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Abstract

Deep cross-modal hashing technology provides an effective
and efficient cross-modal unified representation learning so-
lution for cross-modal search. However, the existing meth-
ods neglect the implicit fine-grained multimodal knowledge
relations between different modalities such as when the im-
age contains information that is not directly described in
the text. To tackle this problem, we propose a novel self-
supervised multi-grained multi-modal knowledge graph con-
trastive hashing method for cross-modal search (CMGCH).
Firstly, in order to capture implicit fine-grained cross-modal
semantic associations, a multi-modal knowledge graph is
constructed, which represents the implicit multimodal knowl-
edge relations between the image and text as inter-modal and
intra-modal semantic associations. Secondly, a cross-modal
graph contrastive attention network is proposed to reason
on the multi-modal knowledge graph to sufficiently learn
the implicit fine-grained inter-modal and intra-modal knowl-
edge relations. Thirdly, a cross-modal multi-granularity con-
trastive embedding learning mechanism is proposed, which
fuses the global coarse-grained and local fine-grained embed-
dings by multihead attention mechanism for inter-modal and
intra-modal contrastive learning, so as to enhance the cross-
modal unified representations with stronger discriminative-
ness and semantic consistency preserving power. With the
joint training of intra-modal and inter-modal contrast, the in-
variant and modal-specific information of different modali-
ties can be maintained in the final cross-modal unified hash
space. Extensive experiments on several cross-modal bench-
mark datasets demonstrate that the proposed CMGCH out-
performs the state-of the-art methods.

Introduction
With the rapid development of the Internet and social net-
works, a large amount of muti-modal data such as text, im-
age, and video have been generated. These massive amounts
of multi-modal data contain very valuable information, and
the descriptions of different modal data are complemen-
tary. Correspondingly, the demands for effective and effi-
cient cross-modal search technologies are significantly in-
creasing, which has attracted extensive attention in recent
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years. It aims to search one modal data from another dif-
ferent modal data that are most semantically relevant to
the given query, such as searching images from texts, or
searching texts from images. However, due to the problem
of feature heterogeneity and semantic gap between differ-
ent modal data, they are not directly comparable, which is
an important challenge for achieving effective and efficient
cross-modal search. To tackle this challenge, an effective so-
lution is to learn a unified joint embedding space based on
visual-semantic embedding, where the semantic similarities
between the embeddings of different modal data are opti-
mized to be maximum.

Owing to excellent nonlinear feature learning ability
of deep learning, deep learning based cross-modal visual-
semantic embedding learning methods have attracted broad
attention which utilize the deep neural networks to extract
global representations of both images and texts and then per-
form cross-modal alignment and fusion (Qian et al. 2021;
Zhuo et al. 2020; Peng, Qi, and Yuan 2019; Wang et al.
2017; Wei et al. 2017). Due to low storage cost and fast
searching speed, cross-modal deep hashing methods have
been increasingly popular (Chen et al. 2021; Xu et al. 2019;
Wang et al. 2019; Zhang, Peng, and Yuan 2018a; Wendel
et al. 2019). However, the above methods do not fully uti-
lize multi-modal knowledge for reasoning more cross-modal
semantic knowledge relations hindered between image and
text.

To address this problem, some works incorporate the
commonsense knowledge for reasoning the high-level re-
lations between image and text. The existing multimodal
knowledge enhanced deep learning methods aim to incorpo-
rate multimodal knowledge into the networks, which have
been utilized in visual question answering (Yang Ding and
Wu 2022), and image-text retrieval (Fudong Nian and Xu
2017). Ding et al. (Yang Ding and Wu 2022) propose to
represent multimodal knowledge based on triplets to corre-
late visual objects and answers. Nian et al. (Fudong Nian
and Xu 2017) propose a multi-modal knowledge represen-
tation learning method that attempts to handle knowledge
from both text and visual data. Since graph convolutional
network (GCN) can make use of the semantic structure of
data, some researchers have applied it to cross-modal hash-
ing. Graph convolutional network hashing (GCH) (R. Xu
and Liu 2019) introduces a GCN to bridge the modality
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gap and improve cross-modal retrieval. Aggregation-based
graph convolutional hashing (AGCH) (P.-F. Zhang and Xu
2022) uses a GCN to mine the semantic structure of data and
performs cross-modal fusion. Semi-supervised cross-modal
graph convolutional network hashing (CMGCNH) (J. Duan
and Huang 2020) uses an asymmetric GCN to learn modal-
specific features and then generates a unified cross-modal
hash representation. However, these methods neglect the im-
plicit fine-grained multimodal knowledge relations between
the image and text. When the image contains information
that is not directly described in the text, the implicit mul-
timodal knowledge relations can help to connect the image
and text in the higher-level semantic space.

