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Abstract

Clustering methods achieve performance improvement by
jointly learning representation and cluster assignment. How-
ever, they do not consider the confidence of pseudo-labels
which are not optimal as supervised information, resulting
into error accumulation. To address this issue, we propose a
Robust Pseudo-labeling for Semantic Clustering (RPSC) ap-
proach, which includes two stages. In the first stage (RPSC-
Self), we design a semantic pseudo-labeling scheme by using
the consistency of samples, i.e., samples with same semantics
should be close to each other in the embedding space. To ex-
ploit robust semantic pseudo-labels for self-supervised learn-
ing, we propose a soft contrastive loss (SCL) which encour-
age the model to believe high-confidence sematic pseudo-
labels and be less driven by low-confidence pseudo-labels.
In the second stage (RPSC-Semi), we first determine the se-
mantic pseudo-label of a sample based on the distance be-
tween itself and cluster centers, followed by screening out
reliable semantic pseudo-label by exploiting the consistency.
These reliable pseudo-labels are used as supervised infor-
mation in the pseudo-semi-supervised learning algorithm to
further improve the performance. Experimental results show
that RPSC outperforms 18 competitive clustering algorithms
significantly on six challenging image benchmarks. In par-
ticular, RPSC achieves an accuracy of 0.688 on ImageNet-
Dogs, which is an up to 24% improvement, compared with
the second-best method. We conduct ablation studies to in-
vestigate effects of different augmented strategies on RPSC
as well as contributions of terms in SCL to clustering perfor-
mance. Experimental results indicate that SCL can be easily
integrated into existing clustering methods and bring perfor-
mance improvement.

Introduction
Clustering algorithms divide unlabeled data into groups via
using the similarity, so that data in the same group are more
similar to those from different groups. Traditional clustering
algorithms like hierarchical clustering (Johnson 1967), K-
means (Hartigan and Wong 1979), DBSCAN (Schubert et al.
2017) require high-quality features to obtain desirable per-
formance. However, when dealing with high-dimensional
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Figure 1: The ratio of neighboring samples that are semanti-
cally identical for CIFAR-10, STL-10 and CIFAR-100.

and complex data, traditional clustering algorithms may lead
to poor results due to the difficulty in extracting high-quality
features. With the improvement of representation learning
capability of neural networks, deep learning has come to the
fore in clustering tasks, referred to as deep clustering.

Existing deep clustering methods are divided into single-
stage methods (Yang et al. 2017; Xie, Girshick, and Farhadi
2016; Yang, Parikh, and Batra 2016; Guo et al. 2017; Li
et al. 2021) and two-stage methods (Van Gansbeke et al.
2020; Dang et al. 2021; Niu, Shan, and Wang 2022). The for-
mer ones learn representations and cluster assignment simul-
taneously. For example, DEC (Xie, Girshick, and Farhadi
2016) learns the mapping from data space to embedding
space through a pre-trained network, and uses K-means
and Kullback-Leibler (KL) divergence loss in the embed-
ding space to optimize the clustering objective. JULE (Yang,
Parikh, and Batra 2016) obtains the label sequence by merg-
ing clusters in the forward propagation, and uses the label se-
quence as supervisory information to learn representations.
CC (Li et al. 2021) proposes a comparative learning frame-
work combining instance level and cluster level.

Unlike one-stage methods, two-stage methods (Van Gans-
beke et al. 2020; Niu, Shan, and Wang 2022) first use pre-
text tasks for representation learning and then perform clus-
ter assignment. For example, SCAN (Van Gansbeke et al.
2020) exploits contrastive learning to mine nearest neigh-
bors in the first stage and force the model to output the same
label for similar samples in the second stage. SPICE (Niu,
Shan, and Wang 2022) proposed a deep clustering frame-
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work for images based on semantic pseudo-labels through
contrastive learning, prototype clustering, and pseudo-label
semi-supervised training. Although two-stage clustering al-
gorithms have achieved performance gains, they lack mech-
anisms for screening robust semantic pseudo-labels. Specif-
ically, in the first stage, SCAN assigns semantic pseudo-
labels by predicting beyond the threshold simply, and SPICE
assigns semantic pseudo-labels via the clustering of sam-
ples and prototypes. These methods encourage the model to
output the same label for samples with similar embeddings.
However, this is not the case when the samples are located
near the boundaries of different clusters, as shown in Fig. 1.
The horizontal axis of Fig. 1 denotes the proportion of the
number of samples selected to be neighbors of a prototype
for a cluster in data sets. The vertical axis denotes the pro-
portion of the selected samples that share the same semantic
with this prototype. The best-case results are selected in Fig.
1, from which we find that even in the best case, when the
number of considered neighbors is close to the number of a
class, the nearest neighbor samples often do not belong to
the same semantic class.

