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Abstract

As a combination of emerging multi-view learning meth-
ods and traditional multi-label classification tasks, multi-
view multi-label classification has shown broad application
prospects. The diverse semantic information contained in
heterogeneous data effectively enables the further develop-
ment of multi-label classification. However, the widespread
incompleteness problem on multi-view features and labels
greatly hinders the practical application of multi-view multi-
label classification. Therefore, in this paper, we propose an
attention-induced missing instances imputation technique to
enhance the generalization ability of the model. Different
from existing incomplete multi-view completion methods,
we attempt to approximate the latent features of missing in-
stances in embedding space according to cross-view joint at-
tention, instead of recovering missing views in kernel space
or original feature space. Accordingly, multi-view completed
features are dynamically weighted by the confidence derived
from joint attention in the late fusion phase. In addition,
we propose a multi-view multi-label classification framework
based on label-semantic feature learning, utilizing the statis-
tical weak label correlation matrix and graph attention net-
work to guide the learning process of label-specific features.
Finally, our model is compatible with missing multi-view and
partial multi-label data simultaneously and extensive experi-
ments on five datasets confirm the advancement and effec-
tiveness of our embedding imputation method and multi-view
multi-label classification model.

Introduction
Multiple photos taken from different perspectives of the ob-
served object provide a more comprehensive perception, sur-
passing the limited viewpoint offered by a single perspec-
tive (Xu et al. 2023; Fang et al. 2022; Liu et al. 2023e).
Combining data from different media can help compensate
for the limitations and incompleteness found in individual
forms of data (Li and He 2020; Xu et al. 2019). With the
explosive growth of multi-view data, multi-view learning
demonstrates immense potential in empowering various tra-
ditional tasks (Xu et al. 2022a,b; Li, Wan, and He 2021; Liu
et al. 2023f). For instance, traditional multi-label classifica-

*Corresponding authors.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion solely relies on features extracted from a single percep-
tion, leading to noticeable limitation in feature awareness.
Incorporating multi-view learning into multi-label classifi-
cation can effectively mitigate this limitation. As a result,
a composite multi-view multi-label classification (MvMLC)
task has emerged. In recent years, many MvMLC models
based on traditional machine learning or deep neural net-
work (DNN) have demonstrated promising performance.

However, in real-world scenarios, it is common to en-
counter incomplete multi-view data, which poses a great
challenge for the design of MvMLC models (Liu et al.
2023b). For example, subtitles and audio are often missing
in many ancient video archives. Likewise, multi-label infor-
mation may also be partially available in various scenarios
due to the costliness and vulnerability of manual annota-
tion. And we name the complex composite task “incomplete
multi-view partial multi-label classification (iMvPMLC)” in
our paper. Besides, according to research conducted by Liu
et al., it has been observed to some extent that incomplete
views have a greater negative impact on the performance of
MvMLC than the incompleteness of label information at the
same missing ratio (Liu et al. 2023a). Therefore, we will pay
more attention to the missing-view imputation in this paper.

Many approaches have been proposed to tackle the in-
completeness issue. Some researchers tried to impute the
missing instances in the kernel space by the complete ker-
nel sub-matrix (Trivedi et al. 2010; Liu et al. 2019), or com-
bined missing data imputation and downstream tasks to a
unified framework (Liu et al. 2020, 2018). Another route
to handle the incomplete views is to introduce prior miss-
ing information to skip the unknown views, utilizing only
the available data for the classification task, which has also
shown promising results (Liu et al. 2023d,a). However, com-
pared with ‘skip’ or imputation in kernel space, direct re-
covery of missing data has always been a challenging task
with high modeling difficulty and unlimited potential (Liu
et al. 2023c). Furthermore, considering that the high-level
features extracted by DNN have stronger semantic informa-
tion (Luo et al. 2023; Fang et al. 2023a), we propose to com-
plete the missing instances in the embedding space, which
also avoids the redundancy and noise prevalent in the origi-
nal data.

