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Abstract

To train generalizable Reinforcement Learning (RL) agents,
researchers recently proposed the Unsupervised Environment
Design (UED) framework, in which a teacher agent creates
a very large number of training environments and a stu-
dent agent trains on the experiences in these environments
to be robust against unseen testing scenarios. For example,
to train a student to master the “stepping over stumps” task,
the teacher will create numerous training environments with
varying stump heights and shapes. In this paper, we argue that
UED neglects training efficiency and its need for a very large
number of environments (henceforth referred to as infinite
horizon training) makes it less suitable for training robots and
non-expert humans. In real-world applications where either
creating new training scenarios is expensive or training effi-
ciency is of critical importance, we want to maximize both the
learning efficiency and learning outcome of the student. To
achieve efficient finite horizon training, we propose a novel
Markov Decision Process (MDP) formulation for the teacher
agent, referred to as Unsupervised Training Sequence Design
(UTSD). Specifically, we encode salient information from the
student policy (e.g., behaviors and learning progress) into the
teacher’s state space, enabling the teacher to closely track
the student’s learning progress and consequently discover
the optimal training sequences with finite lengths. Addition-
ally, we explore the teacher’s efficient adaptation to unseen
students at test time by employing the context-based meta-
learning approach, which leverages the teacher’s past experi-
ences with various students. Finally, we empirically demon-
strate our teacher’s capability to design efficient and effective
training sequences for students with varying capabilities.

Introduction
In order to train generalizable Reinforcement Learning (RL)
agents that are robust to various challenges and unseen sce-
narios, researchers have proposed Distributional RL (Belle-
mare, Dabney, and Munos 2017; Brunke et al. 2022), model-
based RL (Kaiser et al. 2019; Moerland et al. 2023) and
adversarial RL (Pinto et al. 2017; He et al. 2022). Re-
cently, Unsupervised Environment Design (Dennis et al.
2020; Jiang, Grefenstette, and Rocktäschel 2021; Jiang et al.
2021; Parker-Holder et al. 2022; Li, Varakantham, and Li
2023; Li, Li, and Varakantham 2023; Tio and Varakantham
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Figure 1: A high-level overview of UED and USTD.

2023)) formulates a training framework between a teacher
agent and a student agent, where the teacher creates a very
large number of training environments (e.g., mazes with dif-
ferent positions of obstacles and car-racing games with var-
ious track designs) to improve the student’s generalization
ability such that it is robust to “out-of-distribution” (OOD)
scenarios. UED algorithms have been empirically shown to
help RL agents achieve state-of-the-art generalization per-
formance.

The existing UED algorithms seek to generate an infinite
number of environments and open-endedly train the student
based on the regret notion (we will introduce regret in detail
in Section 2). For example, to help the student generalize
to a variety of mazes, the state-of-the-art algorithm (Parker-
Holder et al. 2022) creates hundreds of thousands of training
mazes, but such a massive amount of training is usually low-
efficient and the student cannot learn anything in most of the
mazes. Consequently, such infinite training is less applicable
to real-world tasks where training efficiency is critical. On
top of achieving well-generalizing agents, we also want to
maximize the agent training efficiency with as few environ-
ments or tasks as possible in real-world tasks. For example,
to train a robot to climb stairs, we cannot afford to create tens
of thousands of real stairs with various heights and slopes in
the laboratory. Instead, it is desirable for the robot to gen-
eralize well to a variety of stairs with just a few training
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environments. Besides, to teach non-expert humans cooking
skills, we want to make sure the cooking tasks in the train-
ing curriculum are optimally arranged regarding both train-
ing efficiency and training outcome. Both example training
tasks require efficient finite horizon training, which cannot
be addressed by the UED framework.

