attacks. In the white-box setting, we assume that the
attacker has comprehensive knowledge of the model. This is
possible in practice because model owners sometimes pub-
lish their models for public use or financial gain. The white-
box setting allows for a worst-case evaluation of the attack.
In the black-box setting, the attacker cannot know the archi-
tecture and parameters of the model, but he can query it and
obtain predictions for his chosen instances. In addition, we
assume that the attacker has knowledge about the adopted
unlearning algorithm in the above two settings, which is rea-
sonable because letting data providers know the unlearning
algorithm can make the unlearning process more transparent
and increase data providers’ trust to the model owner (Thudi
et al. 2022b).

Methodology
We first describe the two attacks in the white-box setting and
then discuss how to extend them to the black-box setting.

Attack without Poisoning
We start from the more challenging setting, where the at-
tacker does not poison any training data of the model, and
only requests the model owner to unlearn some of his train-
ing instances. To conduct such an attack, we need to address
several challenges. First, unlearning different instances may
generate different unlearned models, and it is not easy to de-
termine an optimal set of instances for unlearning, based on
which the attack utility can be maximized. Second, differ-
ent from conventional backdoor attacks, such an attack does
not use any trigger to poison the training data of the model.
Thus, there is no pre-defined trigger that can be directly used
by the attacker during testing. The attacker needs to identify
a suitable trigger that can help him achieve the attack goal.
Third, to make the attack stealthy and minimize the risk of
detection, the attacker should avoid unlearning too many in-
stances or causing significant drops in model performance.
Attack Framework. Suppose the unlearning algorithm is
U , whose inputs are f(·;θ∗) and Du, and its output is
fu(·;θu). For each instance (xj , yj) ∈ Da, we use a vari-
able ωj ∈ {0, 1} to denote whether the instance is selected
by the attacker for unlearning. The number of instances in
Da is denoted by A. The attack’s goal is to find a small un-
learning set Du and a stealthy trigger τ (typically, a con-
straint ||τ ||∞ ≤ ϵ is applied to make it stealthy) so that the

performance of the unlearned model (measured by predic-
tion loss L) is good on both clean data and the triggered
data. Specifically, we formulate the attack into an optimiza-
tion problem as follows:

min
{ωj}Aj=1,τ

α
∑

(xk,yk)∈Dt

L(fu(xk;θ
u), yk)

+β
∑

(xk,yk)∈Dt

L(fu(xk + τ ;θu), yt) + γ

A∑
j=1

ωj (1)

s.t. fu(·;θu)← U(f(·;θ∗), Du),

Du = {(xj , yj) ∈ Da|ωj = 1},

where Dt is a test set of the attacker. xk + τ represents
injecting the trigger τ to xk, and yt is the target class la-
bel chosen by the attacker. The first two components of the
objective function represent the clean data loss and the trig-
gered data loss, which measure the performance of the un-
learned model on clean data and the triggered data, respec-
tively. The third component is the number of instances se-
lected by the attacker for unlearning. α, β, and γ are hyper-
parameters used to balance the three components.
Optimization. Without loss of generality, we take the first-
order machine unlearning algorithm as an example to il-
lustrate the optimization process. Specifically, the first-
order machine unlearning algorithm derives the unlearned
model by updating the model parameters as θu ← θ∗ +
µ
∑

(xu,yu)∈Du
∇L(f(xu;θ

∗), yu), where µ is a small con-
stant that controls the unlearning degree, and L(·) is the loss
function. Given ωj has a categorical value (0 or 1), the objec-
tive function in the above optimization problem is not con-
tinuous. Thus, it is difficult to directly solve the problem us-
ing gradient-based methods. To tackle this issue, we propose
to approximate the objective function using a continuous and
differentiable one. Specifically, we first relax the value of ωj

to the range of [0, 1], and we treat ωj as the probability that
(xj , yj) ∈ Da is selected by the attacker for unlearning. The
value of ωj will be finally transformed to categorical data: if
the probability is larger than 0.5, ωj is set to 1, otherwise, it
is set to 0. Then, the above optimization problem becomes:

min
{ωj}Aj=1,τ

α
∑

(xk,yk)∈Dt

L(fu(xk;θ
u), yk)

+β
∑

(xk,yk)∈Dt

L(fu((xk + τ );θu), yt)

+γ

A∑
j=1

1

2
(1 + sgn(ωj − 0.5)) (2)

s.t. θu ← θ∗ + µ
∑

(xu,yu)∈Du

∇L(f(xu;θ
∗), yu),

Du = {(xj , yj) ∈ Da|ωj > 0.5},
||τ ||∞ ≤ ϵ,

where

sgn(ωj − 0.5) =


1 if ωj > 0.5

0 if ωj = 0.5

− 1 if ωj < 0.5.