Recently, self-supervised learning, aiming to find super-
vised signals from the data itself, becomes a promising so-
lution for the conditions without explicit labels. Contrastive
learning, as one typical technique of self-supervised learn-
ing, has attracted wide attentions. Despite the wide use of
contrastive learning in computer vision (K. He and Girshick
2020; T. Chen and Hinton 2020) and natural language pro-
cessing (Z. Lan and Soricut 2018), little effort has been made
on fine-grained cross-modal knowledge graph contrastive
hash learning for cross-modal search.

In this paper, we study the problem of self-supervised
learning on cross-modal hashing and propose a novel multi-
grained multi-modal knowledge graph contrastive hashing
for cross-modal search. In order to capture implicit fine-
grained cross-modal semantic associations, a multi-modal
knowledge graph is constructed, which represents the im-
plicit multimodal knowledge relations between the image
and text as inter-modal and intra-modal semantic associa-
tions. A cross-modal graph contrastive attention network is
proposed to reason on the multi-modal knowledge graph
to learn implicit fine-grained inter-modal and intra-modal
knowledge relations. Moreover, in order to further pro-
mote more accurate cross-modal semantic alignment and
fusion, in addition to local fine-grained multimodal graph
contrastive learning, a multi-granularity cross-modal con-
trastive learning mechanism is proposed, which fuses global
coarse-grained and local fine-grained embeddings by multi-
head attention mechanism for inter-modal and intra-modal
contrastive learning, aiming at enhancing the cross-modal
unified representations with stronger discriminativeness and
semantic consistency preserving power.

In summary, our contributions are as follows:
1) To our best knowledge, this is the first attempt to study

the self-supervised multi-grained multi-modal knowledge
graph contrastive hashing for cross-modal search. It fuses
the global coarse-grained and local fine-grained embeddings
by multihead attention for inter-modal and intra-modal co-
contrastive learning, aiming at learning the high-level and
implicit cross-modal semantic associations, and enabling it
to be better applied to real world applications without label
supervision.

2) A cross-modal graph contrastive attention network
with co-contrastive mechanism is proposed to reason on
the multi-modal knowledge graph to sufficiently learn the
implicit fine-grained inter-modal and intra-modal semantic
relations. With the joint training of intra-modal and inter-

modal contrast, the invariant and modal-specific informa-
tion of different modalities can be maintained, and the learnt
cross-modal unified embeddings contain richer and more
comprehensive information to boost cross-modal search.

3) We conduct diverse experiments on several public
datasets and the proposed CMGCH outperforms the state-
of-the arts methods, which demonstrates the effectiveness
of CMGCH from various aspects.

Related Work
According to whether to use semantic labels as guidance
information to learn cross-modal semantic association, it
is mainly divided into supervised methods and unsuper-
vised methods. The supervised cross-media hashing meth-
ods use semantic label information to guide the cross-modal
association learning process to obtain a unified hash repre-
sentation. Representative methods include adversary guided
asymmetric hashing (AGAH) (Wendel et al. 2019), self-
supervised cross-modal adversarial hashing (SSAH)(Chao
et al. 2018), et al. The unsupervised cross-modal hashing
methods maximize the semantic association between differ-
ent modal data by learning cross-modal correlations. Repre-
sentative methods include deep graph-neighbor coherence
preserving network for unsupervised cross-modal hashing
(DGCPN) (Yu et al. 2021), unsupervised generative adver-
sarial cross-modal hashing (UGACH) (Zhang, Peng, and
Yuan 2018a), unsupervised coupled cycle generation adver-
sarial hashing method (UCH) (C, C, and L 2019), et al.

In recent years, there are many impressive works which
perform well on semantic feature learning by using con-
trastive learning. Hinton et al. (T. Chen and Hinton
2020)propose a simple framework for contrastive learning
of visual representations (SimCLR), which requires larger
batch sizes to achieve superior performance. He et al. (He
et al. 2020) propose a momentum contrast method for un-
supervised visual representation learning (MoCo), which
replaces the memory bank just mentioned with queue.
Dwibedi et al. (Dwibedi et al. 2021) propose a nearest-
neighbor contrastive learning method of visual representa-
tions (NNCLR), which distinguishes the examples in the
queue into positive examples and negative examples using
the nearest neighbor method. A parametric contrastive learn-
ing (PaCo) method (Cui et al. 2021) is proposed to opti-
mize the distinction between positive and negative samples
in queue by using labels as a guide.

