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Abstract

We consider the finite-sum optimization problem, where each
component function is strongly convex and has Lipschitz con-
tinuous gradient and Hessian. The recently proposed incre-
mental quasi-Newton method is based on BFGS update and
achieves a local superlinear convergence rate that is dependent
on the condition number of the problem. This paper proposes a
more efficient quasi-Newton method by incorporating the sym-
metric rank-1 update into the incremental framework, which
results in the condition-number-free local superlinear conver-
gence rate. Furthermore, we can boost our method by applying
the block update on the Hessian approximation, which leads
to an even faster local convergence rate. The numerical exper-
iments show the proposed methods significantly outperform
the baseline methods.

1 Introduction
We study the following finite-sum minimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each individual function fi : Rd → R is strongly
convex and has Lipschitz continuous gradient and Hessian.
This formulation is ubiquitous in various machine learning
models, including maximum likelihood estimation (MLE)
(Bishop and Nasrabadi 2006; Bottou, Curtis, and Nocedal
2018) and unsupervised learning problems (Hastie et al. 2009;
Murphy 2012). A notable example of the problem (1) is the
empirical risk minimization in supervised learning, where n
is the number of data examples and fi(·) corresponds to the
loss function incurred by each training instance.

In this paper, we are interested in solving the large-scale
finite-sum problem, that is, the number of components n in
formulation (1) is large. In this scenario, accessing the exact
gradient or Hessian over the entire dataset is too expensive for
each iteration. To circumvent this issue, stochastic or incre-
mental optimization methods were introduced since they only
require computing an estimation of the gradient or Hessian
by a single sample (or a small mini-batch of samples) at each
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round. The most popular of these methods is stochastic gra-
dient descent (SGD). It has been widely used in large-scale
optimization problems thanks to its cheap computational cost
per iteration (Bottou, Curtis, and Nocedal 2018). Applying
the variance reduction (Defazio, Bach, and Lacoste-Julien
2014; Johnson and Zhang 2013; Schmidt, Le Roux, and Bach
2017; Zhang, Mahdavi, and Jin 2013) and acceleration tech-
niques (Allen-Zhu 2017; Nesterov 2003) can improve the
vanilla SGD, and it achieves a linear convergence rate with
optimal incremental first-order oracle complexity (Wood-
worth and Srebro 2016).

The second-order methods (Nesterov 2003) incorporate
the additional curvature information in every iteration, and
it is possible to establish the local superliner convergence
rate with these methods. For the finite-sum problem (1),
Rodomanov and Kropotov (2016) proposed the Newton in-
cremental method (NIM), which requires accessing the exact
gradient and exact Hessian of one individual function in each
iteration and attains the local superlinear convergence rate.
The classical quasi-Newton methods (Broyden, Dennis Jr,
and Moré 1973; Dennis and Moré 1974; Powell 1971) es-
timate the second-order information with first-order oracle
calls and still hold the superlinear convergence rate. However,
most of the stochastic variants for quasi-Newton methods
(Lucchi, McWilliams, and Hofmann 2015; Moritz, Nishi-
hara, and Jordan 2016) that employ gradient estimators only
achieve linear convergence rates.

Mokhtari, Eisen, and Ribeiro (2018) proposed the In-
cremental quasi-Newton (IQN) method by using classical
BFGS update (Broyden 1970; Fletcher 1970; Goldfarb 1970;
Shanno 1970), which is the first superlinear convergent
quasi-Newton method without exact second-order oracle
call in each iteration. However, the best-known analysis
of IQN (Mokhtari, Eisen, and Ribeiro 2018) only provided
the asymptotic convergence result. Several follow-up works
(Gao, Koppel, and Ribeiro 2020; Lahoti et al. 2023) attempted
to characterize the convergence rate by fusing the greedy
quasi-Newton update (Rodomanov and Nesterov 2021a) into
the framework of IQN. Specifically, Lahoti et al. (2023) pro-
posed sharpened lazy incremental quasi-Newton (SLIQN) by
utilizing lazy propagation strategy and showed it achieves
the superlinear convergence rate of O

(
(1− d−1κ−1)⌈t/n⌉

2)
,

where κ is the condition number and t is the number of
iterations. Gao, Koppel, and Ribeiro (2020) proposed the
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Incremental Greedy BFGS (IGS) method with the same con-
vergence rate as the SLIQN, but it requires more expensive
per-iteration complexity.