(3)

However, the objective function in optimization problem
(2) is still not continuous. Given that function h1(x) =
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1
2 (1 + sgnx) can be approximated by function h2(x) =

1
1+exp(−ηx) when η is set to an appropriate value, we re-
formulate the optimization problem (2) as follows:

min
{ωj}Aj=1,τ

α
∑

(xk,yk)∈Dt

L(fu(xk;θ
u), yk)

+β
∑

(xk,yk)∈Dt

L(fu((xk + τ );θu), yt)

+γ

A∑
j=1

1

1 + exp(−η(ωj − 0.5))
(4)

s.t. θu ← θ∗ + µ
∑

(xu,yu)∈Du

∇L(f(xu;θ
∗), yu),

Du = {(xj , yj) ∈ Da|ωj > 0.5},
||τ ||∞ ≤ ϵ.

To solve the above optimization problem, we adopt the
coordinate descent method to alternatively update τ and
{ωj}Aj=1 until a convergence criterion is satisfied. Based on
the derived {ωj}Aj=1, the attacker can determine an optimal
unlearning set Du and request the model owner to unlearn
the instances in Du. Then, he can use τ to conduct the at-
tack by injecting it to a test instance in the testing stage of
the unlearned model.

Attack with Poisoning
The second attack approach contains two stages. The first
stage occurs in the training data collection process, where
the attacker poisons a few training instances with a prede-
termined trigger. The attacker’s intent in this stage is not to
have the trained model immediately exhibit obvious back-
door behavior. Rather, the primary objective is to link the
model to the trigger while ensuring the stealthiness of the
poisoning activity. So only a small number of poisoned in-
stances might be necessary. In the second stage, the attacker
aims to amplify the effect of the injected trigger via un-
learning some of his submitted training instances and having
the unlearned model exhibit the desired backdoor behavior.
Compared to the attack without poisoning, this approach of-
fers greater flexibility in trigger selection, allowing the at-
tacker to use his preferred trigger for the attack. Next, we
delve into how to poison the training data and select unlearn-
ing instances to amplify the trigger effect.
Data Poisoning. Without loss of generality, we take the im-
age data as an example to discuss how the attacker poisons
the training data in the first stage. Although the attacker can
perform the attack with any trigger it prefers, here we aim
to design a stealthy poisoning scheme that can minimize the
risk of being detected. Specifically, we propose injecting the
trigger into the image’s frequency domain, as adding an ap-
propriate trigger there can make the poisoning less notice-
able to human perception than directly modifying the pixel
space. Motivated by FTrojan(Wang et al. 2021), we define
the trigger τ as perturbations of a fixed magnitude target-
ing a combination of mid and high-frequency bands. Such
a trigger is not only less sensitive to human senses, but also
demonstrates robustness against low-pass filters. Different

from FTrojan, we consider clean-label poisoning, where the
attacker only poisons the images whose labels are the target
class label specified by the attacker, and he does not change
the labels of poisoned instances. In practice, the attacker
only needs to poison a small number of instances, since it
does not anticipate the model to exhibit any obvious back-
door behavior before the unlearning process.
Unlearning Instance Selection. In the second stage, the at-
tacker seeks to amplify the impact of the backdoor trigger by
requesting the model owner to unlearn some of the uploaded
training instances (i.e.,Du). Following the idea of the attack
without poisoning, we formulate the following optimization
problem to derive the instances in Du.

min
{ωj}Aj=1

α
∑

(xk,yk)∈Dt

L(fu(xk;θ
u), yk) (5)

+β
∑

(xk,yk)∈Dt

L(fu(xk ⊕ τ ;θu), yt) + γ

A∑
j=1

ωj

s.t. fu(·;θu)← U(f(·;θ∗), Du),

Du = {(xj , yj) ∈ Da|ωj = 1},

where xk ⊕ τ represents injecting the trigger τ to xk in
the frequency domain. The solution to solve the above opti-
mization problem is similar to that for problem (1): We first
approximate the objective function to a continuous one and
then solve it using the gradient-based method.