To sum up, we propose a novel model called Attention-
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Induced IMputation Network (AIMNet) for the iMvPMLC
task with novel embedding feature imputation. Specifically,
we design a two branch multi-view multi-label classifica-
tion framework with a multi-view feature extraction mod-
ule and a graph attention network (Veličković et al. 2018)
(GAT) based label semantic feature extraction module. For
the missing instances in the embedding space, inspired by
the widely used attention mechanism (Zhao et al. 2022b;
Fang et al. 2023b), we propose an attention-induced fea-
ture imputation technique, which approximates missing in-
stances based on available information and instance-pair at-
tention scores. To achieve this, we compute the joint at-
tention matrix by cross-view peak aggregation on multiple
view-specific attention matrices. Finally, we incorporate a
confidence-based dynamic multi-view late fusion mecha-
nism to further improve the reliability of multi-view fusion.
In summary, our paper makes several notable contributions:

• We propose the AIMNet, a novel framework for
iMvPMLC, which is able to extract the label semantic
feature and instance embedding feature simultaneously.
And the AIMNet can effectively handle the learning task
with both incomplete views and labels.

• To our knowledge, we are the first to develop a self-
attention mechanism to fill missing instances in embed-
ding spaces for iMvPMLC task. And our embedding im-
putation technique also has great potential to be applied
in other deep incomplete multi-view learning methods.

• We perform extensive experiments to confirm that our
AIMNet can outperform existing advanced methods on
double-missing multi-view multi-label data, while still
showing leading performance on complete datasets.

Related Works and Problem Definition
Multi-label Classification
Multi-label classification has been an active research area in
the field of machine learning, attracting significant attention
and interest. In traditional methods, the multi-label classifi-
cation task is typically divided into multiple binary classifi-
cation tasks with label correlations (Read et al. 2009). Build-
ing upon this strategy, some studies employ local or global
label correlation to model dependency of categories. Huang
et al. proposed a method called ‘Learning Label Specific
Features’ (LLSF), which involves extracting label-specific
features and establishing correlations among them (Huang
et al. 2015). Besides, LLSF reduces the dimensionality of
label space, aiding in alleviating computational burden. Fur-
thermore, Ma et al. put forward a network named LDGN that
incorporates label-specific semantic components and dual
Graph Convolution Network (GCN), achieving impressive
results (Ma et al. 2021). However, this method heavily relies
on a pre-trained label semantic feature extraction network
and is not suitable for cases where the label-related semantic
features are weak or non-existent such as pure digital labels.
Another work with label semantic learning, termed SSGRL,
also relies on a pre-trained tag-specific feature extractor. The
difference is that it fuses sample features and label features
in the shallow layer of the network and feeds them into graph

neural network (GNN) to learn samples’ label distribution
(Chen et al. 2019).

MvMLC
Applying multi-view learning to multi-label classification
task can achieve superior performance than traditional
single-view multi-label classification. However, devising an
effective multi-view collaborative learning strategy is a chal-
lenging task. Zhu et al. proposed a method named Label
Space Dimension Reduction (LSDR), which utilizes the
Hilbert-Schmidt Independence Criterion (HSIC) technique
to reinforce the dependency between different latent spaces
with a low complexity (Zhu et al. 2018). Another matrix
factorization (MF) based method, called LSA-MML, max-
imizes interdependencies among latent semantic basis ma-
trices of diverse views in kernel space to learn consistent
representation (Zhang et al. 2018). Fang and Zhang devel-
oped an innovative method called Consistency and Diversity
Multi-View Multi-Label learning (CDMM), which learns in-
dependent prediction results for each view and maximizes
the dependence between features and labels through HSIC
(Fang and Zhang 2012). Considering the incompleteness of
multi-view data from both feature and label perspectives
brings further challenges to MvMLC. iMvML proposed by
Tan et al. first maps incomplete data from multiple views
to a shared subspace, and then bridge the shared subspace
and the semantic label space based on the projection ma-
trix and learnable label correlations (Tan et al. 2018). Fur-
thermore, assuming that label correlations are locally struc-
tured, iMvML imposes a low-rank constraint on the label
correlation matrix. Li and Chen proposed another interest-
ing method NAIM3L that focuses on both the global high-
rankness and the local low-rankness of the label matrix (Li
and Chen 2022). In addition to above traditional methods,
Liu et al. proposed a representative deep iMvPMLC frame-
work DICNet that employs stacked autoencoders to extract
multi-view features and develops an incomplete instance-
level contrastive learning strategy to enhance consensus rep-
resentation learning (Liu et al. 2023a). Note that all three
methods, i.e., iMvML, NAIM3L, and DICNet, choose to
handle the missing views or labels by introducing prior in-
dex matrix rather than inpainting raw data.