To that end, we make four key contributions. First, we
propose a new training framework, UTSD, to enable the
teacher to discover efficient training sequences. Second, we
employ the Quality Diversity approach to select diverse val-
idation environments with respect to the student policy and
subsequently encode the student policy into the state space
of the teacher. Third, we explore the teacher’s rapid adap-
tation to unseen students by employing the context-based
meta-RL approach to encode students with various prop-
erties into latent variables. Finally, we empirically demon-
strate that our proposed teacher method can not only dis-
cover training sequences that maximize students’ learn-
ing efficiency and final generalization performance but also
rapidly adapt to unseen students with just a few interactions.

Background
In this section, we briefly review the background of unsu-
pervised environment design and quality diversity.

Unsupervised Environment Design
The Unsupervised Environment Design (UED) framework
assumes a teacher agent and a student agent, where the
teacher creates an infinite number of environments to train
the student such that it can generalize well to a variety of en-
vironments. UED problems are formally defined on an Un-
derspecified Partially Observable Markov Decision Process
(UPOMDP) using the following tuple:

⟨S,A,Θ, I, O, T,R, γ⟩

where S, A and O are the set of states, actions and obser-
vations respectively. T and R are the transition and reward
functions respectively. γ is the discount factor. The most im-
portant element in the tuple is Θ, which is the representation
of environments. A particular representation θ ∈ Θ (can be
an encoding of the environment, or sequence of values) de-
fines an environment and can affect the transition and obser-
vation function, i.e. T : S×A×Θ → S and I : S×Θ → O.
The goal of the teacher agent policy Λ is to generate a dis-
tribution over the next set of environment parameter values
(i.e., ∆(Θ)) to train the student such that the student is ro-
bust to any given θ ∈ Θ, which can be written as:

Λ : Π → ∆(Θ) s.t.

max
π

V θ(π) = max
π

EπV θ(τ) = max
π

Eπ
[ H∑
t=0

rθt · γt
]

where Π is the set of possible policies of the teacher, rθt is
the reward obtained by student policy π in an environment
with environment representation θ at time step t.

In all approaches for solving UED, the student always op-
timizes a policy that maximizes its value on the given θ. The
different approaches for solving UED vary on the method

adopted by the teacher. We now elaborate on the Λ em-
ployed by existing UED algorithms. Two of the earliest ap-
proaches to UED are Domain Randomization (DR, (Jakobi
1997; Tobin et al. 2017)), which uniformly randomizes the
environment configurations regardless of the student’s pol-
icy, and Minimax (Morimoto and Doya 2005; Pinto, David-
son, and Gupta 2017) that adversarially generates challeng-
ing environments to minimize the rewards of the student’s
policy. These fundamental approaches are significantly out-
performed by the Protagonist Antagonist Induced Regret
Environment Design (PAIRED, (Dennis et al. 2020)) algo-
rithm which focuses on the principled generation of envi-
ronments based on the regret notion. The regret is defined
approximately as the difference between the maximum and
the mean return of the student’s policy:

regretθ(π) ≈ max
τ∼π

V θ(τ)− Eτ∼πV θ(τ)

Later on, PLR⊥ (Jiang et al. 2021) combines the random en-
vironment generator with environment prioritization based
on an efficient approximation of regret, referred to as posi-
tive value loss (a customized form of Generalized Advantage
Estimation (GAE)).

gaeθ(π) =
1

H

H∑
t=0

max

(
H∑
k=t

(γλ)k−tδk, 0

)
(1)

where γ and λ are the MDP and GAE discount factors re-
spectively, H is the time horizon and δk is the TD-error at
time step k.

The state-of-the-art algorithm, ACCEL (Parker-Holder
et al. 2022), performs random edits on the generated high-
regret environments through human-defined step size so that
it can efficiently explore the environment space and achieve
a smoothly evolving curriculum.

The leading UED algorithms all rely on regret to create an
infinite number of new training environments for the student.
However, such infinite horizon training is not suitable for
training robots and humans, and we aim to address efficient
finite horizon training in this paper.