In this work, we propose an efficient quasi-Newton method
named the Lazy Incremental Symmetric Rank-1 (LISR-1)
method for the finite-sum minimization problem. Our ap-
proach takes advantage of the well-known symmetric rank-1
(SR1) update to construct the Hessian estimator with sharper
error bound than BFGS methods, and it also exploits the lazy
propagation strategy to maintain a low per-iteration complex-
ity. We show that LISR-1 achieves a local superlinear conver-
gence rate of O

(
(1−d−1)⌈t/n⌉

2)
, shaving off the dependency

on the condition number κ compared with the convergence
rate achieved by SLIQN and IGS. Each iteration of LISR-1
requires only O(1) incremental gradient/Hessian-vector or-
acle calls and O(d2) flops in matrix operations, matching
the existing IQN methods. Furthermore, we extend LISR-1
by making use of the symmetric rank-k update (Liu, Chen,
and Luo 2023) to construct the more accurate Hessian esti-
mator where k < d is the rank of the update, resulting in
the block IQN method called Lazy Incremental Symmetric
Rank-k (LISR-k). It enjoys the local convergence rate up
to O

(
(1− kd−1)⌈t/n⌉

2)
with additional computational cost

of O(kd2) flops per-iteration. The numerical experiments on
quadratic programming problems and the model of regular-
ized logistic regression demonstrate significant improvements
over baseline methods and confirm our theoretical findings.

Paper Organization In Section 2, we provide a literature
review for quasi-Newton methods and their variants for finite-
sum optimization problems. In Section 3, we formalize the
notations and assumptions of our problem and introduce the
background of the Broyden family update. In Section 4, we
propose our LISR-1 method and provide its convergence anal-
ysis. In Section 5, we present the LISR-k method by incorpo-
rating the block-type update. In Section 6, we demonstrate
the numerical experiments to show the improved efficiency
of the proposed methods. Finally, we conclude this work in
Section 7. All the proofs and more experimental results are
deferred to the appendix.

2 Related Work
In this section, we review related work of quasi-Newton meth-
ods and their variants for large-scale optimization problems.

Classical Quasi-Newton Methods Past decades have wit-
nessed extensive research progress on quasi-Newton meth-
ods. The main advantage of quasi-Newton methods is their
capability to reach a superlinear convergence without com-
puting the exact Hessian or its inverse. To estimate the
second-order information, the classical quasi-Newton meth-
ods are based on the secant equation and the corresponding
closeness criteria between successive Hessian estimations.
The choice of closeness criteria leads to different types of
quasi-Newton methods, including Broyden’s method (Broy-
den 1965; Broyden, Dennis Jr, and Moré 1973; Gay 1979),
the Davidon-Fletcher-Powell (DFP) method (Davidon 1991;
Fletcher and Powell 1963), the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method (Broyden 1970; Fletcher 1970; Gold-

farb 1970; Shanno 1970) and the symmetric rank-1 (SR1)
method (Conn, Gould, and Toint 1991). The asymptotic super-
linear convergence of quasi-Newton methods was established
in the 1970s (Broyden, Dennis Jr, and Moré 1973; Dennis
and Moré 1974; Dixon 1972a,b; Powell 1971), while the
explicit superlinear rates of quasi-Newton methods were ob-
tained only recently. Rodomanov and Nesterov (2021a) first
proposed greedy quasi-Newton methods and gave its non-
asymptotic superlinear convergence guarantees. Later, Lin,
Ye, and Zhang (2022) provided a sharper analysis for these
methods. After that, Jin and Mokhtari (2023); Rodomanov
and Nesterov (2021b,c); Ye et al. (2021) established the ex-
plicit rates for the classical (secant equation-based) quasi-
Newton methods.

Block Quasi-Newton Methods Schnabel (1983) proposed
block quasi-Newton methods. These methods construct the
Hessian estimator along multiple directions during each it-
eration, and they achieve better empirical performance than
classical quasi-Newton methods like BFGS (O’Leary and
Yeremin 1994). After several decades, the superlinear conver-
gence of these methods was established by Gao and Goldfarb
(2018); Gower, Goldfarb, and Richtárik (2016); Gower and
Richtárik (2017). Very recently, Liu, Chen, and Luo (2023)
presented explicit superlinear convergence rates of block
quasi-Newton methods, which explains why the use of multi-
ple directions benefits the convergence behaviors.

