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Abstract
Efficiently utilizing rich knowledge in pretrained models has
become a critical topic in the era of large models. This
work focuses on adaptively utilizing knowledge from multi-
ple source-pretrained models to an unlabeled target domain
without accessing the source data. Despite being a practi-
cally useful setting, existing methods require extensive pa-
rameter tuning over each source model, which is compu-
tationally expensive when facing abundant source domains
or larger source models. To address this challenge, we pro-
pose a novel approach which is free of the parameter tun-
ing over source backbones. Our technical contribution lies in
the Bi-level ATtention ENsemble (Bi-ATEN) module, which
learns both intra-domain weights and inter-domain ensemble
weights to achieve a fine balance between instance specificity
and domain consistency. By slightly tuning source bottle-
necks, we achieve comparable or even superior performance
on a challenging benchmark DomainNet with less than 3%
trained parameters and 8 times of throughput compared
with SOTA method. Furthermore, with minor modifications,
the proposed module can be easily equipped to existing meth-
ods and gain more than 4% performance boost. Code is avail-
able at https://github.com/TL-UESTC/Bi-ATEN.

Introduction
Large-scale models have drawn significant attention for
their remarkable performance across a spectrum of applica-
tions (Ramesh et al. 2022; Irwin et al. 2022; Lee et al. 2020).
Considering that training large models from scratch requires
tremendous computational costs, fine-tuning has become a
predominant approach to transfer knowledge from large pre-
trained models to downstream tasks (Long et al. 2015; Guo
et al. 2020). However, this paradigm heavily relies on la-
beled training data and suffers from significant performance
decay when target data exhibits distribution shift from pre-
training data (Ben-David et al. 2010). Moreover, we usually
have multiple pretrained models trained on different sources
or architectures on hand, e.g., medical diagnostic models
trained on distinct regions or patient groups. Demands to
maximally utilizing knowledge from multiple pretrained
models are common in real world applications. To this end,
Multi-Source-Free Domain Adaptation (MSFDA) (Ahmed
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Method Param. Backbone Acc. Throughput

CAiDA 120.2M ResNet50 46.8 91
PMTrans 447.4M Swin 59.1 46

ATEN (ours) 4.9M Swin 59.1 970
Bi-ATEN (ours) 10.6M Swin 59.6 369

Table 1: Computation overhead and performance compari-
son between different methods on DomainNet.

et al. 2021; Dong et al. 2021) emerges as a promising tech-
nique to address these challenges by enabling holistic adap-
tation of multiple pretrained source models to an unlabeled
target domain, while not accessing source training data.

Existing MSFDA methods (Ahmed et al. 2021; Dong
et al. 2021; Han et al. 2023; Shen, Bu, and Wornell 2023)
typically tackle the problem via a two-step framework, i.e.,
(1) Tune each source model thoroughly towards target do-
main, and (2) Learn source importance weights to assemble
the source models. However, their overwhelming limitations
in computational efficiency and scalability prevent their ap-
plications on large-scale problems. For step (1), the number
of models to tune increases linearly along with the number
of source domains, which could become unacceptable for
large-scale problems with abundant source domains. The ne-
cessity of tuning all parameters for each model also makes
it infeasible to scale up these methods to larger models. In
Table 1 we compare the performance and trainable parame-
ters of CAiDA (Dong et al. 2021), PMTrans1 (Zhu, Bai, and
Wang 2023) and our methods on a challenging benchmark
DomainNet (Peng et al. 2019) with 6 domains. As a typical
MSFDA framework, CAiDA performs poorly due to lim-
ited performance of ResNet-50 (He et al. 2016) backbone.
By equipping a stronger backbone SwinTransformer (Liu
et al. 2021), a potential performance boost of +12.3% is
achieved at a cost of four times of parameters to tune. On
the other hand, we aim to achieve superior performance by
equipping SwinTransformer while demanding significantly
less training cost, presenting a more feasible and agile so-
lution for MSFDA on large models. For step (2), current
MSFDA methods learn domain-level ensemble weights, ap-

1PMTrans is a single-source domain adaptation method and we
evaluate it on MSFDA setting by taking its single-best results.
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Figure 1: Illustration of instance specificity and domain con-
sistency. Dots are weights assigned to each target sample.

plying identical ensemble strategy across all target instances.
Although the learned weights are intuitively interpretable in
terms of domain transferablity, they unavoidably introduce
misalignment and bias at instance-level. This controversy in-
herently introduces a trade-off between instance specificity
and domain consistency of ensemble weights, which has not
been well exploited by existing methods.