Quality Diversity
Quality Diversity (QD, (Mouret and Clune 2015; Pugh,
Soros, and Stanley 2016)) aims to generate a set of diverse
solutions to the given problem, where each solution ϕ is
evaluated based on both its quality and its diversity. A QD
problem defines an objective function f : Rn → R that
evaluates the solution ϕ’s quality, and a measure function
m : Rn → Rk that measures the solution diversity in the
descriptor space D. The objective function is typically the
expected cumulative rewards and the measure function is
used to differentiate between solutions and computes a de-
scriptive vector of features in the Cartesian space, e.g., how
long the agent takes to learn a task and the agent’s unit fuel
consumption. Practically, the continuous descriptor space D
is discretized into N cells, and each solution is mapped to
a cell d ∈ D based on its measure m(ϕ). Note that each
cell contains at most one solution and empty cells have an
objective value of 0. The solutions that occupy cells form
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an archive of solutions. A QD algorithm aims to find a set
of solutions {ϕ1, ϕ2, ..., ϕN} that maximize the QD-score,
which is defined as:

N∑
i=1

f(ϕi) (2)

The performance of a QD algorithm is also evaluated by the
coverage of the descriptor space: 1

N

∑N
i=1 1ϕi

, where 1ϕi

means cell i is occupied by a solution ϕi.
We can put QD into the context of UED and assume a

student policy π acts in a UPOMDP defined on a parameter
space Θ. When applying QD to UED, QD evaluates an en-
vironment with an objective value f(θ, π) : Rn → R and
a measure function m(θ, π) : Rn → Rk. In this setting,
the QD algorithm aims to find environments that maximize
f but are diverse with respect to the diversity measure m.
In the literature, researchers (Fontaine and Nikolaidis 2020;
Fontaine et al. 2021a,b; Bhatt et al. 2022) employ QD to gen-
erate diverse training and testing environments with a fixed
π. In this paper, we adopt the QD approach to select vali-
dation environments that elicit diverse policy behaviors and
subsequently encode comprehensive information about the
student policy with the student’s validation performance.

UTSD
In UED, the teacher is learning an infinite horizon MDP,
whose state space has not been formally defined. To dis-
cover efficient finite horizon training, we introduce a new
MDP formulation for the teacher, which is referred to as the
teacher MDP and can be formally written as:

M = ⟨S,A, T,R,H⟩

where S, A, T and R are the set of teacher’s state space, ac-
tion space, transition function and reward function respec-
tively, and H is the horizon limit. Two significant differ-
ences between this teacher MDP and the loosely defined
infinite MDP in UED are the state space and the horizon.
First, the teacher’s state space S encodes salient information
about the student’s policy (e.g., overall abilities and behav-
iors), allowing the teacher to closely monitor the student’s
learning progress. Second, teacher MDP has a horizon con-
straint that motivates the teacher to discover highly efficient
and effective training sequences. We refer to this finite hori-
zon training framework as Unsupervised Training Sequence
Design (UTSD), where the student learns in a low-level en-
vironment defined on a UPOMDP and the teacher learns on
the high-level teacher MDP.

In this paper, we denote the teacher policy and student
policy by Π and π respectively. The teacher’s objective is to
maximize its expected rewards:

argmax
Π

EΠ

[ H∑
t=0

rt · γt
]

s.t. rt = V Θ(πt)

πt = PPO(θt, πt−1)

θt = Π(·|πt−1)

(3)

where θt is a particular training environment at time step t,
PPO can be replaced with any deep RL algorithms, V Θ(·)
evaluates the student’s generalization performance across
any θ ∈ Θ. In this paper, we use the validation perfor-
mance to approximate V Θ(·), and we will elaborate on this
method in the next section. Through this bi-level training,
the teacher finally finds a finite horizon training sequence
that maximizes the student’s generalization performance.

