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Abstract

We study reinforcement learning (RL) in episodic MDPs with
adversarial full-information losses and the unknown transi-
tion. Instead of the classical static regret, we adopt dynamic
regret as the performance measure which benchmarks the
learner’s performance with changing policies, making it more
suitable for non-stationary environments. The primary chal-
lenge is to handle the uncertainties of unknown transition and
unknown non-stationarity of environments simultaneously.
We propose a general framework to decouple the two sources
of uncertainties and show the dynamic regret bound naturally
decomposes into two terms, one due to constructing confi-
dence sets to handle the unknown transition and the other
due to choosing sub-optimal policies under the unknown non-
stationarity. To this end, we first employ the two-layer on-
line ensemble structure to handle the adaptation error due to
the unknown non-stationarity, which is model-agnostic. Sub-
sequently, we instantiate the framework to three fundamen-
tal MDP models, including tabular MDPs, linear MDPs and
linear mixture MDPs, and present corresponding approaches
to control the exploration error due to the unknown transi-
tion. We provide dynamic regret guarantees respectively and
show they are optimal in terms of the number of episodes K
and the non-stationarity P̄K by establishing matching lower
bounds. To the best of our knowledge, this is the first work
that achieves the dynamic regret exhibiting optimal depen-
dence on K and P̄K without prior knowledge about the non-
stationarity for adversarial MDPs with unknown transition.

Introduction
Reinforcement learning studies the problem where a learner
interacts with the environment sequentially and aims to im-
prove her strategy over time (Sutton and Barto 1998). The
dynamics of the environment are typically modeled as a
Markov Decision Process (MDP) (Puterman 1994). Much of
the existing literature on MDPs assumes the losses and dy-
namics of the environment are stationary over time (Jaksch,
Ortner, and Auer 2010; Azar, Osband, and Munos 2017; Jin
et al. 2018). However, in real-world applications, the loss
functions might change over time, even could potentially be
adversarial chosen by the environments (Zhou 2022).

To better capture applications with non-stationary or even
adversarial losses, the seminal work of Even-Dar, Kakade,
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and Mansour (2009) first studies the problem of learning
adversarial MDPs, where the losses can change arbitrar-
ily. There is a line of subsequent work studying adversarial
MDPs (Zimin and Neu 2013; Rosenberg and Mansour 2019;
Jin et al. 2020a), which studies various settings depending
on whether the transition kernel is known, and whether the
feedback is full-information or bandit. We focus on the un-
known transition and full-information setting where the loss
function is revealed to the learner after each episode ends.

One limitation of the above studies is that they choose
static regret as the performance measure, which is defined
as the performance difference between the learner’s policy
π1, . . . , πK and that of the best-fixed policy, namely,

RegK =
K∑
k=1

Lk(πk)−min
π∈Π

K∑
k=1

Lk(π), (1)

where Lk(πk) is the expected loss of policy πk at episode k,
and Π is the set of all stochastic policies. However, the best-
fixed policy may behave poorly in non-stationary environ-
ments. To this end, following previous studies (Zhao, Li, and
Zhou 2022; Li, Zhao, and Zhou 2023), we choose dynamic
regret as the performance measure, which benchmarks the
learner’s performance with changing policies, defined as

D-RegK(πc1, . . . , π
c
K) =

K∑
k=1

Lk(πk)−
K∑
k=1

Lk(π
c
k), (2)

where πc1, . . . , π
c
K ∈ Π is any policy sequence, which can

be chosen by taking into account complete knowledge of
the online loss functions. An upper bound of dynamic re-
gret is expected to scale with a certain variation quantity of
the compared policies denoted by PK(πc1, . . . , π

c
K), which

reflects the degree of the environmental non-stationarity.
The dynamic regret measure in (2) is very powerful and

general due to the flexibility of compared policies. For ex-
ample, it immediately recovers the standard regret in (1)
when choosing the single best policy in hindsight, that is,
∀k ∈ [K], πck = π∗ = arg minπ∈Π

