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Abstract

Stock movement prediction serves an important role in quan-
titative trading. Despite advances in existing models that en-
hance stock movement prediction by incorporating stock rela-
tions, these prediction models face two limitations, i.e., con-
structing either insufficient or static stock relations, which fail
to effectively capture the complex dynamic stock relations
because such complex dynamic stock relations are influenced
by various factors in the ever-changing financial market. To
tackle the above limitations, we propose a novel stock move-
ment prediction model ECHO-GL based on stock relations
derived from earnings calls. ECHO-GL not only constructs
comprehensive stock relations by exploiting the rich semantic
information in the earnings calls but also captures the move-
ment signals between related stocks based on multimodal
and heterogeneous graph learning. Moreover, ECHO-GL cus-
tomizes learnable stock stochastic processes based on the post
earnings announcement drift (PEAD) phenomenon to gen-
erate the temporal stock price trajectory, which can be eas-
ily plugged into any investment strategy with different time
horizons to meet investment demands. Extensive experiments
on two financial datasets demonstrate the effectiveness of
ECHO-GL on stock price movement prediction tasks together
with high prediction accuracy and trading profitability.

Introduction
Stock movement prediction serves an important role in
quantitative trading, which aims to predict the future trends
of a stock in order to assist investors in making good invest-
ment decisions. Traditional solutions for stock movement
prediction are based on deep time-series models, which treat
stock movements as independent of each other, ignoring the
valuable rich signals between related stocks’ movements.

Recently, a burgeoning research trend has emerged, fo-
cusing on enhancing stock movement prediction by model-
ing stock relations, which can be divided into two categories,
i.e., price-based methods (Li et al. 2021; Zhu et al. 2022) and
side information-based methods (Feng et al. 2018; Sawhney
et al. 2021). However, both categories of methods have their
limitations as follows. On the one hand, price-based meth-
ods predict stock movement based on the estimated empiri-
cal stock correlation matrix (Li et al. 2021) or modeling pre-
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Figure 1: An example of earnings calls-driven stock rela-
tions’ effect on stock movements.

dicted stock correlation (Zhu et al. 2022). However, relying
solely on stock prices is sub-optimal for the real-world finan-
cial market because dynamic stock relations are influenced
by multiple factors, e.g., macroeconomic, industry relations,
company management, and investor perception. On the other
hand, there are side information-based methods incorporat-
ing wiki or industry relations (Feng et al. 2018; Sawhney
et al. 2021) to capture stock relations. However, these meth-
ods represent stock relations as static graphs, thus struggling
to adapt to ever-changing markets. Based on the above anal-
ysis, effective modeling of stock relations necessitates be-
ing driven by dynamic information that encompasses multi-
ple influencing factors. Fortunately, taking inspiration from
previous studies (Qin and Yang 2019; Medya et al. 2022)
that leverage earnings calls’ rich semantic information to en-
hance financial forecasting, we explore the potential of uti-
lizing earnings calls to model stock relations.

Motivation Example: Taking two earnings calls in July
2017 from Amazon and Microsoft as an example, we first
plot the stock price movements of Amazon and Microsoft
after Amazon’s earnings call on 27th July, along with the
two earnings calls’ main content in Figure 1. Then we de-
pict a graph between the two stocks derived from their earn-
ings calls. From Figure 1, we draw three observations below.
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First, subsequent to the announcement of Amazon’s earn-
ings call, the effect of this earnings call on Amazon’s stock
trend lasted for several weeks, resulting in a fluctuating stock
decline. This observation is consistent with the widely doc-
umented Post Earnings Announcement Drift (PEAD) phe-
nomenon (Qin and Yang 2019) in the literature. Second, the
two earnings calls shared abundant overlapping topics and
entities that indicate stock features, e.g., industry and busi-
ness, demonstrating that rich semantics within earnings calls
have the potential to reflect intricate stock relations. Third,
stock prices of Amazon and Microsoft experienced similar
downward trends, underscoring the capacity of stock rela-
tions to enhance prediction models by capturing valuable
rich movement signals between related stocks.

In this paper, inspired by the aforementioned phenomenon
on stock relations derived from earnings calls, we propose
an Earnings Calls-driven HeterOgeneous Graph Learning
model ECHO-GL to model complex stock relations in an
earnings calls-driven heterogeneous dynamic graph (termed
as E-Graph) to enhance stock movement prediction. Our
model processes follow three steps: (1) construct an E-Graph
based on earnings calls to uncover the underlying stock rela-
tions; (2) leverage a heterogeneous graph learning module to
learn the stock representations that aggregate useful move-
ment signals on E-Graph; (3) build a time-varying stochas-
tic process to model earnings call’s PEAD effect on multiple
time horizons for stock movement prediction.

Nevertheless, three challenges corresponding to the three
steps above make it non-trivial to implement ECHO-GL.

Challenge I: How to construct E-Graph? Due to the non-
stationary nature of markets, outdated data fails to capture
the most current market dynamics. To tackle Challenge I, we
design two novel mechanisms: the time assignment mecha-
nism and the sliding window mechanism. Specifically, we
apply the time assignment mechanism to assign time at-
tributes to all nodes and edges, intending to preserve the
dynamic nature of the heterogeneous graph. We design a
sliding window mechanism to filter the most recent relevant
information in the E-Graph to participate in stock relation
modeling.