Inspired by the success of contrastive learning in intra-
modal tasks, some cross-modal learning tasks based on con-
trastive learning have been gaining popularity. CLIP (Rad-
ford et al. 2021) and ALIGN (Jia et al. 2021) are the re-
cent proposed multi-modal pre-training models based on
contrastive learning, which form a task-agnostic model by
predicting which text matches which image. In ALBEF (Li
et al. 2021), it applies contrastive loss to align image and text
features before modelling their joint representation. TCL
(Yang et al. 2022) uses intra-modal and inter-modal con-
trastive learning, using knowledge distillation to guide the
learning process. FACLCL (Bukchin et al. 2021) encodes
structured event knowledge to enhance visual-linguistic pre-
training with textual event graphs for contrastive learning.
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Figure 1: Framework of the proposed CMGCH method.

However, on the one hand, the above methods ignore the
fine-grained cross-modal semantic associations, resulting in
weak semantic discrimination of learned multimodal fea-
tures; On the other hand, the above methods are all fea-
ture level semantic representation learning, without consid-
ering the semantic association and representation learning at
the hash level. Thus they are not very efficient when facing
large-scale cross-modal data search.

The Proposed CMGCH Method
Framework of CMGCH
In this paper, we propose a novel multi-grained multi-modal
knowledge graph contrastive hashing method, aiming at ob-
taining a discriminative and consistent cross-modal hash
representation for efficient cross-modal search. The frame-
work is shown in Fig. 1, which includes three compo-
nents: global coarse-grained and local fine-grained multi-
modal embedding learning, implicit fine-grained cross-
modal semantic association learning based on multi-modal
graph contrastive leaning, cross-modal multi-granularity
contrastive hash learning.

Problem Formulation
Given a cross-modal dataset O = {oi}Ni=1with N instances,
where oi = (vi, ti) represents the image and text of the i-th
instance in the dataset. The goal of the proposed CMGCH

method is to jointly learn image hash mapping f1 : Hv =
fv(F v, θv) and text hash mapping f2 : Ht = f t(F t, θt)
by multi-grained multi-modal knowledge graph contrastive
hashing, where F v and F t represent the feature representa-
tion of image and text respectively, θv and θt are the network
parameters. Then by jointly learning two hash quantizers,
q1 : Bv = sign(Hv) and q2 : Bt = sign(Ht), where
sign represent the symbolic function. We can obtain the
K-bit unified binary hash representations Bv ∈ {−1, 1}K

and Bt ∈ {−1, 1}K respectively, which can simultaneously
preserve the inter-modal semantic similarity and the intra-
modal semantic similarity.

Global Coarse-grained and Local Fine-grained
Multi-modal Embedding Learning
A global coarse-grained and local fine-grained multi-modal
embedding learning network is constructed, including two
sub-networks of image embedding learning and text embed-
ding learning.

In the image embedding learning network, we detect
salient regions with the Bottom-Up and Top-Down atten-
tion model (Peter Anderson 2020), which selects the top
R (R = 36) Regions of Interest (ROIs) with the highest
class confidence scores. Then R region-level image features
V = [v1, ..., vR] ∈ RR×Di , where Di(Di=2,048) is the di-
mension of the extracted region features. Afterwards, V is
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projected into a D-dimensional space via a Fully Connected
(FC) linear projection, denote the D-dimension by D.The
obtained fine-grained visual region representation is denoted
as Ṽ = [ṽ1, ..., ṽR] ∈ RR×D. Moreover, we acquire the
global embedding ṽ ∈ RD of the input image by adopting a
Generalized Pooling Operator (GPO) on Ṽ.

In the text embedding learning network, Bert (Z. Lan and
Soricut 2018) model is conducted to learn fine-grained word
representation T = [t1, ..., tL] ∈ RRL×Dt , where tj ∈ RDt

denotes the representation of T ’s j-th word, L denotes the
number of words, and Dt denotes the dimension of word
embedding. Then T is projected into a D-dimensional space
via an FC linear projection. The obtained textual word rep-
resentation is denoted as T̃ = [t̃1, ..., t̃L] ∈ RRL×D. The
global embedding t̃ ∈ RD of the input text is acquired by
adopting the same pooling function GPO.