∑K
k=1 Lk(π). Another

typical choice for the compared policies is the sequence of
the best policy of each episode, namely, ∀k ∈ [K], πck =
π∗
k = arg minπ∈ΠLk(π), which is studied in the work of Fei

et al. (2020); Zhong et al. (2021) and we refer it as worst-
case dynamic regret. A dynamic regret bound with respect
to (2) implies a worst-case dynamic regret bound directly.
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While the flexibility of dynamic regret makes it more
appropriate in non-stationary environments, it brings great
challenges at the same time. This is due to that we need to
establish a universal guarantee that holds for any sequence of
comparators. Few studies focus on this measure in the litera-
ture. Zhao, Li, and Zhou (2022) first investigate the dynamic
regret of adversarial MDPs with full-information feedback
but importantly known transition. In particular, Zhao, Li, and
Zhou (2022) study the tabular MDPs, which are not scal-
able to large-scale MDPs. Later, Li, Zhao, and Zhou (2023)
study the linear mixture MDPs with the unknown transition
setting. They propose a policy optimization algorithm with
the optimal dynamic regret when the non-stationarity of en-
vironments is known. Furthermore, they propose a meta-
base two-layer framework for situations where the non-
stationarity of environments is unknown, though their dy-
namic regret bound in this case suffers an additional term
about the switching number of the best base-learner which
can be linear of K and ruin the final bound in the worst case.

In this work, we study the dynamic regret of adver-
sarial MDPs with the unknown transition and unknown
non-stationarity of the environment. We investigate tabular
MDPs as well as linear MDPs and linear mixture MDPs to
deal with large-scale MDPs. For three MDP models, we pro-
pose corresponding algorithms equipped with dynamic re-
gret guarantees respectively. We show that our dynamic re-
gret bounds are optimal in terms of the number of episodes
K and the non-stationarity measure P̄K by establishing
matching lower bounds. To the best of our knowledge, this
is the first work that achieves the dynamic regret with opti-
mal dependence on K and P̄K for adversarial MDPs with
the unknown transition and unknown non-stationarity.

Our contributions are summarized as follows. The pri-
mary challenge is to handle the uncertainties of unknown
transition and unknown non-stationarity simultaneously. We
propose a general framework to decouple the two sources
of uncertainties and show the dynamic regret naturally de-
composes into two terms, one due to constructing confi-
dence sets to handle the unknown transition and the other
due to choosing sub-optimal policies under the unknown
non-stationarity. This decomposition highlights two main
components RL algorithms need to perform well in non-
stationary environments: exploration to deal with the un-
known transition and adaptation to handle the adversarial
losses. Thus, we first employ the two-layer structure to han-
dle the adaptation error due to the unknown non-stationarity.
Then we instantiate the framework to three classical MDP
models and present corresponding methods to control the
exploration error due to the unknown transition. Though the
two-layer online ensemble structure is also used in Li, Zhao,
and Zhou (2023), we use occupancy-measure-base method
rather than policy optimization to update policies, leading to
a dynamic regret with optimal dependence on K and P̄K .

The rest is organized as follows. We start with a review
of related works. Then we present the setup and introduce a
general framework. Next, we instantiate it to three MDPs
and establish dynamic regret upper and lower bounds re-
spectively. Finally, we conclude the paper. Due to limited
space, detailed proofs will be presented in a longer version.