Challenge II: How to capture the stocks’ spatial depen-
dencies in E-Graph? The E-Graph encompasses diverse het-
erogeneous information, i.e., earnings calls, topics, and en-
tities, which form complex relations and collectively reflect
the spatial dependencies among stocks. To tackle Challenge
II, we propose a novel stock spatial relational module in
ECHO-GL, which preserves distinct feature spaces for each
node type and edge type in the E-Graph and conducts cross-
type features aggregation based on the attention mechanism.
Moreover, considering multimodal information in earnings
calls, during the aggregation, we introduce audio features to
adjust the influence of each text sentence on the stock.

Challenge III: How to model the stocks’ temporal depen-
dencies? According to the PEAD phenomenon, the stock
movement is not entirely stochastic in the near future after
an earnings call announcement. To address Challenge III,
we devise a learnable stochastic process in the post earn-
ings call stock dynamics module for stock representations
learned from the E-Graph. The post earnings call stock dy-

namics module can capture stock price changes in the effect
of earnings calls over any near-future horizon, facilitating
stock movement prediction on multiple time horizons.

Our main contributions are as follows: (1) this is the first
work in the literature to model stock relations derived from
earnings calls, which deeply captures dynamic stock rela-
tions based on earnings calls’ rich semantic information; (2)
we propose an ECHO-GL model with multimodal heteroge-
neous graph (E-Graph) construction and two specific mod-
ules, i.e., stock spatial relational module and post earnings
call stock dynamics module, to capture the stocks’ spatial-
temporal relations influenced by earnings calls and model
the latent PEAD effect on stock movements as a stochas-
tic process, facilitating stock movement prediction in mul-
tiple time horizons; (3) we conduct extensive experiments
on two real-world datasets, which verify the effectiveness
of ECHO-GL on stock price movement prediction tasks to-
gether with high accuracy and trading profitability.

Related Work
Graph Learning in Stock Prediction
Graph learning has emerged as a crucial area in financial
prediction tasks, which involves incorporating stock rela-
tions into the learning procedure to achieve improved per-
formance. Stock relation graphs have previously been cre-
ated based on historical prices from a risk perspective (Fan,
Han, and Liu 2014; Ke, Lian, and Zhang 2020). Recently, an
increasing number of studies have focused on graph learning
based on integrating rich additional information, such as in-
dustry relations (Feng et al. 2018; Sawhney et al. 2021)and
media reviews (Wang et al. 2022). These studies aim to learn
more comprehensive representations to enhance stock pre-
diction. There is a study (Medya et al. 2022) closely related
to our approach that constructs graphs based on earnings
calls. However, it only builds graphs for individual earnings
call transcripts and does not consider the interconnections
between different earnings calls and stock relations.

Earnings Calls in Stock Prediction
In light of the financial environment’s rapid evolution,
market-assisted information, such as news, analyst reports,
social media, and financial conference calls, offers perva-
sive and fast-evolving unstructured financial data. Recently,
a more promising approach has shown better results by ex-
ploiting semantic information (Keith and Stent 2019) from
earnings calls during financial decision-making. Following
this, a substantial group of methods focuses on fusing multi-
modal text-audio information in earnings calls for financial
multitask prediction (Qin and Yang 2019; Yang et al. 2020,
2022; Sawhney et al. 2020b). Moreover, Medya et al. (Me-
dya et al. 2022) proposed the STOCKGNN method based
on Gated GNN (Li et al. 2015) to capture semantic features
from earnings calls. However, the relations between stocks
based on earnings calls have not been studied yet.

Problem Setting
We consider earnings call-based financial forecasting, which
refers to predicting stock movements over multiple time
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horizons after the earnings call announcement. We consider
a market with N stocks. Let ps,t denote a closing price of
stock s on day t, and ps,∆t denote the price series of stock s
during ∆t period, where ∆t is from day t− τ + 1 to day t,
and τ is the window size. For each stock s, there are K earn-
ings calls that have been announced. Let Cs = {c1s, ..., cKs }
denote the set of all earnings calls corresponding to stock s,
and C =

⋃N
s=1 Cs denotes earnings calls of all stocks. Fol-

lowing (Qin and Yang 2019; Li et al. 2020a), each c ∈ C has
been segmented into a set of audio clips Ac = {a1c , ..., aMc }
for i ∈ [1,M ], and M is the sentence number. The corre-
sponding document-level transcript of earning call c is de-
noted as Dc = {d1c , ..., dMc } and dic is the i-th text sentence.

The input and output for the prediction task are defined as
follows:

Input: Window size τ , earnings calls in the ∆t historical
period (C,Ac∈C ,Dc∈C), all stocks’ historical closing prices
p∆t, multiple time horizons W for stock movement predic-
tion tasks, e.g., W = {1, 3, 7, 15, 30}, and target stock s.

Output: Stock movement prediction results
{y1, ..., y|W|} under all prediction time horizons W .
Note that the ground truth ys,t+w is calculated as follows:

ys,t+w =

{
1, ps,t+w > ps,t
0, ps,t+w ≤ ps,t

, (1)

where w is the prediction time horizon, ps,t is the closing
price of target stock s on day t, and ps,t+w is the closing
price of target stock s on day t+ w.