In this work, we propose a new semantic pseudo-labeling
method that jointly considers the confidence of semantic
pseudo-labels and the consistency of similar samples in the
embedding space. Specifically, the semantic pseudo-labeling
method first determines the cluster centers in the pre-trained
embedding space. Based on the consistency of similar sam-
ples in the embedding space, a corresponding pseudo-label
is attached to samples around the cluster center, and the con-
fidence of the pseudo-label is determined based on the dis-
tance between the sample and the cluster center. Finally, we
propose soft contrastive loss (SCL) to rationally utilize se-
mantic pseudo-labels to supervise model training. The nu-
merator of SCL encourages samples to approach pseudo-
labels in according with confidence, and the denominator
of SCL forces samples with different pseudo-labels to have
different predictions. See the Method section for details. In
summary, the main contributions of our work are as follows:

• We propose a novel RPSC approach to extract seman-
tic pseudo-labels for image clustering, which considers
the confidence of semantic pseudo-labels and the consis-
tency of similar samples in the embedding space.

• We propose a soft contrastive loss that encourages the
model to make high-confident predictions for robust
semantic pseudo-labels while preventing from learning
wrong predictions, which can be easily integrated into
existing clustering methods for improving performance.

• The proposed method shows superior performance on six
challenging image data sets. In particular, it achieves up
to 24% improvement in terms of accuracy on ImageNet-
Dogs, compared to the most competitive baseline.

Related Work
Contrastive Learning
Contrastive learning extracts semantic features which im-
prove performances of downstream tasks. Contrastive learn-
ing methods include SimCLR (Chen et al. 2020), MOCO

(He et al. 2020) and BYOL (Grill et al. 2020). As a paradigm
for unsupervised learning, contrastive learning has achieved
state-of-the-art performance in representation learning (Li
et al. 2021, 2022). Contrastive learning first defines positive
and negative sample pairs, and maximizes the similarity of
positive samples while minimizing the similarity of negative
samples. SimCLR (Chen et al. 2020) first conducts two aug-
mentations on data in a mini-batch, and considers results of
the same image and augmentation after contrastive predic-
tion task as positive samples. The results of the other sam-
ples in mini-batch after two kinds of augmentations and con-
trastive prediction task are considered as negative samples.
Performance of contrastive learning can be improved by data
enhancement, such as predicting patch context (Doersch,
Gupta, and Efros 2015; Mundhenk, Ho, and Chen 2018),
coloring images (Zhang, Isola, and Efros 2016; Larsson,
Maire, and Shakhnarovich 2017), using adversarial train-
ing (Donahue, Krähenbühl, and Darrell 2016; Donahue and
Simonyan 2019), predicting noise (Bojanowski and Joulin
2017), predicting rotations (Gidaris, Singh, and Komodakis
2018), performing instance differentiation (Wu et al. 2018;
Tian, Krishnan, and Isola 2020; Misra and Maaten 2020).