Problem Definition
In order to clearly describe our problem, we define{
X(v) ∈ Rn×dv

}m
v=1

as original multi-view data, in which
m, n, and dv represent the number of view, sample and
the original feature dimension of the v-th view, respectively.
And Y ∈ {0, 1}n×c denotes the label index matrix, where
c is the number of catagories. For the label vector of i-th
sample Yi,:, Yi,j = 1 means that the sample i belongs
to the j-th class, otherwise Yi,j = 0. Furthermore, we let
W ∈ {0, 1}n×m and G ∈ {0, 1}n×c be the missing-view
and missing-label index matrix, respectively, where Wi,j

will be assigned a value of 1 if the j-th view of i-th sample
is available, otherwise Wi,j = 0. Gi,j = 1 or 0 similarly
indicates the certainty of corresponding tag. The missing
data in

{
X(v) ∈ Rn×dv

}m
v=1

is designated as ‘Nan’ or ran-
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Figure 1: The main flowchart of our AIMNet. Our framework consists of two branches, an instance feature extraction branch
and a label semantic extraction branch, which are fused in the embedding space to get the prediction on each view; a multi-view
late-fusion method is employed to fuse the predictions of multiple views according to the confidence; missing instances are
filled according to the available inter-instance attention.

dom noise to keep the number of instances consistent across
views. Similarly, unknown tags are set ‘0’ in Y. The target of
our AIMNet is to train a high-precision multi-label classifi-
cation network on incomplete multi-view partial multi-label
data, which can accurately predict the categories of unla-
beled incomplete multi-view data.

Method
In this section, we introduce our method in detail from
four aspects, namely label semantic representation learn-
ing, attention-induced missing view imputation, confidence-
based multi-view late fusion, and multi-label classification.
Fig .1 is the main flowchart of our AIMNet.

Multi-label Semantic Representation Learning
In the field of multi-label classification, most methods try
to establish a direct or indirect mapping from input data to
labels, and it is difficult to explicitly model label-specific se-
mantics with correlation (co-occurrence). To address it, in
this section, we attempt to learn the semantic representa-
tions for each category based on label correlation. We know
that label correlation can be represented as a graph structure
composed of categories (node) and corresponding paired
correlation (edge). A common way to obtain it is by calculat-
ing the co-occurrence frequency of any two categories in the
training data, i.e., P(lj |li), which means the probability that
j-th category appears when i-th category appears. In view

of its low acquisition cost, so in this paper, we construct the
label correlation matrix C by:

Ci,j = P(lj |li) =

∑n
k=1 Yk,iYk,j∑n
k=1 Yk,i

=
YT

:,iY:,j

YT
:,iY:,i

. (1)

It should be noted that the diagonal elements of C are set to
0, and C is asymmetric, that is, the co-occurrence probabil-
ity P(lj |li) is not equal to P(li|lj), and C without a sym-
metrical design is more in line with objective laws of real-
world data. And then, with the label correlation matrix C,
we apply a graph attention networks (GAT) (Veličković et al.
2018) to learn label semantic features. First, we initialize a
set of learnable label embedding features {hi}ci=1 ∈ Rc×c,
and then feed them into an K-head GAT layer with the label
correlation matrix C. For each head, we compute the paired
label embedding attention coefficient:

αij =
eσL(a·([Whi||Whj ]))∑

k∈Ni
eσL(a·([Whi||Whk]))

, (2)

where || is the concatenate operation and σL is the
LeakyReLU activation function. a ∈ R2de and W ∈ Rde×c
are the weight parameters. j ∈ Ni and Ni denotes that we
only consider the similar classes of class i in the given C,
i.e, Ci,j > 0. Then, we use the attention coefficients to ag-
gregate the neighbor nodes of each label embedding feature
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Figure 2: Computation diagram for cross-view joint atten-
tion and confidence.

and finally obtain the multi-head output feature:

h′i = σL

(
1

K

K∑
k=1

∑
j∈Ni

αkijW
khj

)
, (3)

where αkij and W k are the attention coefficient and weight
parameter of k-th head respectively. Finally, we can obtain
the output label embedding features L = {h′1, h′2, ..., h′c} ∈
Rc×de . Overall, in this section, we utilize the graph attention
layer to learn multi-label semantic features, which can adap-
tively aggregate semantic information of relevant labels.