Method
The architecture of ECHO-GL is presented in Figure 2. In
the following subsections, we first elaborate on how to con-
struct a heterogeneous graph derived from earnings calls
(E-Graph), which fully exploits semantic relations between
stocks in earnings calls (for addressing Challenge I). We
then present two key modules of ECHO-GL, i.e., the stock
spatial relational module and the post earnings call stock dy-
namics module, to capture the spatial and temporal depen-
dencies in E-Graph (for addressing Challenges II and III).
Finally, we elaborate on how to predict stock movement and
train ECHO-GL.

Heterogeneous Stock Graph Structure
Construction
Firstly, we denote the E-Graph with a four-tuple G =
(V, E ,RV ,RE), where V is a node set, E is an edge set, RV
is the set of node types, and RE is the set of edge types.

Then, we elaborate on the construction of each element.
Node set V: The node set V contains four types of nodes

marked with time attribute: stock price node (P) nP , earn-
ings call text sentence node (S) nS , topic node (O) nO, and
entity node (E) nE . We adopt LSTM (Sak, Senior, and Beau-
fays 2014) to encode stocks’ historical price sequence to ob-
tain stock price nodes. Following Hu et al. (Hu et al. 2019),
we utilize LDA (Blei, Ng, and Jordan 2003) and TAGME1 to
extract topics and entities from each text sentence. Then, we

1https://sobigdata.d4science.org/group/tagme/

Algorithm 1: E-Graph construction algorithm
Input: Existing E-Graph G = (V, E ,RV ,RE),

incoming earnings call (cs,Acs ,Dcs) on day
t, stock s, graph window size τ .

1 Add stock price node of s: V = V ∪ nP

2 nP .time = t

3 for text sentence dic ∈ Dc do
4 Add node: V = V ∪ nSi

5 Add edge: E = E ∪ (nSi , nP , 0)

6 nSi .time = t

7 for nO / nE related to nSi do
8 if nO / nE not in V then
9 Add node: V = V ∪ nO / nE

10 if nO / nE is entity node then
11 for possible entity node pairs

{nE , nE′} do
12 if COS(nE , nE

′
) > δc then

13 Add edge:
E = E ∪ (nE , nE

′
, 0)

14 Add edge: E = E ∪ (nSi , nO/nE , 0)

15 nO/nE .time = nSi .time

16 for n ∈ V and n.time ≤ t− τ do
17 Remove all edges related to node n. Remove

node n.
18 Update all edges’ time

∆T (ni, vi) = |ni.time − vi.time|.

generate initial representations of S, O, and E nodes by Fin-
BERT (Araci 2019), which incorporates financial special-
ized linguistic features into earnings call modeling.

Edge set E: Edge set in E-Graph can be represented
as a sequence of relations that come in over time,
i.e., E = {(n1, v1,∆T (n1, v1)), (n2, v2,∆T (n2, v2)), ...},
where (ni, vi,∆T (ni, vi)) corresponds to a relation be-
tween the node pair (ni, vi), and ∆T (ni, vi) is the time at-
tribute of the edge. There are four types of edges in E , i.e.,
P-S, S-O, S-E, and E-E, where (1) P-S refers to an edge be-
tween a stock price node and a text sentence node from the
corresponding stock’s earnings calls; (2) S-O refers to an
edge between a text sentence node and a topic node with the
relevance probability above a threshold δr; (3) S-E refers to
an edge between a text sentence node and an entity node
which is formed when the text sentence includes the respec-
tive entity; (4) E-E refers to an edge between two entities if
their cosine similarity is above a threshold δc.

Node Type RV : Each node v ∈ V is associated with the
node type mapping function π(v) : V → RV .

Edge Type RE : Each edge e ∈ E is associated with the
relation type mapping function ϕ(e) : E → RE .

Given the set of earnings calls C from N stocks in the ∆t
period, we aim to construct an E-Graph G that encompasses
all the earnings calls’ text sentences that occur within this
period. In order to model the dynamic nature of the heteroge-
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Figure 2: Network architecture of our model ECHO-GL.

neous graph, we design two mechanisms that assign a time
attribute to all nodes and edges and maintain all edges and
nodes within a specific window as a whole. The procedure
is presented in Algorithm 1. Next, we present the details of
the two crucial mechanisms.

Time assignment mechanism: Time plays an important
role in the dynamic E-Graph; however, there are some nodes
and edges that do not have time attributes. Therefore, we
design a time assignment mechanism that can assign the an-
nouncement time of the most recent earnings call to all its as-
sociated heterogeneous nodes and edges. As shown in Lines
2, 6, 15, and 18 of Algorithm 1, when a new earnings call
cs of a stock s is announced, we add its corresponding stock
price node and all its text sentence nodes into the E-Graph
and assign the announcement time of cs to these nodes as
their time attributes. For the topics and entities associated
with cs’ text nodes, we add new O and E nodes that are not
present in the current E-Graph. Following that, we update
the time attributes of all the nodes typed O and E related to
cs’ text sentence nodes to match the announcement time of
earnings call cs. Next, we add the edges between these P, S,
O, and E nodes to E-Graph and update the time attributes of
all edges.

Sliding window mechanism: In order to accommodate
the ever-changing market, we design a sliding window
mechanism (refer to Lines 16-17 in Algorithm 1) to filter
the most recent stock relations. Note that we set the window
size as the announcement time gap of two consecutive earn-
ings calls for the target stock. Whenever an outdated earn-
ings call slides outside the window, all its P and S nodes with
their connected edges are eliminated from the E-Graph.