Stochastic/Incremental Quasi-Newton Methods Due to
the sheer volume of data in modern machine learning appli-
cations, researchers have been investigating the extension
of quasi-Newton methods on large-scale optimization prob-
lems. Several early works established the stochastic quasi-
Newton methods to reduce the computational cost at each iter-
ation (Byrd et al. 2016; Chang, Sun, and Zhang 2019; Lucchi,
McWilliams, and Hofmann 2015; Mokhtari and Ribeiro 2014,
2015; Moritz, Nishihara, and Jordan 2016), but these meth-
ods cannot obtain the superlinear convergences like classical
quasi-Newton methods. Incremental quasi-Newton methods
(IQN) (Gao, Koppel, and Ribeiro 2020; Lahoti et al. 2023;
Mokhtari, Eisen, and Ribeiro 2018) use the aggregated in-
formation to construct a more accurate gradient and Hessian
estimator, which leads to superlinear convergence. We com-
pare the proposed methods with related work in Table 1.

3 Preliminaries
In this section, we formalize the notations and assumptions
throughout this paper, then we introduce the well-known
Broyden family updates which are widely used in quasi-
Newton methods.

3.1 Notations
We denote ei ∈ Rd as the i-th standard basis vector of d-
dimensional Euclidean space, where i ∈ [d]. We define the
index it as t mod n. For vectors u, v ∈ Rd, we denote their
inner product by ⟨u, v⟩ := u⊤v. We use ∥·∥ to represent the
Euclidean norm of the vector and the spectral norm of the
matrix. Given a positive semi-definite matrix A ∈ Rd×d and
a vector u ∈ Rd, we define the norm of u with respect to A
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Algorithm Computation Cost Convergence Rate

IQN (Mokhtari, Eisen, and Ribeiro 2018) O(d2) asymptotic superlinear

IGS (Gao, Koppel, and Ribeiro 2020) O(d3) O
(
(1− d−1κ−1)⌈t/n⌉

2)
SLIQN (Lahoti et al. 2023) O(d2) O

(
(1− d−1κ−1)⌈t/n⌉

2)
LISR-1 (this work) O(d2) O

(
(1− d−1)⌈t/n⌉

2)
LISR-k (this work) O(kd2) O

(
(1− kd−1)⌈t/n⌉

2)
Table 1: We compare the per-iteration computation cost and the convergence rates of incremental fashion quasi-Newton methods.
Note that the explicit convergence rate of the vanilla IQN method still remains a mystery.

as ∥u∥A :=
√
⟨u,Au⟩. We let

Ek(A) = [ei1 ; . . . ; eik ] ∈ Rd×k, (2)

where i1, . . . , ik are the indices for the largest k entries in
the diagonal of A. We also use tr(·) to present the trace
of a square matrix. Additionally, we denote the solution of
problem (1) as x∗ := argminx∈Rd f(x).

3.2 Assumptions
In the remainder of this paper, we always suppose Problem (1)
satisfies the following assumptions.

Assumption 3.1. We suppose each function fi(·) is twice-
differentiable, L-smooth and µ-strongly convex, i.e., there
exist constants L > 0 and µ > 0 such that

µI ⪯ ∇2fi(x) ⪯ LI (3)

for any x ∈ Rd.

Assumption 3.2. We suppose each fi(·) has a L̃-Lipschitz
continuous Hessian, i.e., there exists a constant L̃ such that∥∥∇2fi(x)−∇2fi(y)

∥∥ ≤ L̃ ∥x− y∥ .

for any x, y ∈ Rd.

The strong convexity and the Lipschitz continuity of Hes-
sian in our assumptions imply that each fi(·) is strongly
self-concordant with constant M := L̃µ−3/2 (Rodomanov
and Nesterov 2021a), i.e, we have

∇2fi(y)−∇2fi(x) ⪯ M ∥y − x∥∇2fi(z)
∇2fi(w)

for any x, y, z, w ∈ Rd.
Additionally, we let κ := L/µ be the condition number of

our problem which could be very large in practice.