Implicit Fine-grained Cross-modal Semantic
Association Learning Based on Multi-modal Graph
Contrastive Leaning
Multi-modal Knowledge Graph Construction

Multimodal Knowledge Graph (MKG) is constructed by
extracting visual object entities in images and word entities
in texts, as well as semantic relationships between visual-
visual, word-word, and visual-word to better mine the fine-
grained and implicit semantic relationships within and be-
tween image and text modalities.

Visual object entities: Following MKVSE(Feng, He, and
Peng 2023), we extract the visual object entities in the im-
age as triple representation (Vi, Ti, Oi), where Vi denotes
the original image, Ti denotes its corresponding text descrip-
tion, Oi denotes the set of visual object objects in each im-
age, and the size of the triple tuples is N .

Text word entities: When extracting word entities, we
focus on the meaning of words, phrases, and sentences, and
eliminate meaningless words, such as “a”, “the”, etc. The
most common text words {T1, T2, ...Tn} corresponding to
the set of image visual objects {O1, O2, ...On} are selected
as text word entities.

Inter-modal and intra-modal semantic relations: The
inter-modal semantic relationships between modalities are
represented by counting the number of co-occurrence rela-
tionships between visual object entities {O1, O2, ...On} and
text word entities {T1, T2, ...Tn} in N triples (Ii, Ti, Oi).
For the intra-modal semantic relations, the intra-modal se-
mantic similarity is calculated by WordNet based path se-
mantic similarity. The inter co-occurrence matrix is denoted
as Ainter, which is calculated by the co-occurrence relation-
ship between text words and visual objects. The intra-modal
text similarity matrix is denoted as At with size nt; the vi-
sual object similarity matrix is denoted as Ao with size no,
and the feature space of the three is located as: Ainter ∈ R(nt+no)×(nt+no),

At ∈ Rnt×nt

,
Ao ∈ Rno×no

.

(1)

Entity representation: following MKVSE (Feng, He,
and Peng 2023), GloVe is used in MKG as an encoder for

text entities and Bottom-Up and Top-Down(BUTD) atten-
tion model is used as an encoder for image entities. The
most common text word nodes gni and the most common
visual object nodes bni are selected for the construction of
multimodal knowledge graph.

Cross-modal Graph Contrastive Attention Network
A cross-modal graph contrastive attention network (CG-

CAN) with co-contrastive learning is established to rea-
son on the multi-modal knowledge graph to sufficiently
learn the implicit fine-grained inter-modal and intra-modal
relations. G ∈ Rnt×D indicates the embedding of text
word entities, B ∈ RnO×D represents the embedding of
visual object entities, the whole cross-modal graph con-
trastive attention network can be represented as M =
CGCAN(G,B,Ao, At, Ainter). CGCAN learns the em-
bedding representations of entity nodes in MKG by two
processes: intra-modal graph contrastive learning and inter-
modal graph contrastive learning, the result obtained by CG-
CAN reasoning on MKG is denoted by M.

Intra-modal graph contrastive learning: based on
Graph Attention Network (GAT), the visual object entity and
the text word entity are reasoned separately.

The text word nodes zt and the visual object nodes zo are
projected into a uniform contrastive space through an MLP
and a hidden layer.

In N1 text word nodes zt, and N2 visual object nodes zo,
the nodes with the highest similarity to themselves are se-
lected as positive samples k+ and the rest as negative sam-
ples k−, τ is the temperature coefficient. The intra-modal
graph contrastive learning is performed according to In-
foNCE (Oord and Vinyals 2018), where the contrastive loss
of text modality and visual modality in a single modal graph
attention network are denoted as follows, respectiely:

Lt
intra = − 1

N1

∑N1

i log
exp(ztT

i ·k+/τ)∑N
j=1 exp(ztT

i ·k−
j /τ)

,

Lo
intra = − 1

N2

∑N2

i log
exp(zoT

i ·k+/τ)∑N
j=1 exp(zoT

i ·k−
j /τ)

.
(2)

Inter-modal graph contrastive learning: inter-modal
semantic inference is performed on the whole multimodal
graph based on GAT. (Oi, Ti) denotes the semantic relation-
ship between the visual object entity and the text word entity,
and the one with the highest co-occurrence frequency with
itself is selected as a positive sample according to the the
co-occurrence relationship, and the rest are used as negative
samples for inter-modal graph contrastive learning. Accord-
ing to InfoNCE, the inter-modal graph contrast loss function
is defined as:

Linter = − 1

N1 +N2

N1+N2∑
i

log
exp(zTi · k+/τ)∑N1+N2

j=1 exp(zTi · k−j /τ)
(3)

where k+ represents a positive sample and k−j represents the
j-th negative sample. Finally, the overall objective function
Lfgc of implicit fine-grained cross-modal semantic associa-
tion learning based on multi-modal graph contrastive lean-
ing is as follows:

Lfgc = βLinter + (1− β)(Lo
intra + Lt

intra) (4)
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where β is the hyperparameter that controls the weight of
each loss function.

Cross-modal Multi-granularity Contrastive Hash
Learning
We use multi-granularity feature fusion and self-supervised
contrastive learning from different perspectives to guaran-
tee the similarity of the generated hash codes in Ham-
ming space. In the global coarse-grained feature embed-
ding phase, we perform contrastive learning through differ-
ent perspectives, specifically, our perspectives are divided
into inter-modal and intra-modal.

To enhance the representational power of the model, in-
spired by MoCo, a dynamic dictionary with a queue and a
moving-average encoder is built. The introduction of queue
decouples the size of the dictionary from the size of the
batch. As a result, the size of the dictionary can be much
larger than the typical batch size. We construct momentum-
update encoders for images and texts respectively.

We use vg and tg to denote the features obtained from
the global embedding. At the end of the global embed-
ding, the fine-grained representation learned based on mul-
timodal knowledge graph is used to enhance the global em-
bedding representation. Therefore, we fuse global coarse-
grained features and local fine-grained features based on a
multi-headed attention mechanism as follows.{

va = FFN ( MultiHead (vg,M)) ,
ta = FFN ( MultiHead (tg,M)) .

(5)

where FFN(·) denotes the feed forward network imple-
mented by a multi-layer perceptron with the ReLU activa-
tion function in between. M is a fine-grained embedding
representation obtained by reasoning on multimodal graph
using the graph contrastive learning network. Thus, the ob-
tained embedding representations of the image and text is as
follows, λc is the hyperparameter:{

vf =
[√

1− λcvg,
√
λcva

]
,

tf =
[√

1− λctg,
√
λcta

]
.

(6)

ve = FFN (vf ) , te = FFN (tf ) (7)

To achieve cross-modal semantic alignment and fusion,
we use InfoNCE loss as the contrastive objective function,
defined as follows:

L(x,y) = −
∑
i

log
exp

(
(s(vxi , v

y
i )/τ)∑R

r=1 exp
(
(s(vxi , v

y
r )/τ)

(8)

where (x,y) represents different modal combinations, di-
vided into two views with four different combinations, inter-
modal combination (i,t), (t,i), intra-modal combination (i,i),
(t,t), i and t denote image modality and text modality.
s (vyi , v

x
i ) is the cosine similarity of vxi and vyi . The inter-

modal and intra-modal contrastive objective functions are
defined as follows:

Linter-loss = L(i,t) + L(t,i)

Lintra-loss = L(i,i) + L(t,t)
(9)

Finally, the overall cross-modal unified representation
learning objective function Lgcmh is :

Lgcmh = αLinter−loss + (1− α)Lintra−loss (10)

where α is a hyperparameter to assign weights to inter-
modal and intra-modal losses.

The goal of cross-modal hashing is to project different
modalities into a common Hamming space. In the space,
the unified codes of image and text are denoted as:Bx =
{bxi }ni=1 for the image modality and By = {byi }ni=1for the
text modality, where b∗i ∈ {+1,−1}L , ∗ ∈ {x, y} and L is
the length of hash codes. The Hamming distance is used to
evaluate the similarity between image and text samples. In
order to improve the retrieval efficiency of the model, we
map the high-dimensional feature representation to Ham-
ming space.

vq = Sign (ve) , tq = Sign (te) (11)

where Sign(·) denotes symbolic function which is used to
map feature representation to Hamming space.