Attention-Induced Missing View Imputation
As shown in Fig. 1, in order to learn the association of
label-specific features and samples, like other deep meth-
ods, we need to map the raw data to the embedding space
to extract effective high-level features. Here we use a set
of Multilayer Perceptrons (MLP) to extract multiple view-
specific embedding features: {Ψv : X(v) → Z(v)}mv=1,
where Z(v) ∈ Rn×de is the embedding feature of v-th view.
Each Z(v) consists of n instances in view v, however, in the
setting of our task, not all n instances are available. To cope
with this incompleteness that arises in the embedding space,
we propose attention-induced missing view imputation tech-
niques in this section. First, for any view v, we compute the
attention score of an instance pair by:

A
(v)
i,j = ef(z

(v)
i )f(z

(v)T
j )/τ , (4)

where A(v) ∈ Rn×n is the attention matrix in terms of in-
stances in view v. τ is the temperature parameter to con-
trol the scale and f(·) is the l2-norm normalization function.
Each row of the matrix A(v) describes the attention of cor-
responding instance with all other instances, which provides
weight support for information aggregation among samples
(Vaswani et al. 2017). In our task, rather than augmented
information fusion, we focus more on utilizing attention
mechanism and available instances to recover or approx-
imately replace unavailable instances, which is the funda-
mental motivation of our feature imputation method. How-
ever, the parts corresponding to missing instances in the at-
tention matrix of each view are not available, so we can-
not directly use the view-specific attention matrix to obtain
the reconstructed features of the corresponding view. Thus

we have to borrow attention information from other views
to compensate for the incompleteness of each view itself.
Specifically, as shown in Fig. 2, we propose to obtain the
cross-view joint attention matrix Ā ∈ Rn×n by maximizing
aggregation:

Āi,j = max(A
(1)
i,j 1[Υ1

ij ],A
(2)
i,j 1[Υ2

ij ], ...,A
(m)
i,j 1[Υm

ij ]), (5)

where 1[Υv
ij ] = 1 when condition Υv

ij : {Wi,vWj,v = 1}
is met, i.e., only the attention score between valid instances
can be counted. With the joint attention matrix Ā, we can
easily get the attention-induced reconstructed features by:

Z̄(v) = fn(Ā)diag(W:,v)Z
(v), (6)

where Z̄(v) ∈ Rn×de is v-th view’s reconstructed fea-
ture and diag(W;,v) means the diagonal matrix with di-
agonal W;,v . fn(·) denotes a normalization operation:
[fn(Ā)]i,j = Āi,j/

∑n
j=1 Āi,j . Note that we cannot directly

use Z̄(v) for the subsequent classification process since it
is only an approximate representation of missing instances.
Therefore, we only select the reconstructed features corre-
sponding to the missing instances in Z̄(v) to fill in the in-
complete original embedding features Z(v) to obtain the fi-
nal completed features Ẑ(v). Specifically, for i-th instance
in Ẑ(v), we compute it by introducing missing-view index
matrix W:

Ẑ
(v)
i,: = Z̄

(v)
i,: (1−Wi,v) + Z

(v)
i,: Wi,v. (7)

Multi-View Late Fusion and Multi-Label
Classification
Up to now, we have label semantic features L and multi-
view embedding features {Ẑ(v)}mv=1, which are simultane-
ously mapped to the space with dimension de. And then, we
try to bridge them to obtain each sample’s classification re-
sults corresponding to multiple views. A common concate-
nation method is to take the dot product of each instance
representation with all label semantic features to obtain con-
fidences for different categories. Inspired by the work (Hang
and Zhang 2021), we here utilize label semantic features to
perform feature relevance selection. Specifically, we multi-
ply the activated L by the Sigmoid function element-wise
with each instance’s embedding feature ẑ(v)

i to obtain a new
instance-label embedding matrix B

(v)
i ∈ Rc×de in terms of

i-th instance:

B
(v)
i = [σS(h1)� ẑ(v)

i ;σS(h2)� ẑ(v)
i ; ...;σS(hc)� ẑ(v)

i ],
(8)

where σS is the Sigmoid activation function. Next, we per-
form category prediction on {B(v)

i }ni=1 via a linear classifier
to obtain the predicted logits P(v) ∈ Rn×c for v-th view.