Stock Spatial Relational Module
Within the E-Graph, various types of nodes with heteroge-
neous information coexist. Considering the heterogeneity in
the graph and preserving specific domain knowledge of each
node type, we design a heterogeneous graph attention-based
neural network (HGAN) for learning the enhanced stock
representations that incorporate various types of relational
information from the E-Graph. The stock spatial relational
module is formed by stacking L layers of HGAN, with our

target node type being the stock price (P). HGAN follows
a message-passing architecture, which includes two compo-
nents, i.e., message passing and aggregation.

Heterogeneous Edge-type-wise Message Passing. Given
a target node n and all its neighbor nodes v ∈ N (n)
within the E-Graph, to ensure effective message propaga-
tion to n across different neighbor types without being re-
stricted by their feature distribution gaps, we devise an edge-
type-wise message passing strategy. Specifically, for an edge
e = (n, v) on the l-th layer, we calculate the multi-head mes-
sage from node v to node n as follows:

Message(n, e, v) = ∥
i∈[1,h]

MSG-headi(n, e, v)

MSG-headi(n, e, v) = M-Lineariπ(v)

(
h(l−1)
v + tv

)
WMSG
ϕ(e) ,

(2)

where h
(l−1)
v ∈ Rd is the representation of node v on

the (l − 1)-th layer, tv ∈ Rd is the time embedding of
v, M-Lineariπ(v) represents the linear projection specific to
node type π(v), and WMSG

ϕ(e) ∈ R d
h× d

h is a learnable edge
type-specific matrix to capture the edge dependency.

Since two earnings calls’ announcements have a time gap,
we embed the time embedding tv in Eq.(2) based on a rela-
tive time gap between the node pair (n, v), that is, the edge
e’s time attribute assigned by the time assignment mecha-
nism. We encode the time embedding tv based on random
Fourier features (Wang et al. 2020) as follows:

tv = [ sin(ω1∆T (n, v)), cos(ω1∆T (n, v)),

· · · , sin(ωd/2∆T (n, v)), cos(ωd/2∆T (n, v))],
(3)

where ∆T (n, v) is the time attribute of edge e = (n, v), ωi
are learnable parameters, and d is the dimension of tv .

Audio-guided Attention Aggregation. We devise a het-
erogeneous node-level attention mechanism for aggregating
messages on the E-Graph.

For node n, we map it into a Query vector and its neigh-
bor node v into a Key vector and propagate h-head cross-
attention for each relation e = (n, v). To address the hetero-
geneity of nodes, for the i-th attention head, each node type
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has a unique linear projection:

Ki
v = K-Lineariπ(v)

(
h(l−1)
v + tv

)
Qi
n = Q-Lineariπ(n)

(
h(l−1)
n

)
,

(4)

where tv is the time embedding of v on edge e, K-Lineariπ(v)
and Q-Lineariπ(n) are node-type-wise linear projections to
generate the Key vector Ki

v and Query vector Qi
n, respec-

tively. By such type-wise projection operations, the node-
level attention enables to handle of multiple types of nodes.
Then the i-th attention head for e = (n, v) is obtained:

ATT-headi (n, e, v) =
(
Ki
vW

ATT
ϕ(e)Q

i
n
⊤
)
·
µ(π(n),ϕ(e),π(v))√

d
. (5)

Here, WATT
ϕ(e) ∈ R d

h× d
h is a learnable edge-based matrix for

each edge type ϕ(e), and µ ∈ R|RV |×|RE |×|RV | represents a
prior tensor signifying the general importance of individual
relation e = (n, v).

To incorporate the multimodal information of earnings
calls, we further devise an audio-guided attention mecha-
nism specific to aggregate the messages on P-S type edges
to the target type node, i.e., the stock price node. Accord-
ing to E-Graph construction, the P-S type edges of a stock
price node n are between n and all text sentence nodes v
from one corresponding earnings call. In order to capture
the audio clues of each earnings call, we leverage the audio
feature of each text sentence to re-weight each text sentence
node’s attention. The i-th attention head of eP−S(nP , vS) is
derived as follows:

Ki
vS = K-Lineariπ(vS)

(
WATT
S h

(l−1)

vS
+WATT

A avS
)
,

Qi
vS = Q-Lineariπ(vS)

(
WATT
S h

(l−1)

vS
+WATT

A avS
)
,

ATT-headi
(
nP , eP−S , vS

)
=

(
Ki
vSW

ATT
ϕ(eP−S)Q

i
vS

⊤
) µ(π(nP ),ϕ(eP−S),π(vS))√

d
,

(6)

where avS is the audio feature of node vS , WATT
S and WATT

A
are two learnable matrices.

After the corresponding node type i-th attention head cal-
culation, we concatenate h attention heads together to get
the final attention vector for each node pair e = (n, v):

Attention(n, e, v) = Softmax
∀v∈N (n)

(
∥

i∈[1,h]

ATT-headi (n, e, v)

)
. (7)

Then we aggregate information to target node n from all
its neighbors:

zln = ⊕∀v∈N (n) (Attention(n, e, v) · Message(n, e, v)) . (8)

Finally, we map target node n’s aggregation representa-
tion back to its type-specific distribution through a linear
projection layer, followed by applying a residual connection
(He et al. 2016):

hln = A-Linearπ(n)

(
σ
(

zln
))

+ h(l−1)
n . (9)

Post Earnings Call Stock Dynamics Module
In the post earnings call stock dynamics module, ECHO-GL
propagates the dynamics from the initial stock representa-
tion hs,t on the earnings call’s announcement time t to ex-
trapolate the entire stock representation trajectory hs,t:t+w
within any length of prediction time horizon w.