Recent success of model ensemble methods (Shu et al.
2021, 2022) suggests that it is effective to transfer knowl-
edge by designing adaptive ensemble weights. While op-
timal strategies are hard to learn (Mohammed and Kora
2023), we resort to slight tuning of several domain-specific
bottleneck layers, costing less than 0.1% of tuning the
whole model. As stated above, the key to designing effec-
tive weights is to exploit both domain-level transferabilities
and instance-level individual characteristics, as illustrated by
Fig. 1. Existing MSFDA methods learn weights solely from
feature representations, neglecting the potential transferabil-
ity mismatch between features and outputs, i.e., transferable
target features do not always lead to accurate predictions.
To address this issue, we propose to introduce additional
semantic information from classifiers for deriving weights.
For each feature representation, we first learn intra-domain
weights to mitigate transferability mismatch by finding the
most compatible classifier that produces unbiased outputs.
With unbiased outputs from the selected source classifier, we
further learn inter-domain ensemble weights that combine
source outputs into the final result. We propose a novel Bi-
level ATtention ENsemble (Bi-ATEN) to effectively learn
the two weights through attention mechanisms. Bi-ATEN is
capable of tailoring its ensemble decisions to the particulari-
ties of each instance, while maintaining the broader transfer-
ability trends that are consistent across domains. This bal-
ance is essential for accurate domain adaptation, where a
model needs to leverage domain-specific knowledge with-
out losing the overarching patterns that drive adaptation.

The proposed Bi-ATEN can be simplified into inter-
domain ATtention ENsemble (ATEN) and plugged into ex-
isting MSFDA methods by replacing their weight-learning
module. Although leaning towards domain consistency in
the specificity-consistency balance, ATEN still exhibits clear
performance boost over baseline methods, proving the ef-
ficacy of our design. In a nutshell, we achieve adaptation
primarily by assuring instance specificity and domain con-
sistency along with slight tuning of bottlenecks. Table 1

provides comprehensive comparison between our methods
and existing methods. Our contributions can be summarized
as: (1) We propose a novel framework to agilely handle
MSFDA by learning fine-grained domain adaptive ensemble
strategies. (2) We design an effective module Bi-ATEN that
learns both intra-domain weights and inter-domain ensem-
ble weights. Its light version ATEN can be equipped to exist-
ing MSFDA methods to boost performance. (3) Our method
significantly reduces computational costs while achieving
state-of-the-art performance, making it feasible for real-life
transfer applications with large source-trained models. (4)
Extensive experiments on three challenging benchmarks and
detailed analysis demonstrates the success of our design.

Related Work
Source-free domain adaptation (SFDA) assumes no la-
beled source data but a source-trained model is available for
adaptation (Li et al. 2021a). SHOT (Liang, Hu, and Feng
2020) pioneers the problem by proposing a clustering al-
gorithm for pseudo-labeling and utilizes information max-
imization loss. Several works (Li et al. 2020; Yang et al.
2021) follow the research line to improve or develop new
clustering methods. Kundu et al. (2022) reveal insight on
discriminability and transferability trade-offs and propose to
mix-up original and corresponding translated generic sam-
ples to improve performance. Other relevant settings includ-
ing source-free active domain adaptation (Li et al. 2022) and
imbalanced SFDA (Li et al. 2021b) have also been explored.