We know that the ultimate goal of multi-view learning is
to obtain consistent prediction results. To achieve that, we
employ the late fusion approach to get the consistent predic-
tion of multiple views. It should be noted that the embedding
features we completed are not extracted from real instances,
so the reliability of these filled features must be considered
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in the fusion process of multiple predictions. Recalling the
attention scores in the embedding imputation, missing in-
stances are not equally expressed by available instances ac-
cording to the various intensity of attention. For example,
some instances are farther away from other un-missing in-
stances, and the corresponding attention scores are generally
lower in Ā, for which we can set a lower confidence for such
imputation features. To be specific, we compute the max-
imum original attention (without scaling) of each instance
with other instances as a confidence score:

Qi,v = max({τ log Āi,jWi,v}nj=1), (9)

where Q ∈ Rn×m denotes the confidence matrix whose el-
ement Qi,v stores the confidence score of i-th instance in v-
th view. Eq. (9) can be understood as finding the maximum
value of i-th row of the unshrunk joint attention matrix. Of
course, un-missing instances do not need to be approximated
by other instances, so their confidence should be set to the
constant 1 in the final confidence matrix Q′:

Q
′

= (1−W)�Q + W (10)

Now, with Q′ and {P(v)}mv=1, we can compute the fused
prediction P̄:

P̄i,: = σS

(∑m
v=1 P

(v)
i,: Qi,v∑m

v=1 Qi,v

)
. (11)

Finally, we employ masked binary cross-entropy function to
compute loss:

L = −
1∑

i,j Gi,j

n∑
i=1

c∑
j=1

(
Yi,j log(P̄i,j)

+ (1−Yi,j) log(1− P̄i,j)
)
Gi,j .

(12)

In Eq. (12), we introduce the missing label index matrix G
to mask the unknown tag in the process of loss function.

Overview of Our Method
Reviewing the four parts of our method in this section, i.e.,
label semantic representation learning, attention-induced
missing view imputation, multi-view late-fusion and multi-
label classification, we conclude as follows: (1) Our frame-
work consists of 2 branches, an instance feature extraction
branch and a label semantic extraction branch, which are
fused in the embedding space to get the prediction of the
sample on each view. (2) We adopt a multi-view late fusion
method to fuse the prediction values of multiple views ac-
cording to the confidence, and calculate the multi-label clas-
sification loss on the basis of available labels. (3) During
the representation learning process, we approximate miss-
ing instances based on the available inter-instance attention.
Finally, our framework includes only one loss function, and
Algorithm 1 shows the training process of our model.

Experiments
Experimental Settings
Datasets: In line with prior research (Tan et al. 2018; Li
and Chen 2022; Liu et al. 2023a), we select five widely rec-
ognized multi-view multi-label datasets for our experiments,

Algorithm 1: Training process of AIMNet

Input: Incomplete multi-view data
{
X(v)

}m
v=1

, missing-
view index matrix W ∈ {0, 1}n×m, partial multi-label
Y ∈ Rn×c, missing-label index matrix G ∈ {0, 1}n×c.

Output: Prediction P̄.
1: Randomly initialize model parameters and set hyperpa-

rameters (τ , learning rate, and training epochs E).
2: Compute label correlation matrix C by Eq. (1).
3: for t = 0; t < E; t+ + do
4: Extract label semantic feature L by Eqs. (2) and (3).
5: Extract instance embedding features {Z(v)}mv=1 by
m MLPs {Ψv}mv=1, respectively.

6: Compute attention matrices {A(v)}mv=1 by Eq. (4).
7: Compute joint attention matrix Ā(v) by Eq. (5).
8: Fill missing instances in the embedding space by

Eqs. (6) and (7).
9: Compute instance-label embedding features
{B(v)

1 ,B
(v)
2 , ...,B

(v)
n }mv=1 by Eq. (8).

10: Obtain view-specific predictions {P(v)}mv=1 by a
linear classifier.

11: Compute confidence matrix Q′ by Eqs. (9) and (10).
12: Obtain multi-view fusion prediction P̄ by Eq. (11)

and compute classification loss L by Eq. (12).
13: Update network parameters.
14: end for

i.e., Corel5k, Pascal07, ESPGame, IAPRTC12, and MIR-
FLICKR. Each dataset includes six distinct features, i.e.,
GIST, HSV, DenseHue, DenseSift, RGB, and LAB. Statis-
tics of the five datasets refer to supplementary materials.

Incomplete multi-view partial multi-label data pre-
processing: Following existing works (Tan et al. 2018; Li
and Chen 2022; Liu et al. 2023a), we manually gener-
ate incomplete multi-view partial multi-label data on the
bias of aforementioned five complete multi-view multi-label
datasets, to simulate real world missing situation. Specifi-
cally, we randomly mask 50% of the instances from each
view as the missing entities, while ensuring to keep one
available view per sample. Furthermore, we randomly select
70% of all data as the training set for comprehensive evalu-
ation of our proposed method. Finally, for each category in
training set, we randomly eliminate 50% of the positive and
negative labels to generate partial multi-label data.