Approach
The most challenging part of UTSD is how to include the
student policy into the state space of the teacher, i.e., how
to encode the student policy from deep neural network pa-
rameters into meaningful compact representations. To en-
sure scalability, we propose to encode the student policy
network with its validation performance in diverse environ-
ments selected with the Quality Diversity method. Addition-
ally, to achieve efficient teacher adaptation to unseen stu-
dents, we employ the context-based meta-RL method to help
the teacher aggregate past experiences with various students.
Specifically, our approach makes two key contributions:

1. A scalable agent policy encoding method, which can help
the teacher in UTSD closely track the student’s overall
ability and behaviors and consequently design efficient
training sequences with finite length.

2. Train a generalizable teacher that can rapidly adapt to un-
seen students with various learning patterns and capabil-
ities by employing the context-based meta-RL approach.

Student Policy Encoding
In this section, we elaborate on how to collect a set of diverse
environments regarding the student agent policy behaviors
with the Quality Diversity method.

Assume a UPOMDP environment defined on a parameter
space Θ ⊆ Rm, where a particular parameter vector θ ∈ Θ
determines the environment properties, e.g., gravity and fric-
tion coefficient. To construct the set of validation environ-
ments, we don’t directly select validation environments in
the parameter space because of two main reasons. First, the
parameter values may not be linear to policy behaviors. Be-
cause of such non-linearity, sampling in the parameter space

Figure 2: An illustration of the QD method.
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does not necessarily create a validation set with high cover-
age in the policy behavior space. A validation set with low
coverage in the behavior space can result in poor estimation
of the agent’s generalization ability. Second, the size of the
validation set is exponential to the dimension of the param-
eter space and thus it’s hard to select a validation set with
reasonable size when m is large. By considering the diver-
sity regarding policy behaviors in validation environments,
we could reduce the size of the validation set by eliminating
environments eliciting similar policy behaviors.

Instead of directly sampling in the environment parameter
space, we strive to identify environments that elicit diverse
policy behaviors and unique skills. To accomplish this, we
employ QD in the environment generation process to create
diverse environments regarding policy behaviors. We pro-
vide the procedures for constructing the validation set in Al-
gorithm 2 in the appendix. We further provide the ablation
study of how QD affects the teacher’s performance and re-
duce the size of the validation set in the appendix.

We concatenate the student’s performance in each valida-
tion environment and form a compact encoding of the stu-
dent policy regarding its overall ability. On top of using the
validation performance as an encoding method for the stu-
dent policy, we further design the teacher’s reward function
based on the student’s validation performance. It’s straight-
forward to assign the teacher higher rewards when it helps
enhance the student’s overall abilities and achieve better val-
idation performance. The encoding and reward function is
formally written in Equation (4) and Equation (5) respec-
tively,

Enci(πt) = Eτ∼πt
[V θi(τ)] (4)

rt =
∑
θi∼θ̃

Eτ∼πt
[V θi(τ)] (5)

where Enci(πt) is the i-th element in the encoding vector,
V θi(πt) evaluates the student policy πt on the validation en-
vironment configured by θi. θi is drawn from θ̃, which is the
set of validation environment parameters and θ̃ ∈ Θ. Note
that the teacher MDP is terminated once the student achieves
optimal performance in all validation environments.

Context-based Student Embedding
To achieve practical application potential, where the teacher
should efficiently adapt to students with varying learning
patterns and capabilities, we further explore the teacher’s
transferability by employing the meta-RL approach.

Meta-RL aims to train an agent that can quickly adapt to
any task T drawn from a distribution of tasks ρ(T ), where
each task is modeled as an MDP:

T = {p(s0), p(st+1|st, at), r(st, at)}

where p(s0) is the initial state distribution, and
p(st+1|st, at) and r(st, at) are the transition function
and reward function respectively. Meta-RL assumes all
tasks in ρ(T ) share the same state and action space but
may differ in transition and reward functions. The goal of
meta-RL is to maximize the expected reward of the agent

policy π over the task distribution:

ET ∈ρ(T )

[
Eτ∼π[

H∑
t=0

r(st, at) · γt]
]

(6)

where r(st, at) is the reward to the agent at time step t and
γ is the MDP discount factor.