Multi-source domain adaptation (MSDA) assumes that
labeled source data from multiple domains are available,
and tries to transfer simultaneously towards target domain
with theoretical guarantees from pioneering works (Ben-
David et al. 2010; Crammer, Kearns, and Wortman 2008).
M3SDA (Peng et al. 2019) provides theoretical insights that
all source-target and source-source pairs should be aligned
to achieve adaptation. DRT (Li et al. 2021c) proposes a
dynamic module that adapts model parameters according
to samples. ABMSDA (Zuo, Yao, and Xu 2021) proposes
a Weighted Moment Distance to ensure higher attention
among more related domains. STEM (Nguyen et al. 2021)
generates a teacher-student framework to close the gap be-
tween source and target distributions.

Multi-source-free domain adaptation (MSFDA) com-
bines SFDA and MSDA, aiming to learn optimal source
model combinations that perform best on unlabeled target
data. DECISION (Ahmed et al. 2021) first explores the prob-
lem and proposes to assemble source outputs with learn-
able weights while updating source models via weighted
information maximization. CAiDA (Dong et al. 2021) pro-
poses to use a similar framework but with a confident-
anchor-induced pseudo label generator. Shen, Bu, and Wor-
nell (2023) develop a generalization bound on MSFDA
that reveals an inherent bias-variance trade-off. A hierarchi-
cal framework is further proposed to balance the trade-off.
DATE (Han et al. 2023) evaluates source transferabilities via
a Bayesian perspective before quantifying the similarity de-
gree by a multi-layer perception. All forementioned methods
learn domain-level importance regardless of instance char-
acteristics, which unavoidably limits their performance.
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Figure 2: Framework of our method. Different colors represent different source domains. For cross-domain outputs, colors on
the left semicircles represent domains of bottleneck features while that on the right semicircles represent domains of classifiers
that generate the cross-domain output. Best viewed in color.

Method
Problem Definition
Assume we have n source-trained models {hi

s}ni=1 for C-
category classification task. Given an unlabeled target do-
main {Xt} with identical categories, the goal is to optimize
all n source models towards satisfactory performance on
the target domain. Following (Tzeng et al. 2014), a bottle-
neck layer ks with parameter θks

is applied after the fea-
ture extractor fs with parameter θfs , and before the final
fully-connected classifier gs with parameter θgs . Given a
target sample xt, we define its bottleneck feature with dk
dimensions produced by source model hi

s as ϕi
t = (kis ◦

f i
s)(xt), and the output of source model hi

s can be denoted
as yit = gis(ϕ

i
t). Specifically, in this paper we consider cross-

domain outputs obtained by forwarding ϕi
t through a classi-

fier from another domain j, i.e., yijt = gjs(ϕ
i
t). By learning

intra-domain weights αi, unbiased domain output for fea-
ture ϕi

t is denoted as ỹit =
∑n

j=1 α
i
jy

ij
t . Inter-domain en-

semble weights β are further learned to obtain final output
ÿt =

∑n
i=1 βiỹ

i
t. Our goal is to learn optimal {αi}ni=1, β

and bottleneck parameters θks that minimizes training loss.

Overview
Fig. 2 depicts our framework. A target sample is forwarded
through the source models to extract the bottleneck features.
Instead of directly generating outputs by specific source
classifier, we compute all possible cross-domain outputs
with respect to current feature by forwarding it through all
source classifiers. Intra-domain weights {αi}ni=1 are com-
puted between the feature representation and all output vec-
tors for obtaining unbiased outputs. Subsequently, inter-
domain weights β are learned to assemble the unbiased do-
main outputs into the final classification result. Note that
both source backbones and source classifiers remain frozen
during the entire training process. Laying at the core of the
framework is the Bi-ATEN module, as depicted on the right

of Fig. 2. It simultaneously learns {αi}ni=1 from feature-
output similarities and β from feature-feature similarities.
Next we elaborate on the detailed design of each module.