3.3 Broyden Family Update
Many popular quasi-Newton methods such as DFP, BFGS,
and SR1 belong to the Broyden family update (Nocedal and
Wright 1999, Section 6.3), which is defined as follows.

Definition 3.3. Let G ∈ Rd×d and A ∈ Rd×d be two
positive define matrices satisfying G ⪰ A. For any non-
zero u ∈ Rd and τ ∈ [0, 1], if Gu = Au, we define

Broydτ (G,A, u) := G. Otherwise, we define

Broydτ (G,A, u)

:=τ

[
G− Auu⊤G+Guu⊤A

u⊤Au
+

(
u⊤Gu

u⊤Au
+ 1

)
Auu⊤A

u⊤Au

]
+ (1− τ)

[
G− (G−A)uu⊤(G−A)

u⊤(G−A)u

]
.

(4)

We can recover several well-known quasi-Newton methods
by taking the different values of τ :

• For τ = 1, Eq. (4) corresponds to the DFP update

DFP(G,A, u) :=G− Auu⊤G+Guu⊤A

u⊤Au

+

(
u⊤Gu

u⊤Au
+ 1

)
Auu⊤A

u⊤Au
.

• For τ =
u⊤Au

u⊤Gu
, we recover the BFGS update

BFGS(G,A, u) := G− Guu⊤G

u⊤Gu
+

Auu⊤A

u⊤Au
.

• For τ = 0, we achieve the SR1 update

SR1(G,A, u) := G− (G−A)uu⊤(G−A)

u⊤(G−A)u
. (5)

We can generalize the Broyden family updates with multi-
ple directions (Gao and Goldfarb 2018; Gower, Goldfarb, and
Richtárik 2016; Gower and Richtárik 2017; Liu, Chen, and
Luo 2023). In particular, Liu, Chen, and Luo (2023) establish
the block version of the SR1 update called the symmetric
rank-k (SR-k) update, which is defined as follows.

Definition 3.4. Let A ∈ Rd×d and G ∈ Rd×d be two
positive-definite matrices satisfying G ⪰ A. For any full rank
matrix U ∈ Rd×k with k < d, we define SR-k(G,A,U) :=
G if GU = AU . Otherwise, we define

SR-k(G,A,U) := G− (G−A)U(U⊤(G−A)U)†U⊤(G−A).

Remark 3.5. Note that the SR-k update shown in the above
definition is equivalent to the SR1 update when k = 1.
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Algorithm 1: LISR-1

1: Input: x0 ∈ Rd and {B0
i ∈ Rd×d}ni=1.

2: Initialize t = 0 and z0i = x0 for any i ∈ [n].
3: while not converged do
4: Update xt+1 as per (6).
5: Update zt+1

i as per (7).

6: Update Bt+1
i as per (8)-(11).

7: Increment the iteration counter t.
8: end while
9: Output: xt.

4 Methodology
In this section, we propose the lazy incremental symmetric
rank-1 (LISR-1) method and provide theoretical analysis
to show it enjoys condition number-free local superlinear
convergence.

4.1 The Algorithm
We first introduce the main intuitions of LISR-1. For each

component function fi(x), we consider its quadratic approxi-
mation at point zti ∈ Rd as

fi(x) ≈f̃ t
i (x)

=fi(z
t
i ) +∇fi(z

t
i )

⊤(x− zti ) +
1

2
(x− zti )

⊤Bt
i (x− zti ),

where we estimate ∇2fi(z
t
i) by a positive-definite matrix

Bt
i ∈ Rd×d. Then we obtain xt+1 by minimizing the average

of {f̃ t
i (x)}ni=1, which has the closed form solution

xt+1 =argmin
x∈Rd

1

n

n∑
i=1

f̃ t
i (x)

=

(
n∑

i=1

Bt
i

)−1( n∑
i=1

Bt
iz

t
i −

n∑
i=1

∇fi(z
t
i)

)
.

(6)

We only update one of {zti}ni=1 at each iteration in a cyclic
fashion to make the algorithm efficient, that is

zt+1
i =

{
xt+1, if i = it,

zti , otherwise,
(7)

where it = tmod n is the index of the component we choose
at the t-th iteration.