Deep Clustering
Traditional clustering algorithms, such as K-means (Harti-
gan and Wong 1979), Gaussian Mixture Model (Reynolds
et al. 2009), DBSCAN (Schubert et al. 2017) and Hierar-
chical Clustering (Johnson 1967), rely on handcrafted fea-
tures heavily and perform poorly on high-dimensional data.
Unlikely, deep clustering uses the powerful representation
learning capability of deep networks for clustering high-
dimensional data. Initially, several methods that combine
deep networks with traditional clustering algorithms like K-
means and Spectral Clustering (Ng, Jordan, and Weiss 2001)
have been proposed. For example, Deep embedded cluster-
ing (DEC) (Xie, Girshick, and Farhadi 2016) uses a self-
encoder to project samples into a low-dimensional space,
where K-means is adopted to obtain cluster assignments.
JULE (Yang, Parikh, and Batra 2016) utilizes CNN to ex-
tract supervised information from high-confidence images,
and implements clustering assignment via K-means to itera-
tively improve clustering. SpectralNet (Shaham et al. 2018)
learns a mapping that embeds data points into the eigenspace
of their associated graph Laplacian matrix and subsequently
clusters them. For training the network, SpectralNet incor-
porates a constrained stochastic optimization, which can
scale to large datasets. However, these methods are suscepti-
ble to random initialization of networks, resulting in extract-
ing only low-level features. These low-level features have a
direct impact on performance and may lead to errors accu-
mulated during iteration. Recently, many studies adopt two-
stage clustering strategies (Van Gansbeke et al. 2020; Dang
et al. 2021; Niu, Shan, and Wang 2022), where the first stage
(i.e., self-labeling) uses pseudo-labels generated by initial
clustering of representation learning, and the second stage
utilizes labeled data to further improve the clustering perfor-
mance. All these approaches assumes that near-neighboring
instances have the same semantics in the embedded space
discovered by representation learning. However, features in
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the embedding space are not perfect and similar instances
do not always have the same semantics, especially when
samples are located near the boundaries of different clusters.
This will degrade the clustering performance.

Method
In this section, we introduce RPSC whose framework is in
Fig. 2. We optimize an unsupervised representation learning
model and freeze the pre-trained CNN backbone to extract
features for the following two stages: RPSC-Self and RPSC-
Semi. RPSC-Self stage, which has two branches, learns pro-
jection heads in an unsupervised setting. The former branch
takes original images as input to perform the self-labeling
using the CNN backbone and projection head, and the lat-
ter branch takes the strongly transformed image as input to
predict the cluster labels and supervise it with pseudo-labels
generated by previous self-labeling process. RPSC-self uti-
lizes only the second branch to compute the loss function
to train the projection head. With results from self-labeling
process, RPSC-Semi first determines reliable pseudo-labels
based on local consistency, followed by performing semi-
supervised learning using pseudo-labels and unlabeled data,
and finally predicts the clustering labels of all the images
using the trained projection head and CNN backbone of the
frozen pre-trained model. The right most part in this frame-
work illustrates a toy example. First, three cluster centers are
determined, which are three asterisk marks. Pseudo-labels
and confidences are assigned to samples near the cluster
centers. Ellipses in different colors denote different pseudo-
labels. For the table in Fig. 2, the first row denotes the indices
of samples, the second row pseudo-labels for RPSC-self
stage, and the third row the confidences of pseudo-labels.

RPSC-Self Stage
Before RPSC-Self stage, we have pre-trained an unsuper-
vised representation learning model and frozen its back-
bone. Given the backbone parameters θB and image data
set X = {xi}Ni=1, the goal of RPSC-Self is to obtain robust
pseudo-labeling for images by learning the projection head.
Unlike previous pseudo-labeling schemes, we obtain robust
semantic pseudo-labeling based on the degree of semantic
certainty in the RPSC-Self stage. This can solve the problem
that previous methods obtain ambiguous semantic pseudo-
labeling. After generating robust semantic pseudo-labels, we
design a Soft Contrastive Loss (SCL), which supervises the
projection head with robust semantic pseudo-labels.

In RPSC-Self stage, each training process consists of self-
labeling and supervised training. Specifically, in the self-
labeling phase we utilize the trained CNN backbone to
compute features of a batch original samples, i.e., F =
ΦB (Xb; [θB ])M×D, where Xb denotes a batch original sam-
ples, θB and ΦB are parameters and mapping function of
the trained CNN backbone, M denotes the batch size in the
training phase of RPSC-Self and D denotes the embedding
space dimension. We utilize the projection head ph(·) to
compute the semantic prediction probability for instances in
each batch, i.e., Prob = Φph (F ; [θph])M×C , where θph and
Φph are parameters and mapping function of the projection

head, and C denotes the number of cluster centers. Here we
adopt the projection head of BYOL (Grill et al. 2020).