Bi-level Attention Ensemble
Intra-domain weights. All current MSFDA methods adopt
an end-to-end training paradigm that treats each source
model as a whole (Dong et al. 2021). However, the dis-
tribution shifts between target and source data can lead to
mismatches within the source model components like bot-
tlenecks and classifiers. Inspired by deep model reassembly
methods (Yang et al. 2022), we propose to improve current
MSFDA paradigms by performing a partial model reassem-
bly. We explore compatible bottleneck-classifier pairs tai-
lored towards target data characteristics, and obtain the re-
assembled result by summing over weighted cross-domain
outputs of bottleneck-classifier pairs. Given bottleneck fea-
ture from the ith source domain ϕi

t ∈ Rdk , we first obtain its
cross-domain outputs by:

Oi
t = Concat({θjgsϕ

i
t}nj=1, dim = 0), (1)

where Oi
t ∈ Rn×C is cross-domain output matrix for the

ith feature. Since source classifier parameters are fixed, our
aim to find the most compatible classifier can be converted to
finding the most similar output vector after classification lin-
ear transformation θgs . We adopt cosine similarity to elimi-
nate norm mismatch between features and outputs:

Simi
t = Cosine(ϕi

tW
F , Oi

tW
O), (2)

where Simi
t ∈ Rn is similarity vector, WF ∈ Rdk×demb

(Linear2 in Fig. 2) and WO ∈ RC×demb (Linear1 in Fig. 2)
are linear transforms that transform feature and output into
the same embedding dimension demb. Then, intra-domain
weights are obtained by applying softmax operation over the
similarity vector:

αi = Softmax(Simi
t). (3)
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Finally, assembled output for domain i is obtained by:

ỹit =
n∑

j=1

αi
jθ

j
gsϕ

i
t. (4)

We regard output ỹit as unbiased if it is: (1) Confident.
Ambiguous outputs imply multiple possible interpretations
on the feature, increasing the risk of feature-output mis-
match. (2) Diverse. Overly consistent classification results
lead to mode collapse where certain classes are rarely con-
sidered. We apply IM loss (Liang, Hu, and Feng 2020), a
base component shared by current MSFDA methods, to as-
sure unbiased intra-domain ensemble:

Lintra =
n∑

i=1

LIM (Softmax(ỹit)), (5)

where LIM is defined as:

LIM (y) = Lent(y)− Ldiv(y),where (6)

Lent(y) = −Ext∈Xt

[
C∑

c=1

δc(y) log δc(y)

]
,

Ldiv(y) = −
C∑

c=1

p̄c log p̄c,

where p̄c = −Ext∈Xt
δc(y) and δc(·) takes the cth logit.

Inter-domain weights. We derive ensemble weights from
bottleneck features. Motivated by the success of attention
mechanism (Vaswani et al. 2017), we obtain inter-domain
weights by computing attention between different linear rep-
resentations of bottleneck features. To allow intra-domain
adjustments according to inter-domain weights, the trans-
form matrix WF is shared with that in Eq. (2):

ϕ̂K
t = Concat({ϕi

tW
F }ni=1, dim = 0). (7)

For query embeddings, features are first concatenated before
linearly transformed:

ϕ̂Q
t = Concat({ϕi

t}ni=1, dim = 1)WQF , (8)

where WQF ∈ R(ndk)×demb is the query transform ma-
trix (Linear3 in Fig. 2). Similar to intra-domain weights, we
compute inter-domain weights via:

β = Softmax(Cosine(ϕ̂Q
t , ϕ̂

K
t )). (9)

Final ensemble result is then obtained by:

ÿt =
n∑

i=1

βiỹ
i
t. (10)

Apart from being confident and diverse, the final ensemble
result should more importantly be correct. Since no label is
available, in this work we adopt a dynamic-cluster-based
strategy to provide pseudo labels for classification. The dy-
namic is two-fold: dynamic feature combinations and dy-
namic centroids for each instance. We first compute centroid
for class c generated by source model hi

s by:

µi
c =

∑
xt∈Xt

δc(Softmax(ÿt))ϕ
i
t∑

xt∈Xt
δc(Softmax(ÿt))

, (11)

where δc(·) takes the cth logit. Dynamic centroid for the mth

target sample xm
t of class c is computed by assembling all

centroids using instance-specific inter-domain weight βm:

µ̃m
c =

n∑
i=1

βm
i µi

c. (12)

For target samples, their feature representations are dynami-
cally obtained by assembling all source bottleneck features:

ϕ̃m
t =

n∑
i=1

βm
i ϕmi

t , (13)

where ϕmi
t is bottleneck feature extracted by source model

from domain i for sample xm
t . Finally, we generate pseudo

label for xm
t by:

yt = argmax
c

Cosine(ϕ̃m
t , µ̃m

c ). (14)

Dynamic clustering greatly extends the diversity and flex-
ibility of generated pseudo labels. As Bi-ATEN becomes
more reliable, quality of pseudo labels is concurrently im-
proved, which in turn helps the training of Bi-ATEN. With
pseudo labels, objective for final output is formulated as:

Linter = γCE(ÿt, yt) + LIM (Softmax(ÿt)), (15)
where γ is a hyperparameter and CE(·) is cross entropy loss
with label smoothing (Szegedy et al. 2016). Overall objec-
tive is given as:

L = Linter + λLintra, (16)
where λ is a trade-off hyperparameter. We train our model
by solving the following optimization problem:

α, β, θks
= argmin L. (17)

Attention Ensemble as a Pluggable Module
Consider an extreme situation where αi contains a sin-
gle one at the ith location and zeros elsewhere. It simpli-
fies Bi-ATEN to ATEN with only inter-domain ensemble
weights β, which aligns with weight learning paradigm of
existing MSFDA methods, and can therefore replace their
weight learning module easily. Assume objective of the orig-
inal MSFDA method as Lorigin, the optimization goal after
equipping ATEN becomes:

β, θks
, θfs = argmin Lorigin. (18)

αis are fixed as one-hot vectors as described above, thus
saving the training of WO.

Training Process
We design an alternate training procedure for Bi-ATEN.
We observe that for target domains with relatively smaller
domain gap, the domain-specific source classifiers already
show satisfactory performance, while for those with larger
domain gap, intra-domain weights are vital for adaptive
feature-classifier matching. Considering both cases, in cer-
tain epochs we manually set αi to one-hot vectors as in
ATEN. Different from Eq. (18), we still update WO via
Eq. (5). Such alternate training utilizes the benefits of both
strategies, striking a balance between intra-domain compat-
ibility and domain-consistent adaptation.
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Method SF Backbone →clp →inf →pnt →qdr →rel →skt Avg. Param. Train time

M3SDA ×
ResNet101

58.6 26.0 52.3 6.3 62.7 49.5 42.6 42.48M /
LtC-MSDA × 63.1 28.7 56.1 16.3 66.1 53.8 47.4 42.50M /

STEM × 72.0 28.2 61.5 25.7 72.6 60.2 53.4 43.78M /
DRT × 71.0 31.6 61.0 12.3 71.4 60.7 51.3 60.90M /

DECISION
√

ResNet50

61.5 21.6 54.6 18.9 67.5 51.0 45.9 120.14M 2.9H
DATE

√
61.2 22.7 53.5 18.1 69.8 50.9 46.0 / /

CAiDA
√

63.6 20.7 54.3 19.3 71.2 51.6 46.8 120.20M 3.0H
Surrogate

√
66.5 21.6 56.7 20.4 70.5 54.4 48.4 / /

TransMDA
√

71.7 29.0 61.4 18.6 74.1 60.9 52.6 / /

CDTrans-best × DeiT-base 69.0 31.0 61.5 27.2 72.6 58.1 53.2 428.23M /

SSRT-best × ViT-base 70.6 37.1 66.0 21.7 75.8 59.8 55.2 442.74M /

DRT ×

SwinTransformer

74.6 33.2 64.8 20.3 76.4 64.6 55.6 91.43M /
AVG-ENS

√
74.1 35.3 66.1 15.0 81.6 62.9 55.8 / /

PMTrans-best × 74.1 35.3 70.7 30.9 79.8 63.7 59.1 447.43M /
ATEN (ours)

√
76.6 37.2 68.6 24.0 83.5 64.6 59.1 4.92M 0.6H

Bi-ATEN (ours)
√

77.0 38.5 68.6 25.0 83.6 64.9 59.6 10.56M 1.2H

Table 2: Results on DomainNet. SF denotes whether the method follows source-free setting. Best results are in bold font.