We also wish to construct the Hessian estimators efficiently
and keep a fast convergence rate. In particular, we introduce
the scaling parameter ωt+1 and apply the SR1 update on one
of the individual Hessian estimators in each iteration:
• For i = it, we let

Bt+1
i = ωt+1SR1(Bt

i ,∇2fi(z
t+1
i ), ū(Bt

i ,∇2fi(z
t+1
i ))), (8)

where ū(·, ·) is the greedy direction which is defined as

ū(G,A) := argmax
u∈{ei}d

i=1

u⊤(G−A)u. (9)

• For i ̸= it, we let

Bt+1
i = ωt+1Bt

i . (10)

Additionally, we set

ωt =

{(
1 +M

√
Lr0ρ

⌈ t
n ⌉)2, if n mod t = 0,

1, otherwise,
(11)

for some ρ ∈ (0, 1 − d−1) and let r0 be an upper bound of
∥x0 − x∗∥. This setting implies the step of scaling is exe-
cuted once every n iterations.

We present the whole procedure of the proposed LISR-1 in
Algorithm 1. We can verify that the per-iteration cost of our
algorithm is O(d2) flops. Notice that the main cost of LISR-1
comes from the computation of Eq. (6), which is dominated
by maintaining the inverse of the following sum of individual
Hessian estimators

B̄t+1 :=
n∑

i=1

Bt+1
i .

We can rewrite the above matrix in the recursive form as

B̄t+1 = B̄t +Bt+1
it

−Bt
it . (12)

In the case of t mod n ̸= 0, no scaling is performed
since we have ωt+1 = 1. Denote ūt as the abbreviation
of ū(Bt

it
,∇2fit(z

t
it
)), then applying the Sherman-Morrison

formula on Eq. (12) implies

(B̄t+1)−1 = (B̄t)−1 +
(B̄t)−1vt(vt)⊤(B̄t)−1

(ūt)⊤vt − (vt)⊤(B̄t)−1vt
, (13)

where vt is defined as

vt = (Bt
it −∇2fit(z

t+1
it

))ūt.

It is easy to observe that computing the right-hand side of
Eq. (13) takes O(d2) flops for given (B̄t)−1 and vt. In the
case of t mod n = 0, each Hessian estimator may be scaled
by a factor ωt ̸= 1, which results in the additional com-
putational cost of O(nd2) flops. However, the amortized
per-iteration complexity of this step is still O(d2) because
the scaling occurs once per n iterations. We provide a more
efficient implementation of LISR-1 in the appendix.

4.2 Convergence Analysis
We analyze the convergence of LISR-1 by considering the
Euclidean distance to the optimal solution x∗. Firstly, the
formula (6) indicates the general result:

Lemma 4.1. The iteration formula (6) satisfies

∥∥xt+1 − x∗∥∥ ≤ L̃Γt

2

n∑
i=1

∥∥zti − x∗∥∥2

+ Γt
n∑

i=1

∥∥Bt
i −∇2fi(z

t
i )
∥∥∥∥zti − x∗∥∥ , (14)

for all t ≥ 1, where Γt :=
∥∥(∑n

i=1 B
t
i

)−1∥∥.
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Remark 4.2. Notice that the proof of Lemma 4.1 only re-
quires the Lipschitz continuity of each ∇2fi(·) and the iter-
ation formula (6). The validity of this lemma does not rely
on the specific choice of Hessian estimators {Bt

i}ni=1 and
it also can be used to analyze the other incremental fashion
methods (Gao, Koppel, and Ribeiro 2020; Lahoti et al. 2023;
Mokhtari, Eisen, and Ribeiro 2018).

In view of Lemma 4.1, the more accurate Hessian estima-
tor Bt

i ≈ ∇2fi(z
t
i) can lead to the tighter upper bound of∥∥xt+1 − x∗

∥∥. Hence, the key to showing the advantage of
the proposed method is bounding the difference between Bt

i
and ∇2fi(z

t
i). In particular, we introduce the quantity

ν(G,A) :=
dκtr(G−A)

tr(A)
, (15)

to describe the difference between two positive definite ma-
trices G ∈ Rd×d and A ∈ Rd×d such that G ⪰ A. Based
on the measure ν(·, ·) and Lemma 4.1, we provide the lin-
ear convergence of the distance to solution and the error of
Hessian approximation as follows.
Lemma 4.3. For any ρ satisfying ρ ∈ (0, 1 − d−1), there
exist positive constants r0 and σ0 such that running LISR-1
(Algorithm 1) with the initial conditions