Experimental Results and Analysis
Datasets and Evaluation Metrics
MSCOCO (Lin et al. 2014):This dataset totally contains
123,287 images. Each image is described with five anno-
tated sentences with their annotations classified into 80 cat-
egories. We randomly select 5,000 image-text pairs as query
set and the remaining ones are used as the retrieval set.
Flickr30k (Young et al. 2014): It contains 31,783 images
from Flickr website, and each image is described by five
different sentences. Following the settings in References(Tu
et al. 2022), this dataset is split into 29,783 training images,
1,000 validation images, and 1,000 testing images.
Evaluation Metrics: The performance of the proposed
CMGCH method is evaluated based on the Mean Average
Precision (MAP) and R@K (defined as the percentage of
ground truth being retrieved at top-K results).

Baselines
We use the cross-modal search task to evaluate the effec-
tiveness of the proposed CMGCH method. We compare
CMGCH with 16 state-of-the-art methods on MSCOCO
dataset by MAP, including twelve unsupervised ap-
proaches (UCCH(Hu et al. 2022), DGCPN(Yu et al. 2021),
LSSH(Wang et al. 2020), UKD-SS(Hu et al. 2020) and
DSAH(Tu et al. 2022), CMFH(Lu et al. 2019), UCH(Li
et al. 2019), FSH(Hong et al. 2017), JDSH(Zhang, Peng,
and Yuan 2018b), DJSRH(Ding et al. 2016), UGACH(Zhou,
Ding, and Guo 2014), CVH(Kumar and Udupa 2011)), and
four supervised cross-modal hashing methods (FOMH(Tu
et al. 2022), MTFH(Liu et al. 2021), DLFH(Jiang et al.
2019), DCH(Xing et al. 2017)). And also we compare
with 4 state-of-the-art methods(UCCH(Hu et al. 2022),
VSE++(Faghri et al. 2018), JDSH(Zhang, Peng, and Yuan
2018b), DJSRH(Ding et al. 2016)) on Flickr30k by R@K .
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Comparison algorithms I→T (image query text) T→I (text query image)
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

CVH 0.503 0.504 0.471 0.425 0.506 0.508 0.476 0.429
LSSH 0.484 0.525 0.542 0.551 0.490 0.522 0.547 0.560
CMFH 0.366 0.369 0.370 0.365 0.346 0.346 0.346 0.345
FSH 0.539 0.549 0.576 0.587 0.537 0.524 0.564 0.573
DLFH 0.522 0.580 0.614 0.631 0.444 0.489 0.513 0.534
MTFH 0.399 0.293 0.295 0.395 0.335 0.374 0.300 0.334
FOMH 0.378 0.514 0.571 0.601 0.368 0.484 0.559 0.595
DCH 0.422 0.420 0.446 0.468 0.421 0.428 0.454 0.471
UGACH 0.553 0.599 0.598 0.615 0.581 0.605 0.629 0.635
DJSRH 0.501 0.563 0.595 0.615 0.494 0.569 0.604 0.622
JDSH 0.579 0.628 0.647 0.662 0.578 0.634 0.659 0.672
DGCPN 0.552 0.590 0.602 0.596 0.564 0.590 0.597 0.597
UCH 0.521 0.534 0.547 / 0.499 0.519 0.545 /
UKD-SS 0.549 0.572 0.604 / 0.549 0.576 0.625 /
DSAH 0.549 0.576 0.625 / 0.574 0.598 0.653 /
UCCH 0.605 0.645 0.655 0.665 0.610 0.655 0.666 0.677
CMGCH 0.638 0.737 0.776 0.873 0.640 0.697 0.763 0.890

Table 1: MAP Comparisons of cross-modal search with different lengths of hash codes on MSCOCO

Parameter Settings
The unified hash representation length is set to 16 bits, 32
bits, 64 bits, and 128 bits respectively. For each image, the
Faster-RCNN detector provided by Bottom-Up and Top-
Down (BUTD) attention model are taken to extract R (R
= 36) region proposals and obtain a 2,048-dimensional fea-
ture for each region. And the BUTD model is pre-trained on
ImageNet and Visual Genome datasets. For each input text,
the basic version of the pre-trained Bert is leveraged to ob-
tain the original word embeddings with dimension 768. The
weight α is 0.9. The model is trained with batch size 256.
The queue length of momentum encoder hyperparameter K
is 8192 for Flickr30k and 65536 for MSCOCO, momentum
encoder update hyperparameter m is 0.99, temperature co-
efficient τ is 0.07.