In each batch, we select top-γ confident prediction from
each cluster as pseudo-labels. A prediction prob will be se-
lected as a pseudo-label if it meets the following condition:

n = γ ×M/C,

Prob∗
k = sort({Prob[:, k] | k ∈ [1, C]})[n],

idc = {i|Prob[i, c] ≥ Prob∗
c , i ∈ [1, · · · ,M ]},

(1)

where γ is the confidence ratio which is fixed at 0.5, M/C
denotes the balanced allocation of M samples to C clus-
ters, Prob∗k is the n-th maximum confidence on cluster k ∈
[1, C], and idc denotes the index of the highest confidence
samples that are partitioned into the c-th cluster.

With the prediction results of the projection head, one
can select the top highest-confidence samples for each clus-
ter and obtain the cluster centers. We assign corresponding
semantic pseudo-labels to nearest neighboring samples for
each cluster center c, denoted by Nc, and assign semantic
confidence to samples based on their distance from the clus-
ter center, which can be formally described as

Γc =
1

|idc|
∑
i∈idc

F [i, :], (2)

dic =
E(F [i, ; ],Γc)

max(E(F [j, :],Γc)), xj ∈ Nc
, (3)

where Γc is based on the average in the embedding space
of samples indexed with high confidence in the c-th cluster
(i.e., idc). E(·, ·) denotes Euclidean distance. The denomina-
tor in Eq. (3) indicates the furthest distance from Γc among
samples assigned semantic pseudo-label c. The numerator in
Eq. (3) indicates the distance from the i-th sample to Γc. dic
reflects the confidence of the i-th sample assignment seman-
tic pseudo-label c.

In the supervised training phase, we use semantic pseudo-
labeling and semantic confidence to update parameters of
the projection head. Specifically, we first perform a strong
data augmentation transformation on images in each batch
of size N, which have semantic pseudo-label. The seman-
tic prediction confidence is then computed using the CNN
backbone and projection head. Finally, the Soft Contrastive
Loss (SCL) is computed using semantic prediction confi-
dence and semantic pseudo-label of image. The basic idea
behind this loss function is to encourage the model to make
credible predictions based on both semantic confidence and
semantic pseudo-label. For samples with high semantic con-
fidence, the model is encouraged to believe in semantic
pseudo-labels, while samples with low semantic confidence
are less driven. For each augmented sample xi with pseudo-
label predc, Soft Contrastive Loss (SCL) is defined as

Lscl(i) = − log
exp (s (zi, predc ∗ dic) /τ)∑N

k=1 I[predk ̸=predi] exp(s(zi, zk)/τ)
, (4)

where zi is the feature of xi extracted by the backbone and
projection head, s(·, ·) denotes the cosine similarity between
two vectors, predc ∈ RC denotes a one-hot vector whose
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Figure 2: The detailed framework of the proposed RPSC, which is composed of two stages: RPSC-Self and RPSC-Semi.

c-th dimension is 1, I is the indicator, and τ is the tempera-
ture parameter to control the softness. We traverses all aug-
mented V samples to compute the Soft Contrastive Loss by
minimizing the following objective:

LSCL =
1

V

V∑
i=1

Lscl(i). (5)

In contrastive learning, pairs of different augmented sam-
ples were considered as negative samples because of missing
labeled information. However, when we have pseudo-labels,
intra-class samples should not be pushed apart. Therefore,
we use semantic pseudo-labels to remove intra-class sam-
ples (i.e., the denominator in Eq. (4)). We consider that the
predicted probability of the cluster center should approxi-
mate the one-hot form of that cluster. Thus in the numera-
tor of Eq. (4), we expect the predictions to approximate the
corresponding semantic pseudo-labels. The purpose of se-
mantic confidence is to find robust semantic pseudo-labels
while preventing the model from learning wrong semantic
pseudo-labels simultaneously.