There are two threads in meta-RL: (1) gradient-based al-
gorithms learn a policy initialization that can attain single-
task level performance on new tasks after one or few policy
gradient steps, e.g., (Finn, Abbeel, and Levine 2017; Roth-
fuss et al. 2018; Sung et al. 2017; Houthooft et al. 2018).
(2) context-based algorithms learn from past experience by
leveraging “context”, e.g., (Duan et al. 2016; Wang et al.
2016; Fakoor et al. 2019). In general, context-based methods
are more sample-efficient regarding adaptation and can gen-
eralize better to new tasks (Rakelly et al. 2019). Therefore,
given our objective of enabling the teacher to efficiently gen-
eralize to new students, we adopt the context-based meta-RL
method to encode various students’ learning patterns on the
training tasks into latent variables, enabling reasoning over
student uncertainty and rapid adaptation to new students.

Context-based meta-RL decomposes the meta-RL solu-
tion into two parts: a context encoder that infers the task
context and a conditional policy based on the context. In the
literature, context c refers to the past collections of transi-
tions. Assume cTn = (sn, an, rn, s

′
n) be one transition in the

task T such that cT1:N comprises the experience collected
so far. The context encoder qϕ is an inference network that
computes a latent variable z given the task context cT1:N .
The conditional agent policy acts based on z, i.e., π(a|s, z).
Context-based meta-RL algorithms differ in context repre-
sentation methods, context sampling approaches, etc.

We now formulate the student training as a meta-RL prob-
lem. Assume the teacher is training various students to gen-
eralize well on a UPOMDP defined on Θ, and each student
policy π corresponds to a task:

T Θ
π = {p(π0), p(πt+1|πt, at), r(πt, at)}

where πt is the student policy at time step t and can be
encoded into a compact representation, for example, us-
ing the policy encoding method introduced in this paper.
p(πt+1|πt, at) is the transition function conditioned by the
student’s learning patterns and capabilities, and r(πt, at) is
the reward function to the teacher. Note that a unique stu-
dent policy drawn from ρ(π) corresponds to a teacher MDP
defined in Section 3.

Meta-teacher Training
In this section, we build the algorithm to train a teacher agent
with generalizability, enabling it to aggregate past experi-
ences from interactions with various students and rapidly
adapt to new students. After aligning the student training
task with meta-RL formulations, we can directly apply meta-
RL algorithms to the teacher. To ensure sample-efficient
training, we employ the PEARL (Rakelly et al. 2019) al-
gorithm, which utilizes the context replay buffer and con-
text sampler to achieve sample-efficient off-policy meta-
learning. Please refer to the appendix for more details about
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Figure 3: An Overview of the meta-teacher algorithm: at each step t, the teacher performs the following actions: (1) samples an
action at and creates a new training environment with θt (note that at = θt); (2) trains the student on the environment Envθt and
encodes the student policy with its validation performance; (3) computes the teacher reward. When the teacher MDP terminates,
we update the replay buffer with the collected transitions and train the meta-teacher with the PEARL algorithm.

the PEARL algorithm and our implementations. We refer to
our proposed algorithm as the meta-teacher and provide an
overview of it in Figure 3.

Our objective is to train a well-generalizing teacher that
can rapidly adapt to any new students with various learning
properties, including initial ability level, maximal capability,
learning speed, etc. The teacher is trained on tasks associated
with different students, where each task is a UTSD prob-
lem and is modeled as a teacher MDP. The students learn
on the training sequences provided by the teacher and can
have different learning patterns (i.e., by adopting different
RL algorithms, e.g., DQN (Mnih et al. 2013), PPO (Schul-
man et al. 2017), and SAC (Haarnoja et al. 2018)), and vary-
ing initial abilities (i.e., by different amount of pre-training).
After a certain amount of learning, the teacher measures
the learning progress and overall abilities of the students by
evaluating them in validation environments. The transitions
(πt, at, rt, πt+1) are accumulated in a replay buffer and the
teacher is trained on these transitions with the PEARL algo-
rithm. The detailed training procedures of the meta-teacher
are summarized in Algorithm 1.