Experimental Results and Analysis
Cross-modal Search Experimental Comparisons
with Different Lengths of Hash Codes
In this experiment, we compare the proposed CMGCH
with the state-of-the-art unsupervised and supervised cross-
modal search methods in terms of MAP performance on
two cross-modal hashing retrieval tasks of image query text
(I→T) and text query image (T→I). We compared CMGCH
with state-of-the-art algorithms with different lengths of
hash codes B, including 16, 32, 64, and 128 bits. Table 1
lists the results of MAP comparison of different algorithms
with different lengths of hash codes on MSCOCO. Table
2 lists the results of R@K comparison of different algo-
rithms with different lengths of hash codes on Flickr30k.
The average MAP and Recall curves of different algorithms
for MSCOCO and Flickr30k with different lengths of hash
codes are shown in Figure 2 and Figure 3, respectively. It
can be seen that as the length of the hash codes increases,
the accuracy of cross-modal search is improved. The reason

Figure 2: Comparison of average MAP for MSCOCO

lies in that longer hash codes can represent more informa-
tion. However, the longer the hash code length is, the larger
the search time costs are.

We can see that CMGCH obtains higher MAP per-
formance and R@K performance on the MSCOCO and
Flickr30k for the cross-modal hashing retrieval tasks respec-
tively. Compared with previous best result, the proposed
method achieves 16%, 17%, 19%, 31% increase in MAP for
I→T and 10%, 16%, 16%, 32% increase in MAP for T→I
on the MSCOCO separately in 16 bits, 32 bits, 64 bits and
128 bits. And it achieves an average of 159%, 191% and
178% increase in R@1 for I→T and an average of 165%,
182% and 186% increase in R@1 for T→I on the Flickr30k
separately in 64 bits, 128 bits, 512 bits. The reason is that
CMGCH completes inter-modal and intra-modal feature ap-
proximation by contrastive learning in the global embedding
stage to extract coarse-grained feature. And fine-grained im-
plicit features are also learned by contrastive learning on the
multimodal knowledge graph, and fused with global coarse-
grained features to ensure the similarity of feature vectors,
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Bit Method I→T T→I
R@1 R@5 R@10 R@1 R@5 R@10

64 VSE++ 10.7 28.0 39.2 8.3 25.4 37.1
DJSRH 3.6 14.4 22.1 3.4 11.6 18.5
JDSH 10.0 28.6 39.3 8.0 23.6 34.5
UCCH 14.5 37.6 50.8 10.9 32.3 44.0

CMGCH 36.7 67.0 77.1 28.9 56.2 67.0
128 VSE++ 11.3 31.14 42.6 9.2 27.7 40.4

DJSRH 7.7 27.2 37.8 5.9 19.9 30.0
JDSH 10.7 30.0 42.5 8.2 25.6 37.3
UCCH 17.9 44.9 55.4 10.9 37.0 50.1

CMGCH 52.1 79.1 88.2 39.5 68.2 77.5
512 VSE++ 13.5 34.7 48.2 10.8 31.1 43.6

DJSRH 17.9 43.5 56.3 13.3 36.3 48.9
JDSH 13.6 35.6 49.4 9.8 29.1 42.6
UCCH 22.8 48.1 61.0 16.9 41.8 54.9

CMGCH 63.6 86.7 92.5 48.4 77.1 85.3

Table 2: Recall comparisons of cross-modal search with dif-
ferent lengths of hash codes on Flickr30K

Figure 3: Comparison of average Recall for Flickr30k

thus promoting the improvement of cross-modal hashing re-
trieval performance.

Moreover, we compare the inference time of the pro-
posed method with some other state-of-the-art unsupervised
cross-modal hashing approaches. Comparison of inference
time is shown in Table 3. The time efficiency of the pro-
posed CMGCH is higher than that of UGACH and LSSH,
and comparable to that of UCCH, while delivering superior
MAP performance. Furthermore, the total parameters of the
proposed CMGCH and the suboptimal UCCH are 141.2M
and 257.8M, respectively. Thus we can see the proposed
CMGCH achieves better overall performance.