Comparison methods: In our experiments, we select
eight state-of-the-art methods for comparison with our AIM-
Net. In the related works section, we have introduced
iMVWL, NAIM3L, DICNet, GLOCAL, and CDMM. In ad-
dition to these five methods, we take three additional meth-
ods, namely C2AE (Yeh et al. 2017), DM2L (Ma and Chen
2021), and LVSL (Zhao et al. 2022a). C2AE is a deep
neural network model that integrates canonical correlation
analysis and autoencoder architectures for effective and ro-
bust multi-label classification. It is important to highlight
that only iMVWL, NAIM3L, and DICNet have the capa-
bility to handle both incomplete views and labels. Conse-
quently, following existing works (Tan et al. 2018; Li and
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Data Metric C2AE GLOCAL CDMM DM2L LVSL iMVWL NAIM3L DICNet AIMNet
C

or
el

5k
AP 0.2270.008 0.2850.004 0.3540.004 0.2620.005 0.3420.004 0.2830.008 0.3090.004 0.3810.004 0.4000.010
1-HL 0.9800.002 0.9870.000 0.9870.000 0.9870.000 0.9870.000 0.9780.000 0.9870.000 0.9880.000 0.9880.000
1-RL 0.8040.010 0.8400.003 0.8840.003 0.8430.002 0.8810.003 0.8650.005 0.8780.002 0.8820.004 0.9020.002
AUC 0.8060.010 0.8430.003 0.8880.003 0.8450.002 0.8840.003 0.8680.005 0.8810.002 0.8840.004 0.9050.003
1-OE 0.2460.016 0.3270.010 0.4100.007 0.2950.014 0.3910.009 0.3110.015 0.3500.009 0.4680.007 0.4750.018
1-Cov 0.5960.016 0.6480.006 0.7230.007 0.6470.005 0.7180.006 0.7020.008 0.7250.005 0.7270.011 0.7710.005
Ave.R 8.83 6.33 2.83 6.83 3.83 6.83 4.33 2.17 1.00

Pa
sc

al
07

AP 0.4850.008 0.4960.004 0.5080.005 0.4710.008 0.5040.005 0.4370.018 0.4880.003 0.5050.012 0.5480.008
1-HL 0.9080.002 0.9270.000 0.9310.001 0.9280.001 0.9300.000 0.8820.004 0.9280.001 0.9290.001 0.9310.001
1-RL 0.7450.009 0.7670.004 0.8120.004 0.7610.005 0.8060.003 0.7360.015 0.7830.001 0.7830.008 0.8310.004
AUC 0.7650.010 0.7860.003 0.8380.003 0.7790.004 0.8320.002 0.7670.015 0.8110.001 0.8090.006 0.8510.004
1-OE 0.4380.008 0.4430.005 0.4190.008 0.4200.011 0.4190.008 0.3620.023 0.4210.006 0.4270.015 0.4610.013
1-Cov 0.6800.010 0.7030.004 0.7590.003 0.6920.004 0.7510.003 0.6770.015 0.7270.002 0.7310.006 0.7830.004
Ave.R 7.17 5.33 2.83 6.67 3.83 8.83 4.83 4.00 1.00

E
SP

G
am

e AP 0.2020.006 0.2210.002 0.2890.003 0.2120.002 0.2850.003 0.2440.005 0.2460.002 0.2970.002 0.3050.004
1-HL 0.9710.002 0.9820.000 0.9830.000 0.9820.000 0.9830.000 0.9720.000 0.9830.000 0.9830.000 0.9830.000
1-RL 0.7720.006 0.7800.004 0.8320.001 0.7810.001 0.8290.001 0.8080.002 0.8180.002 0.8320.001 0.8460.002
AUC 0.7770.006 0.7840.004 0.8360.001 0.7850.001 0.8330.002 0.8130.002 0.8240.002 0.8360.001 0.8500.002
1-OE 0.2620.018 0.3170.005 0.3960.005 0.2940.006 0.3890.004 0.3430.013 0.3390.003 0.4390.007 0.4420.011
1-Cov 0.4970.011 0.4960.006 0.5740.004 0.4880.003 0.5670.005 0.5480.004 0.5710.003 0.5930.003 0.6240.005
Ave.R 8.67 7.33 2.33 7.50 3.67 6.17 4.33 1.83 1.00