Experiments
In this section, we empirically validate the effectiveness of
the UTSD framework and demonstrate the transferability of
the meta-teacher by comparing it to a set of leading baselines
in UED: Domain Randomization (DR), PAIRED, PLR⊥,
and ACCEL. We conduct experiments on three popular yet
distinct benchmarks in UED: Bit-Flipping, Lunar-Lander,
and Minigrid. Note that these experiments serve as proof-of-
concept empirical studies. In future work, we will transition
to human-related training. For extended experiment results
on teacher training, an ablation study on how the QD-based
validation set affects algorithm performance, implementa-
tion details about teacher and student structures, and hyper-
parameter settings, please refer to the appendix.

Specifically, we aim to demonstrate two key results. First,
teachers trained in UED struggle to discover efficient train-
ing sequences, whereas our proposed meta-teacher, trained
with UTSD, can maximize both training efficiency and

Algorithm 1: Train meta-teacher
Input: a random teacher policy with actor Πψ and

critic Qψ , a distribution of students ρ(π), set
of validation environment parameters θ̃,
horizon H , context sampler Sc

1 Initialize replay buffers B
2 while not converged do
3 Sample an initial student policy π0 ∼ ρ(π)
4 Initialize context c = {}
5 Encode student policy, s0 = Enc(π0)
6 for t = 0, 1, 2, ...,H do
7 Sample z ∼ qϕ(z|c)
8 Teacher samples an action, at ∼ Πψ(·|s, z)
9 Teacher creates a new training environment

with θt = at
10 Train student on θt and update its policy
11 Encode student policy, st = Enc(πt)

12 Compute teacher reward, rt =
∑
θ̃ E[V

θ̃(πt)]
13 end
14 Update B with c =

{
(sπt , at, s

π
t+1, rt)

}
t=0:H

15 for step in training steps do
16 Sample RL batch b ∼ B and context

c ∼ Sc(B)
17 Update Πψ , Qψ and qϕ with b and c
18 end
19 end

training outcomes. Second, the proposed meta-teacher can
quickly adapt to new students and provide efficient training
sequences correspondingly.

Bit-Flipping Domain
The Bit-Flipping environment, introduced by (Andrychow-
icz et al. 2017), is widely used in RL for its efficiency. In
this task, the agent starts with two uniformly randomized bi-
nary vectors with the same length – the initial vector and
the target vector. The agent needs to flip the bits in the ini-
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tial vector one by one until it matches the target vector. As-
sume the vector length is n, then the agent has a state space
S = {0, 1}n, and an action space A = {0, 1, ..., n − 1}.
The agent selects an action i to flip the i-th bit in the initial
vector. To parameterize the Bit-Flipping environment and
distinguish between different tasks, we introduce a variable
called number of free bits (denoted by m, where m ≤ n).
In our experiments, the maximum training sequence length
is set to 12 and the training amount on each task is fixed
at 5k steps. We use m, where 1 ≤ m ≤ 12, to repre-
sent a Bit-Flipping task with m free bits. A larger m cor-
responds to a more challenging task, requiring the agent to
take more actions on the initial vector to achieve the goal. In
Bit-Flipping, the sequencing of tasks is crucial. Specifically,
the student agent cannot directly master the most difficult
task (i.e., m = 12). In contrast, the student can learn to solve
the most difficult task given a carefully curated training cur-
riculum that progresses from easy tasks to hard tasks, such
as TS = {1, 2, 3, ..., 11, 12}, which is designed by humans.
Note that we use TS to represent a training sequence.