∥∥x0 − x∗
∥∥ ≤ r0,

B0
i ⪰ ω0∇2fi(z

0
i ) and ν((ω0)−1B0

i ,∇2fi(x
0)) ≤ σ0 for

any i = 1, . . . , n results in∥∥xt+1 − x∗∥∥ ≤ ρ⌈
t+1
n ⌉ ∥∥x0 − x∗∥∥ (16)

and

ν
(
(ωt+1)−1Bt+1

it
,∇2fit(z

t+1
it

)
)
≤

(
1− 1

d

)⌈ t+1
n

⌉

δ, (17)

where M = L̃/µ3/2, ωt follows the definition in (11) and

δ :=

(
σ0 +

4MdL3/2µ−1r0
1− (1− d−1)−1ρ

)
exp

(
4M

√
Lr0

1− ρ

)
Remark 4.4. In the proof of Lemma 4.3, we show that the
relation (ωt+1)−1Bt+1

it
⪰ ∇2fit(z

t+1
it

) holds for each itera-
tion. This guarantees the update rule (6) and the error measure
ν
(
(ωt+1)−1Bt+1

it
,∇2fit(z

t+1
it

)
)

are well-defined.
We establish the mean-superlinear convergence based on

Lemma 4.3. Specifically, we have the following result.
Lemma 4.5. Following the initial conditions of Lemma 4.3,
the sequence of iterates generated by the LISR-1 method
(Algorithm 1) satisfies∥∥xt+1 − x∗∥∥ ≤

(
1− 1

d

)⌈ t+1
n ⌉

· 1
n

n∑
i=1

∥∥xt+1−i − x∗∥∥ .
Using Lemma 4.5, we can achieve the local superlinear

convergence rate of the proposed LISR-1 method by induc-
tion. We formally present our main result as follows.
Theorem 4.6. For the sequence {xt} generated by LISR-1
(Algorithm 1) with the initial conditions shown in Lemma 4.3,
there exists a sequence {ζl} such that

∥∥xt+1 − x∗
∥∥ ≤ ζ⌊t/n⌋

for any t ≥ 1 and it satisfies

ζl ≤ r0

(
1− 1

d

) (l+2)(l+1)
2

. (18)

4.3 Discussion
The convergence analysis in the last subsection shows that
LISR-1 enjoys the condition number-free superlinear conver-
gence rate, which is significantly better than all of the exist-
ing incremental fashion quasi-Newton methods (see Table 1).
The improvement is due to that we adopt the greedy SR1 up-
date to maintain the Hessian estimator in formula (8) and the
analysis characterizes the Hessian approximation error by the
measure ν(·, ·) defined in (15). In contrast, the prior methods
IGS (Gao, Koppel, and Ribeiro 2020) and SLIQN (Lahoti
et al. 2023) only consider the general Broyden family up-
date and characterize the Hessian approximation error by the
measure σ(G,A) = tr(A−1(G − A)) for positive definite
G ∈ Rd×d and A ∈ Rd×d, which leads to additional depen-
dency on condition number in the superlinear convergence
rate.1 On the other hand, the implementations of these meth-
ods are more complicated than ours. Concretely, IGS requires
scaling a Hessian estimator at each iteration which results in
O(d3) computational cost, and SLIQN maintains Bt+1

it
by a

combination of secant equation-based and greedy Broyden
family updates while our LISR-1 only has one step of greedy
SR1 update (8).

5 Extension to Block Quasi-Newton Methods
It is possible to incorporate the idea of block quasi-Newton
methods into the framework of the LISR-1. Specifically, we
only need to modify Line 6 of Algorithm 1 by replacing the
update rule (8) with

Bt+1
it

=ωt+1SR-k(Bt
it ,∇

2fit(z
t+1
it

),Ū(Bt
it ,∇

2fit(z
t+1
it

))), (19)

where Ū(·, ·) contains greedy directions which is defined as

Ū(G,A) = Ek(G−A). (20)

We name the variant of LISR-1 with the above modification
as Lazy Incremental Symmetric Rank-k (LISR-k) method.