Related Work
RL with Adversarial Losses. Learning the static regret of
RL with adversarial losses has been well-studied in the liter-
ature (Zimin and Neu 2013; Rosenberg and Mansour 2019;
Jin et al. 2020a; Cai et al. 2020; Zhou, Gu, and Szepesvári
2021; Chen, Luo, and Wei 2021; He, Zhou, and Gu 2022; He
et al. 2023). In general, these works can be divided into three
lines based on the structure of the MDPs. The first line of
work studies the tabular MDPs, yet with various settings de-
pending on whether the transition is known, and whether the
feedback is full-information or bandit. In particular, the pi-
oneering studies of Even-Dar, Kakade, and Mansour (2009)
and Yu, Mannor, and Shimkin (2009) investigate the infinite-
horizon MDPs with known transition and full-information
feedback. For episodic MDPs with known transition, Zimin
and Neu (2013) propose the O-REPS algorithm, which
achieves (near) optimal regret in both full-information and
bandit feedback settings. Rosenberg and Mansour (2019)
and Jin et al. (2020a) further study the harder unknown tran-
sition and bandit feedback setting. The second line of work
studies the linear mixture MDPs, where the transition kernel
can be parameterized as a linear function of a state-action-
state feature mapping. Cai et al. (2020) first study adver-
sarial linear mixture MDPs in unknown transition but full-
information feedback setting and He, Zhou, and Gu (2022)
improve the result to (near) optimal. Later, Zhao et al. (2023)
extend the study to the bandit feedback setting. The last line
of work considers the linear MDPs where both the transi-
tion and the loss function can be parameterized as linear
functions of a given state-action feature mapping. Neu and
Olkhovskaya (2021) study adversarial linear MDPs in the
known transition and bandit feedback setting. Zhong and
Zhang (2023) and Sherman et al. (2023) investigate ad-
versarial linear MDPs in the unknown transition but full-
information setting. Luo, Wei, and Lee (2021) make the first
step to establish a sublinear regret guarantee for adversarial
linear MDPs in the unknown transition and bandit feedback
setting. The result is further improved by Dai et al. (2023);
Sherman, Koren, and Mansour (2023); Kong et al. (2023).

Non-stationary RL. Another relevant research area fo-
cuses on non-stationary MDPs. Unlike adversarial MDPs
where losses are generated in an adversarial manner, non-
stationary MDPs address scenarios where losses are stochas-
tically generated from varying distributions. Jaksch, Ortner,
and Auer (2010) and Gajane, Ortner, and Auer (2018) study
the piecewise stationary setting, where the transition kernel
and losses are permitted to change at certain times. Subse-
quently, Ortner, Gajane, and Auer (2019) extend the previ-
ous setting to allow changes to occur at every step. However,
these works rely on prior knowledge of the non-stationarity.
To overcome this limitation, Cheung, Simchi-Levi, and Zhu
(2020) introduce the Bandit-over-RL algorithm, which elim-
inates this requirement. In a recent breakthrough, Wei and
Luo (2021) propose a black-box method capable of convert-
ing any algorithm with optimal static regret that satisfies spe-
cific conditions into another algorithm that achieves optimal
dynamic regret in non-stationary environments without prior
knowledge about the degree of the non-stationarity of envi-
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ronments. However, it is not applicable in the adversarial set-
ting since the approach of constructing an optimistic estima-
tor to detect environmental change by a UCB-type algorithm
can only be applied effectively in the stochastic setting.

Dynamic Regret. Dynamic Regret has been studied un-
der the settings of bandits (Auer, Gajane, and Ortner 2019;
Chen et al. 2019; Luo et al. 2022; Wang, Zhao, and Zhou
2023), online convex optimization (Zinkevich 2003; Zhang,
Lu, and Zhou 2018; Zhao et al. 2020; Baby and Wang
2021), stochastic programming (Besbes, Gur, and Zeevi
2015; Chen, Wang, and Wang 2019), linear control sys-
tems (Zhao, Wang, and Zhou 2022; Yan, Zhao, and Zhou
2023) and online distribution shift (Bai et al. 2022; Qin et al.
2023; Qian et al. 2023). For adversarial MDPs, Fei et al.
(2020) study the worst-case dynamic regret of adversarial
tabular MDPs with unknown transition and full-information
feedback. Zhong et al. (2021) extend the algorithm of Fei
et al. (2020) to accommodate non-stationary transitions with
linear function approximation. However, both their algo-
rithms require prior knowledge about the non-stationarity as
input. Even so, their dynamic regret bounds are still sub-
optimal. Zhao, Li, and Zhou (2022) make the first step to
study the dynamic regret in (2). They investigate the dy-
namic regret of adversarial tabular MDPs with the known
transition and present algorithms with optimal dynamic re-
gret without prior knowledge about the non-stationarity. For
the more challenging unknown transition setting studied in
this work, the only previous work (Li, Zhao, and Zhou 2023)
studies linear mixture MDPs with unknown transition and
proposes a policy optimization algorithm with optimal dy-
namic regret when the non-stationarity is known. Further-
more, they propose a two-layer ensemble algorithm for sit-
uations where the non-stationarity of environments is un-
known, though their dynamic regret bound in this case suf-
fers an additional term about the switching number of the
best base-learner which can be linear of K and ruin the final
bound in the worst case. In this work, we obtain the dynamic
regret with optimal dependence on K and P̄K for adversarial
tabular MDPs, linear MDPs and linear mixture MDPs with
the unknown transition and unknown non-stationarity.