Black-box Setting
In the black-box setting, the attacker lacks knowledge
regarding the architecture and parameters of the model
f(·;θ∗). The basic idea of our solution to address this chal-
lenge is to construct a shadow model of f(·;θ∗) and use it
to derive the trigger τ for the first attack approach (i.e., the
attack without poisoning) as well as the unlearning set Du
for both approaches. More specifically, we adopt the knowl-
edge distillation technique (Hinton, Vinyals, and Dean 2015)
and learn the shadow model from the predictions made by
f(·;θ∗). Suppose the attacker has a training dataset Ds,
which can be Da or a larger dataset that contains the in-
stances in Da. Given an instance (xs, ys) ∈ Ds, the at-
tacker can obtain a predicted probability vector (denoted by
T (xs)) from the model f(·;θ∗) following a model query.
We use S(xs) to denote the predicted probability vector of
the shadow model itself on xs. Then, we define the distilla-
tion loss based on the Kullback-Leibler divergence as

LKL =
∑

(xs,ys)∈Ds

KL

(
σ

(
T (xs)

ϕ

)
, σ

(
S(xs)

ϕ

))
, (6)

where KL(·) calculates the Kullback-Leibler divergence.
σ(·) is the softmax function, and ϕ is the temperature fac-
tor. In addition, we use cross entropy for the classification
loss of the shadow model, which is denoted by LCE. The
total loss used for training the shadow model is defined as

Lshadow = δLCE + ψLKL, (7)

where δ and ψ control the balance of the two loss terms.
Upon obtaining the shadow model, the attacker can use it to
conduct the above two types of attacks by formulating opti-
mization problems similar to that in the white-box setting.
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The first-order method The second-order method UnrollSGD

Dataset |Da|
|D|

BA/ASR
(AwoP)

BA/ASR
(Rand)

UP
BA/ASR
(AwoP)

BA/ASR
(Rand)

UP
BA/ASR
(AwoP)

BA/ASR
(Rand)

UP

CIFAR-10
0.1 87.1/72.3 89.3/1.8 2.1 88.8/64.7 89.6/2.2 2.7 89.1/58.1 89.8/1.9 2.2
0.3 83.5/84.8 86.6/2.0 3.5 86.6/78.8 89.0/2.0 3.7 84.3/80.7 91.3/2.1 2.3
0.5 78.9/92.3 85.2/1.7 4.1 84.6/80.9 87.7/1.9 4.3 80.6/85.8 89.9/1.9 3.1

TinyImageNet
0.1 60.4/54.5 61.9/0.3 2.8 60.8/50.7 61.2/0.3 2.7 57.3/73.3 62.3/0.4 3.2
0.3 56.4/70.9 61.4/0.4 6.4 57.5/65.3 59.2/0.4 6.8 53.5/86.3 62.4/0.3 4.4
0.5 52.5/79.3 59.6/0.4 7.7 55.8/70.2 58.0/0.4 8.0 52.3/90.1 61.1/0.3 5.2

Table 1: The ASR (%), BA (%), and UP (%) for the attack without poisoning and the baseline method.