Experiments
In this section we present main results and further analysis.
Implementations are based on MindSpore and PyTorch.

Datasets and Baselines
Datasets. We evaluate our method on three MSFDA bench-
marks Office-Home (Venkateswara et al. 2017), Office-
Caltech (Gong et al. 2012) and DomainNet (Peng et al.
2019). Office-Home is divided into 65 categories with 4 do-
mains Art, Clipart, Product and RealWorld. Office-Caltech
is extended from Office31 (Saenko et al. 2010) by adding
Caltech (Griffin, Holub, and Perona 2007) as a fourth do-
main. DomainNet is composed of 0.6 million samples from
six distinct domains, each containing 345 categories.

Baselines. On Office-Home and Office-Caltech we vali-
date boost obtained by equipping ATEN to existing MSFDA
methods: DECISION (Ahmed et al. 2021), CAiDA (Dong
et al. 2021), DATE (Han et al. 2023), and compare with other
MSDA methods including M3SDA (Peng et al. 2019), LtC-
MSDA (Wang et al. 2020), MA (Li et al. 2020), NRC (Yang
et al. 2021) and SHOT (Liang, Hu, and Feng 2020). Baseline
results of forementioned methods are cited from DATE. On
DomainNet we compare our ATEN and Bi-ATEN against
various competing baselines implemented on various back-
bones. ResNet101 (He et al. 2016): M3SDA, LtC-MSDA,
STEM (Nguyen et al. 2021) and DRT (Li et al. 2021c).
ResNet50 (He et al. 2016): DECISION, CAiDA, DATE,
Surrogate (Shen, Bu, and Wornell 2023) and TransMDA (Li
and Wu 2023). DeiT (Touvron et al. 2021): CDTrans (Xu
et al. 2021). ViT (Dosovitskiy et al. 2020): SSRT (Sun et al.
2022). SwinTransformer (Liu et al. 2021): PMTrans (Zhu,
Bai, and Wang 2023) and DRT implemented by ourselves.

Main Results
DomainNet. Table 2 illustrates classification accuracies on
the DomainNet dataset. Note that methods end with -best

are originally single-source domain adaptation approaches,
and we select their single-best results on each target domain
for fair comparison. AVG-ENS is a naive ensemble strat-
egy by averaging over outputs from all source models, and
is listed as a baseline. The results show that our Bi-ATEN
achieves superior performance on most of the tasks, except
for domains pnt and qdr we are behind PMTrans. This is
because PMTrans has access to labeled source data, which
helps to overcome the large domain gaps in DomainNet
by distribution alignment. Bi-ATEN exhibits clear enhance-
ments than ATEN, especially on the two most challeng-
ing tasks inf and qdr. Under such significant domain shift,
bottleneck-classifier pairs learned by Bi-ATEN show bet-
ter compatibility. The Train time column compares training
time among available source-free methods on target clp. Our
methods achieve higher accuracy in considerably less train-
ing time. The Param. column compares trainable parame-
ters of existing open-source methods. Source-free methods
train more parameter as they tune all source models. Larger
transformer-based backbones also require heavy computa-
tion overheads. Our methods require significantly less train-
able parameters to surpass all competing method while fol-
lowing source-free setting, demonstrating the efficacy and
agility of our methods. Another key observation is that all
existing MSFDA methods are implemented on ResNet50
backbone due to high computational complexities, largely
limiting their performance. Our Bi-ATEN stands out as the
first MSFDA method that introduces large models like Swin-
Transformer as backbone while maintaining a surprisingly
low computation cost. Notably, our Bi-ATEN achieves a re-
markable performance improvement of 7% over the current
SOTA in MSFDA task, and additionally demonstrates com-
parable or even superior performance with source-available
domain adaptation methods, strongly supporting the validity
and efficiency of the proposed method.