In the RPSC-Self phase, we optimize the projection head
merely. Therefore, the computational burden is significantly
reduced. We train independent multiple heads simultane-
ously to mitigate the instability of the initialized clustering,
and choose the best projection head with the minimum loss
value of LSCL over the whole data set. During testing, in-
put images are categorized into different clusters using the
trained model with the chosen best projection head.

RPSC-Semi Stage
The goal of RPSC-Semi is to filter out robust semantic
pseudo-labels as supervised information and further improve
the clustering performance using a semi-supervised learning
paradigm. Specifically, we compute cluster centers Γ for all
the images using Eq. (1) and Eq. (2), and attach the seman-
tic label of the nearest cluster in the embedded space to each
image. For each sample, we select its nearest Ne samples in
embedded space based on cosine similarity. Semantic labels
of these samples are denoted by LNe . We use local consis-
tency to filter out reliable semantic pseudo-labels as below:

li = argmax
j

(s(F [i, :],Γj)), j ∈ [1, · · · , C],

αi =
1

Ne

∑
lj∈LNe

I(lj = li).
(6)

The semantic pseudo-labeling of a sample is considered reli-
able if αi is greater than a predefined threshold τt. After ob-
taining some images with reliable semantic pseudo-labels,
we use a semi-supervised learning framework to retrain the
model, as shown in Fig. 2. The core of RPSC-Semi is Self-
Adaptive Thresholding which automatically define and ad-
justs confidence thresholds for each category by using pre-
dictions during iterations. The loss of RPSC-Semi stage is
composed of supervised loss and unsupervised loss. Super-
vised loss of data with semantic pseudo-labels is defined by:

Ls =
1

B

B∑
b=1

H(lb,Φη(ω(xb))), (7)
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where B denotes the batch size of the labeled image in
the RPSC-Semi stage, H(·, ·) cross-entropy loss, ω (·) weak
augmentation (i.e., random crop and flip), and Φη is param-
eterized by a neural network with weights η.

Unsupervised loss of data without pseudo-labels is given
by:

Lu =
1

µB

µB∑
b=1

I(max(qb) > τt(qb)) · H(q̂b,Φη(Ω(xb))), (8)

where µB is the batch size of unlabeled image in the RPSC-
Semi stage and Ω strong augmentation, qb = Φη(ω(ub))
the prediction of a weakly-transformed image, q̂b is the hard
“one-hot” label converted from qb, and τt(qb) determines a
threshold from FreeMatch (Wang et al. 2022).

The overall objective for RPSC-semi Stage is defined by:

L = Ls + Lu, (9)

where the first term encourages the model to learn the clus-
tering semantics based on results of RPSC-Self, and the sec-
ond term encourages the model to make consistency predic-
tions for samples under different data augmentations.

Experiments
In this section, we investigate effectiveness of the proposed
RPSC by conducting comparative experiments on six pub-
lic image data sets: STL-10, CIFAR-10, CIFAR-100-20,
ImageNet-10, ImageNet-Dog, and Tiny-ImageNet. Table 1
summarizes the information about the above six data sets.

Dataset Classes Training Testing Image Size
STL10 10 5000 8000 96 × 96
Cifar10 10 50000 10000 32 × 32

Cifar100-20 20 50000 10000 32 × 32
ImageNet-10 10 13000 N/A 224 × 224

ImageNet-Dog 15 19500 N/A 224 × 224
Tiny-ImageNet 200 100000 10000 200

Table 1: The Description about Six Image Data Sets.

Implementation Details and Evaluation Metrics
Frame Settings For a fair comparison, we use the same
backbone as SPICE (Niu, Shan, and Wang 2022) for RPSC-
Self. For all the data sets, our backbone is first pre-trained
using Moco-v2 (He et al. 2020). The projection head of
RPSC-Self is the same as that in BYOL (Grill et al. 2020).
Specifically, the projection head is sequentially composed
of a linear layer with batch normalization, a ReLU layer,
and a linear layer. For strong augmentation in the RPSC-Self
stage, we employ the same strategy in SCAN (Van Gansbeke
et al. 2020). The images are strongly augmented by combin-
ing Cutout (DeVries and Taylor 2017) and four randomly
selected transformations from RandAugment (Cubuk et al.
2020). In the RPSC-Semi stage, we adopt the same frame-
work and data augmentation strategy as FreeMatch (Wang
et al. 2022).