Experiments
Experimental Settings
Datasets and Models. To evaluate our proposed attack
approaches, we adopt two image classification datasets:
CIFAR-10 and TinyImageNet. The CIFAR-10 (Krizhevsky,
Hinton et al. 2009) dataset has 10 classes, and it contains
50,000 training images and 10,000 test images with a res-
olution of 3 × 32 × 32. TinyImageNet (Deng et al. 2009)
contains 100,000 training images and 10,000 test images,
with 200 classes and a resolution of 3 × 64 × 64. In this
paper, we randomly select 100 classes of the TinyImageNet
for the experiments. For machine learning models, we use
ResNet-18 (He et al. 2016), VGG-16 (Simonyan and Zisser-
man 2014), and MobileNetV2 (Sandler et al. 2018).
Parameter and Attack Settings. All models are trained
for 60 epochs using a batch size of 128 and the SGD op-
timizer with a learning rate of 0.01. Without loss of gener-
ality, we set the third class in each dataset as the attacker’s
target class. The attacker’s training data is randomly sam-
pled from the entire dataset, with an equal distribution across
each class. The values of α, β, and η are set to 0.3, 1,
and 200, respectively. We set ϵ to 6 for CIFAR-10 and 10
for TinyImageNet. Dt is constructed by randomly sampling
20% of the test data for each dataset (the remaining test
instances are used for evaluating the attack performance).
In addition, we consider four unlearning methods (i.e., the
first-order method (Warnecke et al. 2021), the second-order
method (Warnecke et al. 2021), UnrollSGD (Thudi et al.
2022a), and SISA (Bourtoule et al. 2021)) when evaluating
the performance of the proposed attack approaches. For the
first-order method, we set the unlearning degree to 0.001
for ResNet-18, and to 0.0005 for both VGG-16 and Mo-
bileNetV2. For the second-order method, since the attacker
does not have access to the full training set of the model, we
use the attacker’s own dataset to calculate the inverse Hes-
sian matrix as an approximation. For UnrollSGD, we fine
tune the well-trained model on CIFAR-10 with 1 epoch and
on TinyImageNet with 5 epoches. For SISA, we split the
training data into 5 shards randomly.
Baseline and Evaluation Metrics. Since there are no exist-
ing studies on unlearning-based backdoor attacks, we take
the intuitive attack with randomly selected unlearning in-
stances as the baseline. The number of the unlearning in-

stances in the baseline method is the same as that derived
based on our attack approaches. For the first attack approach,
the trigger is also randomly chosen in the baseline method.
To evaluate the attack performance, we adopt the following
metrics:

• Attack Success Rate (ASR). The ASR is defined as the
percentage of non-target-class instances with the back-
door trigger that the unlearned model classifies as the at-
tacker’s intended target class. The higher the ASR, the
more effective the attack approach.

• Benign Accuracy (BA). It is defined as the classification
accuracy of the model on clean test data without the
backdoor trigger. The higher the BA, the more stealthy
the attack, indicating a more effective attack approach.

• Unlearning Percentage (UP). This metric is used to mea-
sure the size of Du. It is defined as the percentage of in-
stances the attacker chooses for unlearning relative to the
model’s entire training set. The lower the UP, the better
the attack approach.

We use AwoP to represent the attack without poisoning
and AwP for the attack with poisoning. The baseline method
is denoted by Rand.

Results for the Attack without Poisoning
Overall Performance. Table 1 shows the ASR, BA, and UP
for the first attack approach (i.e., the attack without poison-
ing) when the machine learning model is ResNet-18. Please
note that before the unlearning process, the classification ac-
curacy of ResNet-18 on CIFAR-10 is 91.0% and on TinyIm-
ageNet is 62.4%. For each dataset, we vary the percentage
of the training instances possessed by the attacker from 10%
to 50%. We conduct the experiment for 5 times and report
the average results. We can observe that the proposed attack
approach AwoP can achieve higher ASRs by unlearning a
small number of instances compared to the baseline method.
Additionally, the BA of the unlearned model after our at-
tack is comparable to the original classification accuracy. In
most cases, the classification accuracy decreases by less than
10%, which is acceptable in practice. From Table 1, we also
observe that different unlearning methods can result in dif-
ferent attack performance. More specifically, the ASRs for
the second-order method are lower than those for the first-
order method, while the BAs for the second-order method
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Figure 1: The impact of different factors on the performance of the attack without poisoning.

are higher than those for the first-order method. A potential
reason is that the second-order method offers a more accu-
rate approximation of the unlearning instance’s impact on
the model, leading to more moderate model updates.