For the target stock s, we take its stock price node repre-
sentation hLs obtained from the stock spatial relational mod-
ule as the initial stock representation hs,t = hLs on the earn-
ings call announcement time t.

To model the latent PEAD effect on movements, we de-
vise a stochastic process, which extends the Neural ODEs to
incorporate intrinsic stochasticity in the stock dynamics. We
specify the transformation of stock representations at time τ
by a stochastic differential equation (SDE) (Li et al. 2020b):

dhs,τ = fψ(τ,hs,τ ) · dτ︸ ︷︷ ︸
drift

+σϕ(τ,hs,τ ) · dWτ︸ ︷︷ ︸
diffusion

, (10)

where Wt is the Wiener process, and the two learnable func-
tions fψ and σϕ are dynamics drift and diffusion functions,
respectively. We parameterize dynamics drift and diffusion
functions by two multi-layer perceptrons (MLP).

Starting hs,t, the extrapolated stock representation at any
specific time t + w after the earnings call announcement is
given by integrating an SDE forward by time, as follows:

hs,t+w = hs,t +

∫ t+w

τ=t

dhs,τ
dτ

dτ. (11)

Prediction and Optimization
For stock movement prediction over multiple time horizons,
the stock representation ht+w on each time horizon w is fed
into a linear layer to generate the predicted movement label.

We optimize ECHO-GL using a Cross-Entropy loss as:

L =
∑
s∈YL

∑
w∈W

−[(1− ys,t+w) log (1− ŷs,t+w) + ys,t+w log (ŷs,t+w)], (12)

where YL is the set of stock price node indices that have
labels, ys,t+w is the movement ground-truth default label of
target stock s on the prediction day, ŷs,t+w is the predicted
movement label.

Experiments
In this section, we present extensive experiments to answer
the following questions: Q1: How does ECHO-GL perform
on predicting stock movements? Q2: How do the key com-
ponents contribute to the performance of ECHO-GL? Q3:
How about the real-world trading profitability of ECHO-GL?

Experimental Settings
Dataset Descriptions. We conduct extensive experiments
on two real-world datasets, i.e., Qin’s (Qin and Yang 2019)
and MAEC (Li et al. 2020a) datasets, which contain both the
text transcripts and audio records of earnings calls from S&P
500 and S&P 1500 companies in U.S. stock exchanges, re-
spectively. We collect dividend-adjusted closing prices from
Yahoo Finance2. Following previous studies (Qin and Yang
2019; Yang et al. 2020), we split the datasets into mutu-
ally exclusive training/validation/testing sets in the ratio of
7:1:2 in chronological order. The statistics of datasets are
presented in Table 1. We provide the original dataset with
constructed E-Graphs, code of ECHO-GL, and implementa-
tion details in our GitHub repository3.

2https://finance.yahoo.com
3https://github.com/pupu0302/ECHOGL
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Dataset Qin’s MAEC

Earnings call features

Start Date 2017-01-17 2015-02-25
End Date 2017-12-20 2018-06-21
Number of companies 253 963
Number of earnings calls 400 2,725
Average sentences per earn- 157 115
ings call
Total number of tokens 1,593,360 7,601,758
Average tokens per sentence 25 24
Audio features dimensions 29 29

Graph features

Number of entity nodes 1615 4504
Number of topic nodes 100 100
Number of sentence nodes 62,894 314,660
Number of edges 174, 095 1,412,356

Table 1: Dataset descriptions.

Comparison Methods. We compare ECHO-GL with six-
teen baselines in three categories as follows:

(1) Price-based methods: ARIMA (Hamilton 1994) is a
traditional statistics-oriented time series modeling approach.
LSTM and BiLSTM (Yang and Wang 2022) are RNN-
based methods for price series modeling. Transformer, In-
former, Autoformer, and Convtrans are four transformer-
based time series models for stock movement prediction.

(2) Graph-based methods: RSR (Feng et al. 2018) is a
graph learning method based on stock industry relations.
VolTAGE (Sawhney et al. 2020a) pass and aggregate earn-
ings call information based on wiki-industry relations for
stock prediction. STHAN-SR (Sawhney et al. 2021) is
a state-of-the-art method learning on wiki-industry hyper-
graph for stock movement prediction. HISN (Wang et al.
2022) is a state-of-the-art method that builds stock-media
interactive heterogeneous snapshots for stock prediction.

(3) Earnings calls-based methods: The following base-
lines leverage earnings calls for prediction. MDRM (Qin
and Yang 2019) is the first work to study the impact of
CEOs’ vocal clues on stock predictions. HTML (Yang et al.
2020) and NumHTML (Yang et al. 2022) are two state-
of-the-art transformer-based methods for financial multitask
predictions. Ensemble (Sawhney et al. 2020b) is a state-of-
the-art method that leverages text-audio attentive alignment
for stock prediction. STOCKGNN (Medya et al. 2022) is a
state-of-the-art GNN-based method exploiting semantic fea-
tures of earnings calls for stock movement prediction.

Evaluation Metrics. Following previous studies (Yang
et al. 2022; Sawhney et al. 2020b), we use the F1 score and
Mathew’s Correlation Coefficient (MCC) for stock move-
ment prediction. Note that all metrics are measured for each
prediction time horizon w ∈ {1, 3, 7, 15, 30}.