First, we demonstrate that teachers trained with UED al-
gorithms struggle to find efficient training sequences for
student agents, whereas our proposed meta-teacher excels
in maximizing training efficiency. Averaged across all stu-
dents in the experiments, our teacher policy converges
to discover efficient training sequences with a length of
9.08± 0.13 (average ± standard deviation, calculated based
on five independent runs). In contrast, none of the UED
teachers can reduce the training sequence length. A typ-
ical training sequence found by meta-teacher is TS =
{2, 3, 3, 6, 6, 6, 8, 10, 12} with a length of 9. In comparison,
the human-designed training sequence has a length of 12,
which takes three more training environments to achieve the
same effect as that of the meta-teacher. Figure 4 illustrates
the student’s generalization performance after learning in 12
environments with a max learning amount of 60k steps.

Second, we show that UED teachers cannot adapt to
new students rapidly. We transfer the trained teachers to
new students with varying learning properties and capabil-
ities, including different RL algorithms and network struc-
tures/sizes, and illustrate the teacher’s adaptation perfor-
mance in Figure 5. Note that, we enable the learning and
gradient updates for UED teachers during the transfer, es-
pecially for those (i.e., PLR⊥ and ACCEL) heavily reliant
on replay buffers. These teachers are not immediately trans-
ferable because their replay buffers are empty upon transfer
to new students. Besides, the PAIRED teacher fails to adapt
to new students efficiently due to overfitting during training
and the iterative generation of hard tasks. In contrast, the
proposed meta-teacher can swiftly and effectively adapt to
new students with diverse learning properties and capabili-
ties, providing efficient and effective training sequences.

Lunar-Lander Domain
We also conduct experiments in a continuous domain,
Lunar-Lander (Brockman et al. 2016), as depicted in Figure
6 (a). In Lunar-Lander, the agent aims to land on the flat plat-
form by controlling its main engine power (MEP) and side
engine power (SEP). These engines provide vertical and ro-

Figure 4: Normalized student’s generalization performance
in Bit-Fipping after learning on 12 environments with a
maximum learning amount of 60k steps.

Figure 5: Normalized student’s generalization performance
with respect to teacher’s adaptation steps over five indepen-
dent runs (mean and standard error) in Bit-Flipping domain,
where one step corresponds to one training environment.

tational force, respectively. The reward is based on the qual-
ity of the landing, considering factors such as fuel usage and
impact velocity. Safe landings yield high positive rewards,
while crashes result in high negative rewards. The parameter
space in Lunar-Lander consists of two continuous variables:
MEP and SEP, defining the engine power ranges. In Lunar-
Lander, we set the maximum training sequence length to 12.
The teacher can sequentially create 12 training environments
with various MEP and SEP values. The training amount on
each training environment is fixed at 25k steps. In our exper-
iment, the teacher creates training environments with MEP
and SEP values in [10, 18] and [1, 6], respectively. The test-
ing environment parameters are uniformly sampled from [8,
22] and [0, 8] for MEP and SEP, respectively. This allows us
to assess the student’s generalization performance in out-of-
distribution (OOD) environments.

In Lunar-Lander, the meta-teacher demonstrates the abil-
ity to reduce the training sequence length from 12 to an op-
timized value of 10.38 ± 0.11, whereas UED methods fail
to discover training sequences with fewer than 12 steps un-
til convergence. The averaged student generalization perfor-
mance, based on learning in 12 environments with a maxi-
mum of 300k steps, is presented in Figure 7.
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Figure 6: (a) Lunar-Lander domain. (b) Examples of training
environments in Minigrid domain.

Figure 7: Normalized student’s generalization performance
in Lunar-Lander after learning on 12 environments with a
maximum learning amount of 300k steps.