Office-Home and Office-Caltech. Table 3 gives perfor-
mance improvements obtained by plugging ATEN to ex-
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Method SF Office-home Office-Caltech

→Art →Clp →Prod →Real Avg. →amazon →caltech →dslr →webcam Avg.

M3SDA × 67.2 63.5 79.1 79.4 72.3 94.5 92.2 99.2 99.5 96.4
LtC-MSDA × 67.4 64.1 79.2 80.1 72.7 93.7 95.1 99.7 99.4 97.0

MA
√

72.5 57.4 81.7 82.3 73.5 95.7 95.6 97.2 99.8 97.1
NRC

√
72.7 58.1 82.3 82.1 73.8 95.9 94.9 97.5 99.3 96.9

SHOT
√

72.2 59.3 82.9 82.8 74.3 95.7 95.8 96.8 99.6 97.0

DECISION
√

73.3 58.7 82.9 84.0 74.7 95.6 95.4 96.8 99.3 96.8
+ATEN (ours)

√
76.3 60.6 84.5 83.7 76.3 95.8 96.0 100.0 99.7 97.9

CAiDA
√

70.3 55.0 83.0 80.7 72.2 95.2 95.6 98.1 99.7 97.1
+ATEN (ours)

√
76.1 60.3 85.1 83.5 76.3 95.9 96.3 100.0 99.7 98.0

DATE
√

75.2 60.9 85.2 84.0 76.3 95.6 95.7 98.1 99.8 97.3
+ATEN (ours)

√
76.7 61.6 85.2 84.7 77.1 95.9 95.7 100.0 99.7 97.8

Table 3: Results on Office-Home and Office-Caltech. The ‘+ATEN’ rows show improvements obtained by plugging ATEN into
original methods. SF denotes whether the method follows source-free setting. Best results are in bold font.

Method →clp →inf →skt Avg.

Bi-ATEN (ours) 77.0 38.5 64.9 60.1
ATEN (ours)
(w/o intra-domain weights) 76.6 37.2 64.6 59.5

w/o alternate training 75.8 38.6 64.1 59.5
w/o Lintra 76.1 35.8 63.4 58.4
w/o LIM 75.8 38.5 63.6 59.3

Table 4: Ablation study on three tasks from DomainNet.
Best results are in bold font.

isting MSFDA methods. Results show that computing en-
semble weights by ATEN brings a maximal 4.1% over-
all accuracy boost and hardly any negative effects. The
combination DATE+ATEN achieves the best accuracy on
Office-Home with +0.8% improvement while more signif-
icant boost can be observed on baselines DECISION and
CAiDA. On Office-Caltech, CAiDA+ATEN achieves the
highest accuracy of 98%, approaching fully-supervised per-
formance. We notice that accuracies obtained by plugging in
ATEN tend to be similar within the same dataset despite the
varying baseline performance. This phenomenon indicates
that ATEN is able to learn stable ensemble strategies disre-
garding potential perturbations from origin method, which
guarantees fair performance and steady improvements on
various baselines. The experiment provides compelling evi-
dence that ATEN is not only effective with fixed backbones
but also offers promising enhancements when applied to ex-
isting MSFDA methods, suggesting that learning ensemble
weights through our ATEN is beneficial.

Analytical Experiments
Ablation study. Table 4 presents ablation study by remov-
ing different modules in our framework, where w/o LIM

is to remove the IM loss in Eq. (15). It can be concluded
that all modules contribute positively to our method, and
the complete framework Bi-ATEN achieves the best over-
all accuracy. The alternate training procedure aims to bal-
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Figure 3: Domain-level inter-domain weight comparison.
Bars represent source-only accuracies of source models.
Lines represent averaged weights assigned to each source.
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Figure 4: Class-level inter-domain weight comparison on
Office-Home. Bars represent source accuracy. Lines repre-
sent weight deviations assigned to each source output.