Comparison with Baselines (for Q1)
To answer Q1, we compare the performance of ECHO-GL
and all baselines on stock movement prediction tasks for

(b) Results of model variants(Qin’s)(a) Results with graph variants(Qin’s)

(d) Results of model variants(MAEC)(c) Results with graph variants(MAEC)

Figure 3: Ablation results for graph and model variants.

1, 3, 7, 15, and 30-day time horizons (see Table 2). Over-
all, ECHO-GL consistently achieves the best performance
across diverse time horizon prediction tasks on the two
datasets, with average improvements of 2.297% on F1 score
and 15.629% on MCC over the best-performing baselines.
Compared with baselines in three categories respectively,
we draw the following three conclusions. Firstly, ECHO-GL
outperforms price-based methods relying solely on histor-
ical prices, indicating that side information provides rich
movement signals to enhance stock predictions. Secondly,
compared with graph-based baselines, by exploiting rich in-
formation in earnings calls, ECHO-GL is capable of cap-
turing more comprehensive spatial-temporal stock relations,
resulting in better performance. Thirdly, ECHO-GL out-
performs all earnings call-based baselines, which demon-
strates its capability of not only modeling rich semantics
within earnings calls but also effectively capturing mean-
ingful movement signals between related stocks based on
stock relations derived from earnings calls. Moreover, due
to the existence of the PEAD phenomenon, traditional earn-
ings call approaches suffer from an inability to effectively
depict the time-evolving stock features affected by earnings
calls, resulting in their poor performances.

Ablation Studies (for Q2)
To answer Q2, we conduct the following ablation experi-
ments to analyze the contributions of earnings call-based
heterogeneous graph and two key components of ECHO-GL.

Effect of Different Stock Relation Graphs. We eval-
uate the effectiveness of different graph construction ap-
proaches in modeling stock relations. As shown in Figure
3 (a) and (c), we consider ECHO-GL with E-Graph and
four graph variants, i.e., the price graph, wiki graph, E-
Graph-w/o-E, and E-Graph-w/o-O. Specifically, the price
graph is constructed based on the stock price covariance ma-
trix. The wiki graph is constructed by incorporating both
sector-industry and wiki relations. The E-Graph-w/o-E and
E-Graph-w/o-O are variants of E-Graph without entity and
topic nodes, respectively.

From Figure 3 (a) and (c), we can draw the following two
conclusions. On the one hand, the model employing earn-
ings call-based heterogeneous graphs achieves significant
improvements over price and wiki graphs, which indicates
the superiority of dynamic stock relations derived from earn-
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Stock Movement Prediction (Qin’s)
(%) F11 F13 F17 F115 F130 MCC1 MCC3 MCC7 MCC15 MCC30

Price-based Methods
ARIMA 60.2 ± 0.0 55.7 ± 0.6 49.9 ± 1.0 49.6 ± 3.0 59.5 ± 7.9 0.0 ± 0.0 5.1 ± 7.0 0.2 ± 1.1 -10.7 ± 9.2 -5.5 ± 6.4
LSTM 60.2 ± 0.0 55.3 ± 0.0 49.3 ± 0.6 55.3 ± 0.0 64.9 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

BiLSTM 60.2 ± 0.0 55.4 ± 0.3 49.8 ± 0.9 55.5 ± 0.8 64.9 ± 0.0 0.0 ± 0.0 1.7 ± 5.2 0.0 ± 0.0 1.3 ± 4.1 0.0 ± 0.0
Transformer 60.4 ± 0.6 58.2 ± 1.7 54.2 ± 1.8 57.0 ± 1.6 65.3 ± 0.5 1.3 ± 4.1 14.1 ± 5.3 10.2 ± 3.9 9.8 ± 5.4 5.1 ± 6.6

Informer 60.7 ± 1.1 56.2 ± 4.8 54.2 ± 2.6 56.5 ± 3.4 65.0 ± 0.3 4.0 ± 6.9 9.0 ± 8.2 8.2 ± 6.2 8.5 ± 8.4 1.3 ± 4.0
Autoformer 61.1 ± 0.9 56.3 ± 1.6 55.8 ± 3.0 56.3 ± 1.8 65.0 ± 0.3 7.5 ± 6.7 8.5 ± 6.9 12.2 ± 5.6 10.3 ± 5.2 1.1 ± 3.4
Convtrans 60.2 ± 0.0 55.3 ± 0.0 52.0 ± 1.7 56.3 ± 1.4 64.9 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 4.3 5.0 ± 6.4 0.0 ± 0.0

Graph-based Methods
RSR 59.3 ± 2.2 58.3 ± 2.9 56.4 ± 2.5 55.6 ± 4.7 54.6 ± 2.4 12.5 ± 4.6 15.1 ± 5.9 13.8 ± 5.5 15.6 ± 9.3 13.0 ± 5.6

VolTAGE 57.6 ± 2.9 57.8 ± 3.1 56.9 ± 1.6 57.0 ± 1.7 61.7 ± 6.0 10.1 ± 8.4 14.2 ± 7.5 14.6 ± 3.7 11.2 ± 1.5 8.2 ± 12.7
STHAN-SR 62.8 ± 0.2 57.3 ± 1.5 52.2 ± 1.7 51.2 ± 2.9 44.9 ± 7.6 15.6 ± 9.0 11.6 ± 6.5 13.7 ± 7.8 17.7 ± 9.2 2.5 ± 8.2