Impact of Different Factors. Next, we study the impact
of various factors on the performance of the attack without
poisoning. These factors include the trigger magnitude con-
straint ϵ, the unlearning degree µ, the parameter γ, and the
unlearning requests from benign users. In this experiment,
we study the impact with the first-order method on CIFAR-
10. We assume that the percentage of the training instances
possessed by the attacker is 40%, and the machine learning
model is ResNet-18. Figure 1a shows the BAs and ASRs
when ϵ varies from 4 to 8. We can see that the larger the
value of ϵ, the higher the BA and the ASR. For the unlearn-
ing degree, Figure 1b shows that the ASR increases while
the BA decreases as it varies from 0.0005 to 0.0015, and
there is a trade-off between the BA and the ASR. Figure 1c
shows that as γ increases, the ASR decreases correspond-
ingly due to greater consideration of the attack stealthiness.
To evaluate the impact of benign users’ unlearning requests
on the attack performance, we perform the unlearning al-
gorithm to unlearn both the attacker’s chosen instances and
that from benign users. The unlearning instances requested
by benign users are randomly sampled from D\Da. Figure
1d shows the variation in the BA of the unlearned model
and the ASR of the attack as the percentage of unlearning
instances from benign users (relative to the total unlearn-
ing instances) ranges from 0 to 60%. We can see that the
proposed attack method is robust, maintaining an ASR of
approximately 75% even when 60% of the unlearning in-
stances are from benign users.

Performance on Other Model Architectures. In addition
to ResNet-18, we also evaluate the performance of the pro-
posed attack on VGG-16 and MobileNetV2. The results are
shown in Figure 2. Here we still consider the first-order un-
learning method on CIFAR-10, and the attacker possesses
40% of the training data. Before the unlearning process, the
classification accuracy for CIFAR-10 is 89.3% for VGG-16
and 87.6% for MobileNetV2. Figure 2 shows that the perfor-
mance of the proposed attack on VGG-16 and MobileNetV2
is similar to that on ResNet-18, and the ASRs are much bet-
ter than that of the baseline method.

Attack Transferability Across Unlearning Algorithms.
The above experiments assume that the attacker is aware

ResNet VGG MobileNet0

20

40

60

80

100

B
A
/A
SR

(%
)

BA(AwoP)
ASR(AwoP)
BA(Rand)
ASR(Rand)

Figure 2: The attack perfor-
mance on different model ar-
chitectures.
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of the unlearning algorithm employed by the model owner.
While this assumption is reasonable in practice, we also ex-
amine the effectiveness of our proposed attack when the at-
tacker lacks knowledge of the unlearning algorithm. Specif-
ically, we evaluate the ASRs when the unlearning algorithm
used by the attacker differ from that employed by the model
owner. The results are shown in Figure 3. In this experiment,
we assume that the attacker possesses 40% of the training
data, and the classification model is ResNet-18. We see that
the proposed attack has good transferability across differ-
ent unlearning algorithms. Even the attacker does not have
access to the unlearning algorithm employed by the model
owner, he still can achieve high ASRs.

Results for the Attack with Poisoning
Overall Performance. To evaluate the performance of the
attack with poisoning, we use ResNet-18 as the machine
learning model and train it on the CIFAR-10 dataset. We
consider three scenarios with poisoning rates of 0.5%,
0.75%, and 1% in the first stage, respectively. The classi-
fication accuracy of the model before the unlearning pro-
cess in the three scenarios is 90.4%, 89.9%, and 90.8%,
respectively. These results are nearly identical to that of
the model trained on clean data (91.0%). Please note that
the ASRs after the poisoning in the above three scenarios
are 23.0%, 31.0%, and 37.4%, respectively, which means
the model does not exhibit obvious backdoor behavior be-
fore the unlearning process. Table 2 shows the attack per-
formance when the first-order method is used for unlearn-
ing, and the training data possessed by the attacker varies
from 10% to 50%. We see that the proposed attack approach
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Poisoning rate=0.5% Poisoning rate=0.75% Poisoning rate=1%

Dataset |Da|
|D|

BA/ASR
(AwP)

BA/ASR
(Rand)

UP
BA/ASR

(AwP)
BA/ASR
(Rand)

UP
BA/ASR

(AwP)
BA/ASR
(Rand)

UP

CIFAR-10
0.1 88.2/45.0 88.0/22.6 2.0 86.6/54.3 84.1/27.5 2.3 86.1/58.4 87.5/31.2 1.6
0.3 79.9/60.8 82.5/13.3 5.1 78.5/70.5 79.8/22.4 4.5 81.2/73.9 86.0/24.1 4.1
0.5 72.7/71.4 77.4/14.8 6.4 73.0/80.8 75.4/20.9 4.4 79.4/86.3 83.0/26.7 3.9

Table 2: The ASR (%), BA (%), and UP (%) for the attack with poisoning and the baseline method.
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Figure 4: The attack perfor-
mance on SISA algorithm.
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Figure 5: The performance
of AwP before and after the
backdoor detection.

can achieve high ASR by unlearning a small number of in-
stances, and it outperforms the baseline method in all cases.