IA
PR

T
C

12

AP 0.2240.007 0.2560.002 0.3050.004 0.2340.003 0.3040.004 0.2370.003 0.2610.001 0.3230.001 0.3290.005
1-HL 0.9650.002 0.9800.000 0.9810.000 0.9800.000 0.9810.000 0.9690.000 0.9800.000 0.9810.000 0.9810.000
1-RL 0.8060.005 0.8250.002 0.8620.002 0.8230.002 0.8610.002 0.8330.002 0.8480.001 0.8730.001 0.8830.003
AUC 0.8070.005 0.8300.001 0.8640.002 0.8250.001 0.8630.001 0.8350.001 0.8500.001 0.8740.000 0.8850.003
1-OE 0.3000.031 0.3780.007 0.4320.008 0.3400.006 0.4290.009 0.3520.008 0.3900.005 0.4680.002 0.4590.08
1-Cov 0.5230.009 0.5340.003 0.5970.004 0.5290.004 0.5970.004 0.5640.005 0.5920.004 0.6490.001 0.6730.006
Ave.R 9.00 6.33 2.67 7.50 3.33 6.67 5.00 1.67 1.17

M
IR

FL
IC

K
R AP 0.5050.008 0.5370.002 0.5700.002 0.5140.006 0.5530.002 0.4900.012 0.5510.002 0.5890.005 0.6020.004

1-HL 0.8530.004 0.8740.001 0.8860.001 0.8780.001 0.8850.001 0.8390.002 0.8820.001 0.8880.002 0.8900.001
1-RL 0.8210.003 0.8320.001 0.8560.001 0.8310.003 0.8560.001 0.8030.008 0.8440.001 0.8630.004 0.8730.002
AUC 0.8100.004 0.8280.001 0.8460.001 0.8280.003 0.8440.001 0.7870.012 0.8370.001 0.8490.004 0.8610.001
1-OE 0.5050.020 0.5520.005 0.6310.004 0.5100.008 0.6070.004 0.5110.022 0.5850.003 0.6370.007 0.6510.006
1-Cov 0.5900.005 0.6050.003 0.6400.001 0.6040.005 0.6360.001 0.5720.013 0.6310.002 0.6520.007 0.6710.004
Ave.R 8.17 6.17 3.00 6.83 3.83 8.67 5.00 2.00 1.00

Table 1: Experimental results of nine methods on the five datasets with 50% missing-view rate and 50% missing-label rate (the
bottom right digit is the standard deviation). The average ranking on the six metrics is shown at ‘Ave.R’.

Chen 2022), several modifications are made on the other
five methods before conducting the experiments. Specifi-
cally, for those approaches can not cope with missing views
(CDMM and LVSL, etc), we populate each view’s missing
instances with mean values of its available instances. For
the approaches like DM2L and C2AE do not have the abil-
ity to process missing views, we treat the unknown labels
as negative tags in these methods. Finally, considering that
C2AE, GLOCAL, and DM2L are incomplete single-view
multi-label classification methods, we conduct experiments
on each view and select the best results as the multi-view
classification results in our experiments.

Evaluation metrics: To be consistent with existing clas-
sic works (Tan et al. 2018; Li and Chen 2022), we adopt
four popular performance metrics, i.e., ranking loss (RL),
average precision (AP), Hamming loss (HL), and area under
the adaptation curve (AUC) to evaluate our work. In addition
to them, we also introduce two common multi-label classi-
fication metrics, OneError (OE) and Coverage (Cov) in the
experiments. Notably, we calculate 1-RL, 1-HL, 1-OE, and
1-Cov as the final measure so that higher values indicate su-

perior performance in all six metrics.

Experimental Results and Analysis
In this section, we compare our method with other eight
advanced algorithms on the five datasets mentioned above
and the experimental results of the six evaluation metrics
are shown in Table 1, in which the missing-view rate and
missing-label rate are both arranged as 50%. Additionally,
we also report the average ranking of each method across all
metrics in ‘Ave.R’. According to Table 1, we can have the
following observations:

• Of all five datasets, our AIMNet achieves overwhelming
lead on most metrics. On the four datasets of Corel5k,
Pascal07, ESPGame, and MIRFLICKR, AIMNet ranks
1st in all metrics, and on IAPRTC12, its average ranking
is also as high as 1.17, which fully verifies the effective-
ness of our method on iMvPMLC task.