HISN 62.0 ± 2.4 56.5 ± 1.2 58.8 ± 1.4 60.0 ± 3.1 61.7 ± 1.8 15.1 ± 5.5 8.1 ± 7.9 13.8 ± 3.5 12.5 ± 2.0 3.9 ± 0.8

Earnings Calls-based Methods
MDRM 60.4 ± 0.6 56.9 ± 1.7 57.4 ± 4.3 60.4 ± 3.4 66.2 ± 1.1 2.7 ± 5.1 8.9 ± 6.2 15.3 ± 8.9 19.2 ± 8.4 12.5 ± 9.2

Ensemble 62.7 ± 1.7 59.6 ± 2.0 56.7 ± 0.6 61.8 ± 2.0 65.4 ± 1.1 16.0 ± 2.4 17.2 ± 5.1 15.1 ± 0.5 21.7 ± 1.3 3.7 ± 8.1
HTML 60.6 ± 1.0 58.5 ± 1.4 59.5 ± 1.5 60.2 ± 1.4 66.2 ± 2.5 13.9 ± 3.0 15.8 ± 3.0 19.9 ± 3.8 18.7 ± 3.2 19.2 ± 6.4

NumHTML 61.0 ± 0.9 58.7 ± 1.4 59.8 ± 1.5 60.5 ± 1.5 66.6 ± 2.5 13.9 ± 3.1 15.8 ± 3.0 20.0 ± 1.2 18.8 ± 3.2 19.3 ± 0.7
StockGNN 62.6 ± 2.1 58.7 ± 1.7 55.4 ± 2.1 60.0 ± 2.9 66.1 ± 1.0 14.9 ± 7.6 16.3 ± 4.2 12.2 ± 4.1 19.0 ± 5.9 13.5 ± 7.0

Ours 63.5 ± 0.3 63.5 ± 2.2 61.6 ± 1.8 63.3 ± 0.6 67.1 ± 1.9 20.2 ± 4.4 30.7 ± 3.2 21.3 ± 0.9 22.9 ± 0.9 19.8 ± 1.1

Improvement +1.1 +6.5 +3.0 +2.4 +0.7 +26.3 +78.5 +6.5 +5.5 +2.6
(%) p-value 0.0 0.0 2.3 3.6 0.0 1.7 0.0 2.2 2.3 2.6

Stock Movement Prediction (MAEC)
(%) F11 F13 F17 F115 F130 MCC1 MCC3 MCC7 MCC15 MCC30

Price-based Methods
ARIMA 53.2 ± 0.7 52.2 ± 0.8 49.4 ± 0.7 48.7 ± 1.1 53.3 ± 1.0 4.6 ± 3.1 4.3 ± 1.7 -0.5 ± 1.7 -4.8 ± 2.4 -2.4 ± 2.1
LSTM 47.6 ± 0.0 51.4 ± 0.0 50.7 ± 0.0 53.0 ± 0.0 55.7 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

BiLSTM 47.6 ± 0.0 51.4 ± 0.0 50.7 ± 0.0 53.0 ± 0.0 55.7 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Transformer 49.8 ± 1.9 52.1 ± 1.1 50.6 ± 0.3 53.0 ± 0.0 55.5 ± 0.0 1.3 ± 3.5 2.9 ± 4.0 0.3 ± 0.9 0.7 ± 0.7 0.0 ± 0.0

Informer 51.9 ± 1.9 51.3 ± 1.1 50.5 ± 0.3 51.2 ± 0.0 48.9 ± 0.0 0.0 ± 3.5 0.7 ± 4.0 0.0 ± 0.9 0.0 ± 0.7 0.0 ± 0.0
Autoformer 50.0 ± 2.5 52.2 ± 1.1 51.7 ± 1.3 52.7 ± 2.1 54.4 ± 3.5 2.4 ± 2.8 3.8 ± 2.3 2.7 ± 3.2 1.7 ± 3.1 0.7 ± 3.2
Convtrans 53.1 ± 1.2 50.6 ± 1.8 50.5 ± 1.0 53.0 ± 0.0 54.4 ± 3.5 2.8 ± 4.6 1.7 ± 2.2 1.1 ± 2.3 0.0 ± 0.0 0.0 ± 0.0

Graph-based Methods
RSR 53.6 ± 0.9 53.0 ± 1.1 52.7 ± 1.2 53.8 ± 0.9 55.8 ± 0.7 6.5 ± 0.5 6.1 ± 3.1 5.6 ± 0.4 5.5 ± 3.7 2.8 ± 4.2

VolTAGE 53.2 ± 1.3 50.3 ± 0.8 49.6 ± 0.8 50.1 ± 0.4 56.2 ± 0.3 5.1 ± 2.3 1.4 ± 1.6 0.9 ± 1.6 1.6 ± 1.1 5.9 ± 2.1
STHAN-SR 53.5 ± 1.3 49.8 ± 1.2 50.6 ± 0.8 52.3 ± 1.9 55.5 ± 0.1 4.4 ± 4.3 2.9 ± 4.0 2.9 ± 2.1 0.3 ± 2.7 3.1 ± 1.4