Parametric Setting We set M to 1,000 for STL-10,
CIFAR-10, and ImageNet10 that contain 10 clusters, 1,500
for ImageNet-Dog with 15 clusters, 2,000 for CIFAR-100-
20 with 20 clusters, and 5,000 for Tiny-ImageNet with 200
clusters, which we used the same settings as SPICE (Niu,
Shan, and Wang 2022). We set the number of projection
heads to 10 and set the confidence ratio γ to 0.5 based on
experience and temperature parameters τ = 0.5. Ne = 100
and τt = 0.95 will be set when selecting reliable semantic
pseudo-labels in the RPSC-Semi. Other parameters settings
in RPSC-Semi are the same as FreeMatch.

Evaluation Metrics The performance of clustering is
evaluated by normalized mutual information (NMI) (Mc-
Daid, Greene, and Hurley 2011), accuracy (ACC), and ad-
justed rand index (ARI) (Hubert and Arabie 1985). Higher
values of these metrics indicate better performances.

Comparisons with State of the Arts
We compare RPSC with competing methods which include
K-means (Hartigan and Wong 1979) , SC (Zelnik-Manor
and Perona 2004), AE (Bengio et al. 2006), DAE (Vincent
et al. 2010), DCGAN (Radford, Metz, and Chintala 2015),
DeCNN (Zeiler et al. 2010), VAE (Kingma and Welling
2013), JULE (Yang, Parikh, and Batra 2016), DEC (Xie,
Girshick, and Farhadi 2016), DAC (Chang et al. 2017), DDC
(Chang et al. 2019), IIC (Ji, Henriques, and Vedaldi 2019),
PICA (Huang, Gong, and Zhu 2020), CC (Li et al. 2021),
SCAN(Van Gansbeke et al. 2020), DeepCluE (Huang et al.
2022), SPICE (Niu, Shan, and Wang 2022) and DivClust
(Metaxas, Tzimiropoulos, and Patras 2023). Table 2 illus-
trates the comparison results on six image data sets.

Since SPICE is also a two-stage algorithm, we compare
it with our proposed RPSC in stages. In Table 2, the per-
formance of RPSC-Self outperforms these state-of-the-art
baselines on all the data sets except CIFAR-10. Especially
on ImageNet-Dogs, NMI, ACC, and ARI of RPSC exceed
the most advanced baselines by 5.4%, 9.4%, and 10.3% re-
spectively. Moreover, RPSC-Self has improved, compared
to the most advanced baselines on ImageNet-10, CIFAR-
100, Tiny-ImageNet, and STL-10. In addition, RPSC-Self
failed to surpass SCAN on CIFAR-10. The reason may
be that RPSC-Self is different from the backbone used by
SCAN on CIFAR-10, resulting in poor pre-training of fea-
tures. After semi-supervised training, RPSC-Semi increased
NMI, ACC and ARI by 1.0%, 1.4% and 2.4% on CIFAR-10,
0.4%, 1.8% and 1.7% on CIFAR-100, and 13.7%, 13.4% and
18.7% on ImageNet-Dogs. Although results of RPSC-Semi
are significantly better than existing results, there will be
problems with clustering on Tiny-ImageNet. This is because
RPSC-Self has low performance on Tiny-ImageNet, result-
ing in the inability to generate reliable semantic pseudo-
labels, which makes RPSC-Semi unable to perform semi-
supervised training. Here is one of the problems we need
to solve in the future. In a word, the above results indicate
the effectiveness and robustness of our RPSC. This benefits
from two factors: 1) RPSC considers the confidence of se-
mantic pseudo-labels and the consistency of similar samples
in the embedded space to improve precise network guidance;
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Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs Tiny-ImageNet

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005
SC 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013 0.063 0.022 0.004
AE 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073 0.131 0.041 0.007