ance the adaptation performance under both small and large
distribution shift by focusing on domain specific bottleneck-
classifier pairs in certain epochs. However, this procedure
could harm the learning of intra-domain weights under sig-
nificant domain shift as in task →inf. Therefore, remov-
ing alternate training can lead to slight accuracy increase in
these challenging tasks. Removing Lintra brings the largest
performance decay, suggesting that learning inappropriate
intra-domain weights can harm final outcomes. The IM loss
is more effective in easier tasks (→clp, →skt) where well-
classified classes might mislead similar classes. On hard
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Figure 5: Class-level inter-domain weights on DomainNet.
Bars represent source accuracies and lines represent domain
weight deviations assigned to each source output.

tasks (→inf) where most samples are misclassified, mode
collapse rarely occurs thus IM loss is less effective.

Weight analysis. We present a comprehensive analysis
on the two types of weights learned in our framework. Fig. 3
shows that domain-level weights learned by ATEN aligns
well with source model transferabilities and accuracies, and
this similarity is comparable to that achieved by DATE.
This demonstration emphasizes that ATEN effectively learns
domain-consistent inter-domain ensemble weights.

Limited flexibility of identical inter-domain ensemble
weights prevent them from accommodating special in-
stances with unique transfer characteristics, ultimately lead-
ing to a decline in performance. Our method addresses
this by learning tailored inter-domain weights. We examine
classes instead of instances for the sake of brevity. Fig. 4
represents how the class-level inter-domain weights devi-
ates from domain-level weights, showcasing their ability to
dynamically adapt to different classes that require distinct
transferabilities. In contrast to DATE, which shows limited
class-level adaptability, ATEN demonstrates its ability to
learn individualized and effective strategies by striving to
derive suitable weights customized for each class. However,
without intra-class weights, this customization is limited, as
the deviations are relatively subtle in Fig. 4. Fig. 5 provides
the results on DomainNet of our full design. Under more sig-
nificant transferability gap, Bi-ATEN is still able to adapt in-
telligently to source models with zero transferability by ac-
tively reducing their corresponding weights to prevent nega-
tive transfer. The tailored weights are deviated more signifi-
cantly with the help of intra-domain weights. The collabora-
tive evidence presented in Fig. 3, Fig. 4 and Fig. 5 strongly
supports that our method indeed learns weights that are spe-
cific to instances and consistent on domains.

Intra-domain weights learned by Bi-ATEN are presented
in Fig. 6. Each group of weights are corresponding intra-
domain weights αi for the source bottleneck feature. It can
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Figure 6: Intra-domain weights on DomainNet. Bars repre-
sent intra-domain weights assigned to each source classifier.
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Figure 7: Hyperparameter analysis on DomainNet. Numbers
represent overall accuracy obtained by each hyperparameter
combination.

be seen that the classifiers from the same domain as bot-
tleneck features receive the majority of attention. However,
this attention can also dynamically match more compatible
target domains, as exemplified in source rel of Fig. 6a.

Hyperparameter analysis. Fig. 7 gives accuracies under
different hyperparameters in Eq. (15) and Eq. (16). Results
show that a large γ harms performance, which suggests that
overly relying on pseudo labels misguides the weight learn-
ing process. For target domains with larger domain gap (tar-
get inf), a larger λ is needed to constrain the intra-domain
weights to avoid negative transfer, as stated in ablation study.
Optimal parameter combinations might vary across different
target data, but the overall performance is relatively stable.

Conclusion

This research aims to address the high computation costs as-
sociated with existing MSFDA methods. We present a novel
framework that prioritizes the learning of instance-specific
and domain-consistent ensemble weights, instead of exten-
sively tuning each source model. We achieve this by design-
ing a novel bi-level attention module that effectively learns
intra-domain and inter-domain weights. Extensive experi-
ments demonstrate that our methods significantly outper-
form state-of-the-art methods while requiring considerably
lower computation costs. We believe that our work has the
potential to encourage the exploration of more light-weight
approaches to address the challenges posed by MSFDA.
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