HISN 52.0 ± 2.0 51.5 ± 1.2 50.8 ± 1.4 53.0 ± 1.1 56.7 ± 0.8 2.3 ± 0.5 0.1 ± 0.4 0.0 ± 0.5 0.7 ± 0.6 4.2 ± 0.8

Earnings Calls-based Methods
MDRM 48.7 ± 1.6 52.0 ± 0.5 51.0 ± 0.5 53.7 ± 1.1 55.9 ± 0.2 1.9 ± 2.2 2.8 ± 1.8 2.7 ± 2.4 2.8 ± 4.5 6.3 ± 0.5

Ensemble 52.1 ± 2.0 52.2 ± 0.9 51.1 ± 0.7 53.8 ± 0.4 55.9 ± 0.6 2.3 ± 3.3 2.8 ± 2.9 2.4 ± 3.1 4.9 ± 1.8 6.0 ± 7.8
HTML 53.1 ± 1.5 52.2 ± 0.9 52.7 ± 2.2 54.1 ± 1.0 56.0 ± 0.5 6.4 ± 2.9 4.0 ± 1.8 5.6 ± 4.5 5.8 ± 2.6 5.5 ± 2.0

NumHTML 53.4 ± 1.5 52.4 ± 1.0 53.0 ± 1.6 54.0 ± 1.2 56.4 ± 0.6 6.4 ± 2.9 4.0 ± 1.8 5.6 ± 4.5 5.8 ± 2.6 5.6 ± 2.0
StockGNN 53.0 ± 0.3 51.1 ± 1.7 52.0 ± 1.0 52.6 ± 1.9 55.2 ± 1.2 4.0 ± 1.6 4.3 ± 2.9 5.0 ± 2.3 6.4 ± 0.3 6.0 ± 2.4

Ours 54.4 ± 0.7 54.3 ± 1.4 54.4 ± 0.7 54.9 ± 0.4 57.3 ± 0.4 6.7 ± 0.2 6.3 ± 0.3 6.0 ± 0.3 6.7 ± 0.3 6.9 ± 0.7

Improvement +1.5 +2.5 +2.6 +1.5 +1.1 +3.1 +12.5 +7.1 +4.7 +9.5
(%) p-value 3.5 3.2 1.2 3.5 0.0 3.2 0.2 3.7 2.1 3.7

Table 2: Results of all methods on two metrics (mean ± std, computed across 10 runs). Improvements are calculated as the
performance differentials between our model ECHO-GL over the best baselines (underscored for emphasis). The improvement is
significant based on paired t-test at the significance level of 5% (p-value with paired t-test). Note that all F1, MCC, improvement,
and p-value scores in the table are percentage values (e.g., 60.2 ± 0.0 means 60.2% ± 0.0%, and 1.1 means 1.1%).

ings calls in enhancing stock movement prediction. On the
other hand, the absence of either topic or entity nodes weak-
ens the model’s performance, which demonstrates that the
E-Graph encompasses multiple heterogeneous information,
comprehensively reflecting dynamic stock relations.

Effect of Model Variants. We conduct ablation analysis

on two model variants, i.e., ECHO-w/o-HGAN and ECHO-
w/o-dynamic, which corresponds to ECHO-GL without the
stock spatial relation module and post earnings call stock
dynamics module, respectively. As shown in Figure 3 (b)
and (d), ECHO-GL significantly outperforms the two model
variants, which demonstrates that aggregating rich relational
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(a) Profit($) (b) Sharpe Ratio

Figure 4: Trading simulation on various time horizons.

information from the E-Graph is crucial to our model, and
post earnings call stock dynamics module effectively mod-
els stock price trajectories, enhancing the model’s predictive
ability.

Trading Simulation
To answer Q3, we conducted real-world trading simulations
from 24th Oct 2017 to 2nd Feb 2018, employing a w-day
strategy based on the stock movement prediction results of
ECHO-GL. The w-day strategy decides to buy the stock on
day t if it predicts a rise from day t to t + w and then sells
it on day t + w; otherwise, short sell the stock and hold the
short position until day t + w. We take the S&P 500 index
as a benchmark and conduct five w-day strategies with w
in [1, 3, 7, 15, 30], respectively. The simulated trading profits
($) and annual Sharpe Ratio (SR) (Sharpe 1998) are shown
in Figure 4. Results illustrate that trading strategies based on
ECHO-GL prediction results can effectively help investors
obtain positive profits on all time horizons. Moreover, the
annual SR achieved by ECHO-GL significantly exceeds that
of the S&P 500 index, demonstrating ECHO-GL’s stable and
reliable profitability in the ever-changing stock market.

Discussion and Conclusion
Ethical Considerations. Previous studies (Sawhney et al.
2020b; Li et al. 2020a) have acknowledged that biases exist
in earnings calls, e.g., gender and demographic biases. Such
modeling biases can result in real-world harm if deployed
without care. In order for AI systems to be useful to society
as a whole, they must perform equally well for all popula-
tions regardless of perceived skin tone or gender. In future
work, we plan to extend our study to address these biases.

Conclusion. In this paper, we propose a novel ECHO-GL
model, which not only captures complex movement signals
between related stocks on the earnings calls-driven dynamic
heterogeneous graph, but also builds learnable stochastic
processes tailored to generate stock representation trajecto-
ries over various prediction horizons. Extensive experiments
demonstrate ECHO-GL’s superiority in stock movement pre-
diction and trading profitability over multiple time horizons.
Considering the effectiveness of E-Graph, we intend to fur-
ther exploit more potential of E-Graph in practical applica-
tions for different investment demands in future work.
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