The LISR-k method requires O(kd2) flops in each iter-
ation. Since we typically set k to be much smaller than d,
such computational cost is acceptable. Similar to the previous
analysis, the cost of LISR-k is dominated by maintaining the
inverse of the sum of individual Hessian estimators

B̄t+1 :=
n∑

i=1

Bt+1
i ,

which can be written as B̄t+Bt+1
it

−Bt
it

. The main difference
between the two algorithms is the update on B̄t+1 (its inverse)
in the case of tmod n ̸= 0. For the LISR-k method, we have

B̄t+1 =B̄t − V t
(
(Ū t)⊤V t

)−1
(V t)⊤,

where we define V t =
(
Bt

it
−∇2fit(z

t+1
it

)
)
Ū t ∈ Rd×k

and Ū t = Ū(Bt
it
,∇2fit(z

t+1
it

)) ∈ Rd×k. Applying the
Sherman-Morrison formula, we achieve

(B̄t+1)−1 =(B̄t)−1 + (B̄t)−1V t(Dt)−1(V t)⊤(B̄t)−1, (21)

1These work present their theoretical results by analyzing BFGS
update, while their analysis can be directly applied to the general
Broyden family update and achieves the identical convergence rate.
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(a) ξ = 4, κ = 3.03× 102 (b) ξ = 8, κ = 3.12× 104 (c) ξ = 12, κ = 3.12× 106

Figure 1: Normalized error vs. the number of effective passes for the quadratic programming problem.

where Dt = (Ū t)⊤V t−(V t)⊤(B̄t)−1V t ∈ Rk×k. It can be
observed that constructing Dt takes O(kd2) flops for given
(B̄t)

−1. Additionally, the complexity of computing (Dt)−1

is not the leading cost since we take k ≪ d. Hence, the total
cost for computing Eq. (21) is O(kd2) flops. Similar to LISR-
1, the setting of ωt+1 guarantees the scaling occurs once
every n iterations and its amortized per-iteration complexity
is no more than O(kd2) flops.

Even Faster Convergence Rate The rank-k update in the
LISR-k leads to sharper upper bounds on the distance to op-
timal solution and approximation error of Hessian estimators.
Compared with Lemma 4.5, the LISR-k holds the following
tighter upper bounds∥∥xt+1 − x∗∥∥ ≤

(
1− k

d

)⌈ t+1
n ⌉

1

n

n∑
i=1

∥∥xt+1−i − x∗∥∥
and

ν((ωt+1)−1Bt+1
it

,∇2fit(z
t+1
it

)) ≤
(
1− k

d

)⌈ t+1
n ⌉

δ.

Consequently, we can show the mean-superlinear conver-
gence result like Lemma 4.5, and the new result improves the
base of convergence rate from 1− d−1 to 1− kd−1. Finally,
we achieve the main result of the LISR-k method as follows.
Theorem 5.1. We follow the initial conditions of Lemma 4.3
but initialize ρ with ρ ∈ (0, 1− kd−1). For the sequence of
iterates {xt} generated by the LISR-k method, there exists
sequence {ζl} such that ∥xt − x∗∥ ≤ ζ⌊(t−1)/n⌋ for any
t ≥ 1 and it satisfies

ζl ≤ r0

(
1− k

d

) (l+2)(l+1)
2

. (22)

Remark 5.2. For k = 1, the LISR-k method degenerates
to the LISR-1 method. For k ≥ 2, the superlinear conver-
gence rate of LISR-k (Theorem 5.1) is strictly tighter than
the counterpart of LISR-1 (Theorem 4.6).

6 Experiments
We compare the proposed methods LISR-1 and LISR-k
with baseline methods including IQN (Mokhtari, Eisen, and

Ribeiro 2018) and SLIQN (Lahoti et al. 2023). We test all
methods on the problems of quadratic programming and reg-
ularized logistic regression. For the LISR-k method, we set
k = 5 for all of the cases. For the fairness of comparison, we
run all algorithms from the same initial point.

6.1 Quadratic Function Minimization
We consider the following quadratic function minimization
problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

(1
2
⟨x,Aix⟩+ ⟨bi, x⟩

)
, (23)

where Ai ∈ Rd×d is positive definite and bi ∈ Rd. Following
the setup of Mokhtari, Eisen, and Ribeiro (2018), we let each
Ai be diagonal matrix by setting the first half of diagonal
entries be independent uniformly sampled from [1, 10ξ/2]
while the others are independent uniformly sampled from
[10−ξ/2, 1], where ξ > 0 is the parameter that affects the
condition number of the problem. For each bi, we let its
entries be independently uniformly sampled from [0, 103].