We also evaluate the attack performance with SISA on
CIFAR-10. We assume that the poisoning rate is 3%. Ad-
ditionally, the attacker has the knowledge about the shard
models and which shards contain his data. The basic idea of
deriving the unlearning set for each shard containing the at-
tacker’s data is as follows: The attacker fine-tunes the shard
model with his own training data and observes the influence
of each instance on the attack performance. Then, the in-
stances that can benefit the attack are put in the unlearning
set for that shard. Figure 4 shows the attack performance
when the number of attacked shards (M ) varies from 2 to
4. We can see that our attack approach still outperforms the
baseline method.
Robustness to Backdoor Detection. Next, we evaluate the
robustness of the proposed attack to existing backdoor de-
tections. Specifically, we consider two state-of-the-art de-
tection methods: Anti-backdoor learning (ABL) (Li et al.
2021b) and Backdoor defense via unlearning (BDU) (Liu
et al. 2022), and use them to detect the poisoned train-
ing instances. We assume that the attacker possesses 40%
of the training data and the poisoning rate is 1%. Fig-
ure 5 shows the attack performance before and after apply-
ing the above detection methods. Here we evaluate the at-
tack performance with the first-order unlearning method and
ResNet-18 trained on CIFAR-10. We can see that our attack
is robust to state-of-the-art backdoor detection methods, and
it can still achieve high ASRs after the detection.

Results for the Black-box Setting
In the black-box setting, we also assume that the attacker
possesses 40% of the training data. The values of δ and ψ
in Eq. (7) are set to 1 and 3, respectively. We consider three
possible model architectures (ResNet-18, VGG-16, and Mo-

ResNet-18 VGG-16 MobileNetV2

ResNet-18 78.2/57.0 73.5/57.1 70.4/44.9
VGG-16 85.1/34.9 74.2/64.8 76.3/50.7

MobileNetV2 79.1/22.3 72.1/60.5 73.3/64.0

Table 3: BA/ASR (%) for AwoP in the black-box setting.

ResNet-18 VGG-16 MobileNetV2

ResNet-18 78.4/56.1 81.4/72.0 78/57.9
VGG-16 74/54.1 82.4/77.3 74.0/58.6

MobileNetV2 77.1/49.1 80.8/71.3 77.9/65.0

Table 4: BA/ASR (%) for AwP in the black-box setting.

bileNetV2) for the shadow model, and the model architec-
ture on the model owner side is also one of them. In addi-
tion, we assume that the first-order method is used for un-
learning. Table 3 and Table 4 report the performance of our
two attack approaches. In the two tables, the leftmost col-
umn represents the shadow model, and the top row repre-
sents the model on the model owner’s side. The diagonal
denotes the cases when the model architecture adopted by
the attacker is the same as that of the model owner. As we
can see, these cases yield better attack outcomes compared
to when the attacker and the model owner employs differ-
ent model architectures. Although our proposed attacks are
still effective in the black-box setting, the ASR is not al-
ways ideal in all cases. For example, we find that the trans-
ferability from MobileNetV2 to ResNet-18 is limited. When
the attacker uses MobileNetV2 and the model owner uses
ResNet-18, the ASR of AwoP is only 22.3%. However, when
the model owner uses VGG-16 or MobileNetV2, the attacker
can easily achieve good ASRs with different architectures of
shadow models.

Conclusion
In this paper, we study the dark side of machine unlearn-
ing and explore the possibility of conducting backdoor at-
tacks leveraging this technique. We propose two attack ap-
proaches based on which the attacker can inject a backdoor
to the unlearned model via requesting the model owner to
unlearn a small subset of his contributed training instances.
The experimental results on different datasets demonstrate
that our proposed attacks are effective with various machine
unlearning methods.
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