• From Table 1, we can observe that methods represented
by AIMNet and DICNet, which consider the incomplete
views and partial labels at the same time, exhibit better
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Method Corel5k ESPGame
AP 1-HL 1-RL AUC 1-OE 1-Cov AP 1-HL 1-RL AUC 1-OE 1-Cov

AIMNet w/o LM 0.380 0.987 0.895 0.898 0.446 0.755 0.293 0.983 0.842 0.847 0.414 0.616
AIMNet w/o imp 0.390 0.987 0.896 0.898 0.457 0.764 0.294 0.982 0.840 0.844 0.427 0.608

AIMNet 0.400 0.988 0.902 0.905 0.475 0.771 0.305 0.983 0.846 0.850 0.442 0.624

Table 2: Ablation results on two datasets with 50% missing views and 50% missing labels. ‘w/o’ means ‘without’.

Phase
Method C2AE GLOCAL CDMM DM2L LVSL iMVWL NAIML DICNet AIMNet

Training 170.24 154.42 16.02 713.37 63.73 165.82 143.63 313.89 244.12
Inference 0.04 0.89 1.73 0.04 0.64 0.02 0.01 0.05 0.03

Table 3: Time cost of training and inference phases on the Corel5k dataset with 70% training samples. (Unit: s)

AP
[0.31,0.54]

1-HL
[0.97,0.99]

1-RL
[0.87,0.94]

AUC
[0.87,0.94]

1-OE
[0.36,0.63]

1-Cov
[0.73,0.85]

C2AE
GLOCAL
CDMM
DM2L
LVSL
iMVWL
NAIM3L
DICNet
AIMNet

Figure 3: Experimental results of nine methods on the a full
dataset Corel5k without any missing views or labels. The
worst results are indicated at the center of radar map, while
the best results are represented by the vertexes, considering
six evaluation metrics.

performance than other methods in a single missing set-
ting. This underscores the importance of addressing the
challenges posed by missing views and labels.

• As late fusion methods, CDMM and AIMNet have both
achieved higher rankings than other methods that directly
obtain consistent results, which shows the effectiveness
of multi-view decision level fusion to a certain extent.

Additionally, in order to further confirm the good adapt-
ability of our model, we perform experiments on the com-
plete dataset without any missing instances or labels. We
present the results in Fig. 3 in radar charts (results on other
datasets refer to supplementary material). Apparently, our
AIMNet outperforms almost all other methods including
those designed for ideal complete cases, demonstrating the
generalization capability of our model.

Ablation Study
To evaluate the effectiveness of each component in our
method, we perform ablation experiments on two datasets,

i.e., Corel5k and ESPGame, where the proportions of miss-
ing views and missing labels are both 50%. Specifically,
we employ two degradation methods, ‘AIMNet w/o LM’
and ‘AIMNet w/o imp’ for short. For ‘AIMNet w/o LM’,
we simply remove the missing view index matrix G in the
model, respectively. For ‘AIMNet w/o imp’, we remove the
attention-induced view completion module and set corre-
sponding confidence score as constant 0. The results of ab-
lation experiments are listed in Table 2. It can be observed
that the embedding feature imputation strategy make a sig-
nificant contribution to the performance of model.

Time Cost Comparison
To study the training and inference efficiency of our AIM-
Net, we report the time cost of the training and test phases of
the nine methods on the Corel5k dataset with 70% training
samples in Table 3. It is well known that the training time
of a model depends heavily on the setting of convergence
conditions, so we measure the running times of all meth-
ods under their default convergence conditions. For special
single-view methods, we record the total training time for all
views and the inference time for a single view. From Table
3, we can observe that DNN based methods usually require
more training time and less inference time.

Conclusion
In this paper, we propose a novel general framework
(AIMNet) for the iMvPMLC task. The AIMNet is a two
branch multi-view multi-label classification framework with
a multi-view feature extraction module and a GAT based
label semantic feature extraction module, modeling multi-
label semantic information visually without any additional
text pre-trained network. Additionally, instead of ignoring
or skipping missing instances commonly used in existing
works, our AIMNet complete the missing embedding fea-
tures based on cross-view joint attention. During the multi-
view late fusion phase, we develop a simple confidence
based weighted fusion strategy to get the consistent classi-
fication results. Experimental results compared with eight
state-of-art methods confirm the effectiveness and superior-
ity of our proposed method.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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