We run the experiments by taking n = 1000, d = 50 and
ξ ∈ {4, 8, 12}, and we present the results in Figure 1. We
observe that the condition number heavily affects the con-
vergence behaviors of IQN and SLIQN, while the proposed
methods LISR-1 and LISR-k are insensitive to the varying
condition numbers. These results validate our theoretical anal-
ysis since we have shown the superlinear convergence rates
of our methods do not depend on the condition number.

6.2 Regularized Logistic Regression
We consider ℓ2-regularized logistic regression problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

ln(1+exp(−yi⟨x, zi⟩))+
λ

2
∥x∥2, (24)

where zi ∈ Rd is the feature of the i-th training sample and
yi ∈ {1,−1} is the corresponding labels. We conduct our ex-
periments on nine real-world datasets (“a9a”, “w8a”, “ijcnn”,
“mushrooms”, “phishing”, “svmguide3”, “german.numer”,
“splice” and ‘covtype”) from LIBSVM repository. We take
λ = 10−3 for “a9a”, “mushrooms”, “svmguide3”, “ger-
man.numer”, “covtype” and λ = 10−4 for others.
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Figure 2: Normalized error vs. the number of effective passes for the regularized logistic regression problem on several real-world
datasets .

We present the experimental results in Figure 2. We ob-
serve that the proposed LISR-k significantly outperforms
other methods on all datasets. The LISR-1 enjoys a faster
convergence rate than IQN and SLIQN when it starts to
converge, while it may be slower at the early stage. We con-
jecture that IQN and SLIQN contain the steps of classical
quasi-Newton updates. By accessing the exact gradient in-
formation, Rodomanov and Nesterov (2021b,c) theoretically
showed that classical quasi-Newton methods converge faster
than greedy quasi-Newton methods at the early stage. We
empirically observe similar results for incremental quasi-
Newton methods, while the rigorous theory for such a phe-
nomenon is still unclear. On the other hand, the block update
in LISR-k leads to much better Hessian estimators. Hence,
the early stage of LISR-k only contains a few iterations.

7 Conclusion
This paper has proposed the efficient incremental quasi-
Newton method called LISR-1 and its extension named LISR-
k method for the finite-sum convex optimization. We have
theoretically shown the proposed methods enjoy faster super-
linear convergence rates than the state-of-the-art incremen-
tal quasi-Newton methods. The numerical experiments on
quadratic programming and regularized logistic regression
also validate the advantages of the proposed methods over
existing IQN baselines.

In future work, it is interesting to study incremental quasi-
Newton methods for more general settings, such as minimiz-
ing nonconvex functions (Wang et al. 2017; Yang et al. 2021).
It is also possible to leverage the idea to design efficient in-
cremental quasi-Newton methods for solving minimax prob-
lems (Liu et al. 2022; Liu and Luo 2022) or nonlinear equa-
tions (Liu et al. 2023).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

14103



Acknowledgments
This research/project is supported by the National Research
Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG2-PhD-2023-08-043T-J). This re-
search is part of the programme DesCartes and is supported
by the National Research Foundation, Prime Minister’s Of-
fice, Singapore under its Campus for Research Excellence
and Technological Enterprise (CREATE) programme. Luo
Luo is supported by National Natural Science Foundation
of China (No. 62206058) and Shanghai Sailing Program
(22YF1402900).

References
Allen-Zhu, Z. 2017. Katyusha: The first direct acceleration
of stochastic gradient methods. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing,
1200–1205.
Bishop, C. M.; and Nasrabadi, N. M. 2006. Pattern recogni-
tion and machine learning, volume 4. Springer.
Bottou, L.; Curtis, F. E.; and Nocedal, J. 2018. Optimization
methods for large-scale machine learning. SIAM review,
60(2): 223–311.
Broyden, C. G. 1965. A class of methods for solving non-
linear simultaneous equations. Mathematics of computation,
19(92): 577–593.
Broyden, C. G. 1970. The convergence of single-rank quasi-
Newton methods. Mathematics of Computation, 24(110):
365–382.
Broyden, C. G.; Dennis Jr, J. E.; and Moré, J. J. 1973. On the
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