After convergence, we evaluate the teacher’s transfer per-
formance to new students and plot the curves in Figure 8. It’s
noteworthy that, in Lunar-Lander, as the student’s learning
amount increases, its generalization performance decreases.
This is attributed to the student gradually overfitting the
training (MEP, SEP) values, and the knowledge gained in
these environments becomes less applicable to settings with
different parameter values. Despite this phenomenon, the
proposed meta-teacher consistently helps students achieve
better generalization performance. An additional advantage
of using the validation performance encoding is that it en-
ables us to halt the training once the student attains optimal
performance, preventing overfitting – a challenge not effec-
tively addressed by standard UED algorithms.

Minigrid Domain
Unlike the above domains, Minigrid is a non-parameterized
environment where a particular environment (i.e. a maze)
cannot be represented by a compact parameter vector due to
its high complexity. To simplify the teacher’s action space
and focus on validating the effectiveness of our proposed
method, teachers sample mazes from a diverse set gen-
erated by the recently proposed DSAGE algorithm (Bhatt
et al. 2022). Refer to the appendix for more details about
the DSAGE algorithm. It’s crucial to note that the Minigrid
domain is very hard to learn. Even the state-of-the-art al-
gorithm, ACCEL, creates hundreds of thousands of mazes
to train a well-generalizing agent. To alleviate the massive
training demand, we choose to conduct experiments in 5x5
mazes, where the student has a partial observability of 3x3.

To ensure a reliable and straightforward comparison, we

Figure 8: Normalized student’s generalization performance
with respect to teacher’s adaptation steps over five indepen-
dent runs (mean and standard error) in Lunar-Lander do-
main, where one step corresponds to one environment.

Figure 9: Aggregate generalization performance of students
in Minigrid Domain across five independent runs. Higher
IQM scores and lower optimality gaps are better.

adopt the standardized RL evaluation method (Agarwal et al.
2021) recently introduced. This method shows the aggregate
inter-quartile mean (IQM) and optimality gap. After train-
ing the teachers, we transfer them to new students and have
them generate a training sequence of fifty mazes. The stu-
dents’ generalization performances are then measured and
the standardized results are presented in Figure 9. Notably,
the meta-teacher consistently produces the best training out-
comes. Due to the space limitations, additional experimental
results in the Minigrid domain are provided in the appendix.

Conclusion
In this paper, we addressed finite horizon training by propos-
ing a novel MDP formulation for the teacher agent, referred
to as Unsupervised Training Sequence Design (UTSD). We
employed the Quality Diversity approach to select diverse
validation environments and subsequently encode salient in-
formation about the student policy into the state space of the
teacher agent. This allows the teacher to track the learning
progress and overall ability of the student during training.
To make the teacher more applicable to real-world tasks, we
further enhance the teacher’s transferability to new students
by utilizing the context-based meta-RL method. In our ex-
periments, we validated that the proposed meta-teacher can
not only create efficient and effective finite horizon training
sequences but is also capable of rapidly transferring to new
students with varying learning properties.
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itized level replay. In International Conference on Machine
Learning, 4940–4950. PMLR.
Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Camp-
bell, R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Koza-
kowski, P.; Levine, S.; et al. 2019. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374.
Li, D.; Li, W.; and Varakantham, P. 2023. Diversity In-
duced Environment Design via Self-Play. arXiv preprint
arXiv:2302.02119.
Li, W.; Varakantham, P.; and Li, D. 2023. Effective Diver-
sity in Unsupervised Environment Design. arXiv preprint
arXiv:2301.08025.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Moerland, T. M.; Broekens, J.; Plaat, A.; Jonker, C. M.; et al.
2023. Model-based reinforcement learning: A survey. Foun-
dations and Trends® in Machine Learning, 16(1): 1–118.
Morimoto, J.; and Doya, K. 2005. Robust reinforcement
learning. Neural computation, 17(2): 335–359.
Mouret, J.-B.; and Clune, J. 2015. Illuminating search
spaces by mapping elites. arXiv preprint arXiv:1504.04909.
Parker-Holder, J.; Jiang, M.; Dennis, M.; Samvelyan, M.;
Foerster, J.; Grefenstette, E.; and Rocktäschel, T. 2022.
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