DAE 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078 0.127 0.039 0.007
DCGAN 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078 0.135 0.041 0.007
DeCNN 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073 0.111 0.035 0.006

VAE 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079 0.113 0.036 0.006
JULE 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028 0.102 0.033 0.006
DEC 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079 0.115 0.037 0.007
DAC 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017
DDC 0.424 0.524 0.329 N/A N/A N/A 0.371 0.489 0.267 0.433 0.577 0.345 N/A N/A N/A N/A N/A N/A
IIC N/A 0.617 N/A N/A 0.257 N/A N/A 0.257 N/A N/A 0.610 N/A N/A N/A N/A N/A N/A N/A

PICA 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201 0.277 0.098 0.040
CC 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274 0.340 0.140 0.071

SCAN 0.787 0.876 0.758 0.468 0.459 0.301 0.680 0.767 0.616 0.859 0.893 0.822 N/A N/A N/A N/A N/A N/A
DeepCluE 0.727 0.764 0.646 0.472 0.457 0.288 N/A N/A N/A 0.882 0.924 0.856 0.448 0.416 0.273 0.379 0.194 0.102
DivClust 0.724 0.819 0.681 0.422 0.414 0.260 N/A N/A N/A 0.879 0.918 0.851 0.458 0.448 0.296 N/A N/A N/A

SPICE-Self 0.734 0.838 0.705 0.448 0.468 0.294 0.817 0.908 0.812 0.840 0.921 0.836 0.498 0.546 0.362 0.449 0.305 0.161
RPSC-Self 0.754 0.857 0.731 0.476 0.518 0.341 0.838 0.920 0.834 0.830 0.927 0.858 0.552 0.640 0.465 0.467 0.314 0.176

SPICE 0.865 0.926 0.852 0.567 0.538 0.387 0.872 0.938 0.870 0.902 0.959 0.912 0.504 0.554 0.343 N/A N/A N/A
RPSC 0.875 0.940 0.876 0.571 0.556 0.398 0.889 0.950 0.886 0.911 0.962 0.920 0.641 0.688 0.530 N/A N/A N/A

Table 2: Clustering performance on six datasets. The best results are shown in boldface.

(a) 0 epoch (NMI = 0.212) (b) 25 epoch (NMI = 0.522) (c) 50 epoch (NMI = 0.689) (d) 100 epoch (NMI = 0.744)

Figure 3: The visualization of semantic features learnt by the proposed RPSC concerning epoches using t-SNE on data set
CIFAR-10, where different colors indicate different cluster assignments.

and 2) RPSC adopts an adaptive threshold strategy to further
improve network performance in the RPSC-Semi stage.

To illustrate the convergence, we provided the visualiza-
tion of semantic features using t-SNE when the RPSC con-
ducted network optimization on CIFAR-10 at four different
epochs. The results are in Fig.3, where different colors indi-
cate that projection head predicts different labels. It indicates
that at the beginning, the cluster assignment is chaotic since
the projection heads are randomly initialized. As the number
of epochs increases, the allocation of clusters becomes more
reasonable and the aggregation is more obvious.

Ablation Studies

We performed ablation studies to investigate contributions
of data augmentation and contributions of terms in SCL.

1-Aug 2-Aug NMI ACC ARI

No No 0.752 ± 0.003 0.853 ± 0.002 0.726 ± 0.003
Yes No 0.731 ± 0.021 0.839 ± 0.017 0.702 ± 0.041
Yes Yes 0.748 ± 0.005 0.851 ± 0.006 0.721 ± 0.009
No Yes 0.754 ± 0.003 0.857 ± 0.003 0.731 ± 0.004

Table 3: Effect of data augmentation.

Effect of data augmentation To verify the significance of
data augmentation, we analyze the effect of different data
enhancement strategies on RPSC-Self. In Table 3, 1-Aug
and 2-Aug denote whether there is data augmentation in the
first and second branches in Fig. 2(a). From this table, we
observe that the model achieves the best performance when
the first branch disabled data augmentation while the sec-
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ond branch enabled data augmentation. Furthermore, when
the first branch enabled data augmentation, the performance
of the model is relatively poor because the goal of the first
branch is to generate reliable semantic pseudo-labels and
data augmentation will produce negative effects on the gen-
eration of pseudo-labels. When neither branch enabled data
augmentation, the model performs poorly, which indicates
that performance of RPSC is related to data augmentation.