Ablation Experiment of the Proposed CMGCH
In order to verify the effectiveness of different learning com-
ponents, six types of CMGCH variants are compared and
analyzed on MSCOCO. In the experiment, the length of
hash code is 128 bits. CMGCH-mg: remove the multimodal
knowledge graph and GAT model on the diagram, just use
the global embedding; CMGCH-mgat: replacing GAT on
the graph with GCN; CMGCH-oc: remove the global inter-
modal contrastive learning; CMGCH-ic: remove the global

Method Inference Time MAP(I→T) MAP(T→I)
UGACH 0.254433s 0.615 0.635

LSSH 0.074445s 0.551 0.560
UCCH 0.017874s 0.665 0.677

CMGCH 0.018095s 0.873 0.890

Table 3: Inference time comparison on MSCOCO

CMGCH variants MSCOCO
I → T T → I

CMGCH-mg 0.823 0.837
CMGCH-mgat 0.853 0.844

CMGCH-oc 0.563 0.552
CMGCH-ic 0.714 0.792

CMGCH-goc 0.833 0.841
CMGCH-gic 0.793 0.705

CMGCH 0.866 0.890

Table 4: MAP performance of different CMGCH variants

intra-modal contrastive learning; CMGCH-goc: removes
inter-modal contrastive learning on the graph; CMGCH-gic:
remove intra-modal contrastive learning on graph.

Observing Table 4, it can be seen that, CMGCH has
achieved better performance, which verifies that the integra-
tion of the six learning components can further enhance the
cross-modal semantic association learning capabilities, and
reduce the semantic gap between different modal.The multi-
modal knowledge graph enhances the ability of the model to
acquire implicit relationships, and the implicit relationships
on the graph are tighter through inter-modal and intra-modal
contrastive learning on the graph, and the fine-grained fea-
tures further enhance the model’s ability to understand the
implicit relationships, e.g., the implicit relationship between
the image entity ”apple” and the text entity ”fruit” helps the
model to perform cross-modal retrieval. The inter-modal and
intra-modal contrastive learning in the global embedding
stage maximizes the mutual information across and within
modalities, and the fusion with local fine-grained features
enhances the cross-modal retrieval capability of the model.

Parameter Sensitivity Analysis
(1) Performance Evaluation with Different Parameter α.
From Figure 4(a), we can see that the performance of cross-
modal search has an improvement as α rises, but decreases
when α approaches 1. The possible reason is that MSCOCO
and Flickr30k datasets we used are feature vectors obtained
by Faster RCNN using the BUTD mechanism, rather than
the original dataset, so data augmentation of images may
degrade intra-modal contrastive learning effect. So we set α
to 0.9.

(2) Performance Evaluation with Different Length K
of momentum encoder queue. We set different queue
lengths for the momentum encoder shown in Figure 4(b),
and we find that the longer the queue, the better the model
works, which indicates that the long queue contains histori-
cal feature vectors and the model is able to learn a richer fea-
ture representation. The feature vectors in queue are usually
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(a)The impact of different alpha (b)The impact of different K

(c)The impact of different learning rate (d)The impact of different epoch
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Figure 4: Performance evaluation with different parameters

from different data samples, and the relationship between
these samples is more difficult to capture, so the model train-
ing yields a representation with stronger generalization abil-
ity.

(3) Performance Evaluation with Different Learning
Rate. In this experiment, the impact of learning rate lr on the
performance of CMGCH is analyzed. Figure 4(c) shows the
impact of different lr on MAP value of cross-modal search
performance when the code length is 64 bits. It can be seen
that when lr=0.0005, the MAP performance achieved in the
retrieval task is the highest. Therefore, we set lr=0.0005 in
the experiment.

(4) Performance Evaluation with Different Epoch. In
this experiment, the performance of cross-modal search un-
der different epoch sizes is analyzed. Experiments are car-
ried out on the MSCOCO dataset, and the experimental re-
sults are shown in Figure 4(d). It can be seen that as the
epoch increases, the algorithm gradually achieves conver-
gence. When epoch is 25 approximately, the convergence of
cross-modal search algorithm tends to stabilize.

Conclusion
The proposed work is the first attempt to study the self-
supervised multi-grained multi-modal knowledge graph
contrastive hashing for cross-modal search, aiming at learn-
ing the high-level and implicit cross-modal semantic asso-
ciations, enabling it to be better applied to real world appli-
cations without label supervision. In order to mine implicit
fine-grained cross-modal semantic associations, a multi-
modal knowledge graph is constructed, and a cross-modal
graph contrastive attention network is proposed to reason
on the multi-modal knowledge graph to sufficiently learn
the implicit fine-grained inter-modal and intra-modal knowl-
edge relations. In addition, for further promoting more ac-
curate cross-modal semantic alignment and fusion, a multi-
granularity contrastive learning mechanism is proposed,
which fuses the global coarse-grained and local fine-grained
embeddings by multihead attention mechanism for inter-
modal and intra-modal contrastive learning.
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