Effect of Terms in Soft Contrastive Loss To prove the
effectiveness of each module of SCL, we run RPSC-Self
with four variants of SCL on CIFAR-10. Specifically, the
four SCL variants are: only use the molecular of SCL and
do not consider confidence of pseudo-label dic (SCL-1), use
only the molecular of SCL (SCL-2), use SCL without con-
sidering pseudo-label confidence (SCL-3), complete SCL.
As shown in Table 4, the validity of the denominator of SCL
is verified by comparing the performance of SCL over SCL-
2, i.e., the denominator takes into account the exclusion of
different pseudo-labels from the prediction. By comparing
SCL-1 and SCL-2 or SCL-3 and SCL, it can be found that
SCL-2 performs better than SCL-1, and SCL performs bet-
ter than SCL-3, which verifies the validity of SCL in the
numerator.

Loss NMI ACC ARI

SCL-1 0.711 0.832 0.683
SCL-2 0.732 0.842 0.706
SCL-3 0.734 0.844 0.702
SCL 0.754 0.857 0.731

Table 4: Effect of SCL and its variants on CIFAR-10.

Method NMI ACC ARI

SCAN-CE 0.468 0.459 0.301
SCAN-SCL 0.457 0.472 0.313
SPICE-CE 0.422 0.468 0.294

SPICE-SCL 0.464 0.501 0.334
RPSC-CE 0.445 0.486 0.308

RPSC-SCL 0.476 0.518 0.341

Table 5: RPSC, SPICE and SCAN with CE and SCL on
CIFAR-100.

The Integration of Soft Contrastive Loss
Previous two-stage deep clustering methods perform a self-
labeling phase in the first stage, and use pseudo labels and
cross-entropy loss (CE) in the second stage. Unlike them,
we design a soft contrastive loss (SCL) for utilizing pseudo-
label. SCL can be easily integrated into previous two-stage
deep clustering methods for delivering performance im-
provement. The reason behind the improvement owes to
that when approaching a pseudo-label using SCL, the confi-
dence of pseudo-label is considered, and the prediction of re-
pelling different pseudo-labels is also considered. In Table 5,

we compare SCAN, SPICE-Self and RPSC-Self when they
adopt CE and SCL on CIFAR-100 respectively. The results
show that all three methods using SCL achieve better per-
formance than corresponding methods using CE on CIFAR-
100. To intuitively compare CE and SCL, we report the clus-
tering performances of SCAN on CIFAR-10 and STL-10 us-
ing CE and SCL in Fig. 4 respectively. From this figure, we
observe that the clustering performance improves as the in-
crease of epochs. When the training tends to converge, the
performance of SCAN with SCL is better than that with CE
on CIFAR-10 and STL-10. This verifies the effectiveness of
SCL.

(a) SCAN: STL-10

(b) SCAN: CIFAR-10

Figure 4: Comparison of SCAN using cross-entropy loss and
SCL on STL-10 (a) and CIFAR-10 (b) in terms of ACC.

Conclusion
In this paper, we propose a novel semantic clustering ap-
proach, referred to as robust Pseudo-labeling for Semantic
Clustering (RPSC). RPSC considers the confidence of se-
mantic pseudo-labels and the consistency of similar samples
in the embedding space jointly. In the first stage (RPSC-
self), self-supervised learning aims to mine robust seman-
tic pseudo-labels with the help of our designed soft con-
trastive loss. These robust semantic pseudo-labels are high-
confidence and used as supervised information for a semi-
supervised learning paradigm to further improve cluster-
ing performance in the second stage (RPSC-Semi). Exten-
sive experiments demonstrate that RPSC consistently out-
performs state-of-the-art baseline methods on six public im-
age data sets. In the future, we shall extend it to other appli-
cations such as multi-view clustering and transfer learning.
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