Problem Setup
Episodic Adversarial MDPs. An inhomogeneous MDP
is denoted by a tupleM = {S,A, H, {Ph}Hh=1, {ℓk}Kk=1},
where S is the state space with |S| = S, A is the action
space with |A| = A, K is the number of episodes and H is
the horizon, Ph(· | ·, ·) : S ×A×S → [0, 1] is the transition
at stage h, ℓk,h : S × A → [0, 1] is the loss function. We
assume the MDP has a loop-free structure, satisfying:
• S is constituted by H + 1 disjoint layers S1, . . . ,SH+1

with S = ∪H+1
h=1 Sh and Si ∩ Sj = ∅ for i ̸= j.

• S1, SH+1 are singletons, S1 = {s1},SH+1 = {sH+1}.
• Transition can only happen between adjacent layers, i.e.,
∀h ∈ [H], if Ph(s′|s, a) > 0, then s ∈ Sh and s′ ∈ Sh+1.

These assumptions are common in previous studies (Neu,
György, and Szepesvári 2010; Neu et al. 2010; Zimin and
Neu 2013). They are not necessary but simplify the notation.

The interaction protocol between the learner and the en-
vironment is given as follows. At the beginning of episode
k ∈ [K], the environment chooses a loss function ℓk and si-
multaneously the learner decides a policy πk : S × A →
[0, 1] with πk(a|s) being the probability of taking action
a at state s. Starting from the initial state sk,1 = s1, the
learner repeatedly sample action ak,h from policy πk(·|sk,h)
and suffers loss ℓk(sk,h, ak,h) until reaching the terminal
state sk,H+1. We focus on the full-information setting where
the entire loss ℓk is revealed to the learner after episode
k ends. The expected loss of any policy π is denoted by
Lk(π) = E[

∑H
h=1 ℓk(sk,h, ak,h)|P, π], where the expecta-

tion is taken over the randomness of the transition P and the
stochastic policy π. The total step is defined as T = HK.

Occupancy Measure. Given policy π and a transition P,
the occupancy measure qP,π : S ×A×S → [0, 1] is defined
as the probability of visiting state-action-state triple (s, a, s′)
under transition P and policy π, namely,
qP,π(s, a, s′) = Pr[sh(s) = s, ah(s) = a, sh(s)+1 = s′],

where h(s) is the index of the layer of state s (Altman
1998). An occupancy measure q satisfies the following two
properties. First, each layer is visited exactly once and thus
for ∀h ∈ [H],

∑
s∈Sh

∑
a∈A

∑
s′∈Sh+1

q(s, a, s′) = 1.
Second, the probability of entering a state when coming
from the previous layer is exactly the probability of leav-
ing from that state to the next layer, i.e., for every s ∈ Sh,∑
s′∈Sh−1

∑
a∈A q(s′, a, s) =

∑
s′∈Sh+1

∑
a∈A q(s, a, s′).

For any occupancy measure q satisfying the above two
properties, it induces a transition Pq: Pq(s′ | s, a) =
q(s, a, s′)/

∑
s′′∈Sh(s)+1

q(s, a, s′′), a policy πq: πq(a | s) =∑
s′∈Sh(s)+1

q(s, a, s′)/
∑
a′∈A

∑
s′∈Sh(s)+1

q(s, a′, s′). We
denote by ∆ the set of valid occupancy measures, that is,
the set of all occupancy measures satisfying the above two
properties. For a fixed transition P, we denote by ∆(P) ∈ ∆
the set of occupancy measures whose induced transition Pq
is exactly P. Further, we denote by ∆(P) ∈ ∆ the set of
occupancy measures whose induced transition Pq is in a set
of transition kernels P . With slight abuse of notation, we
denote by q(s, a) =

∑
s′∈Sh(s)+1

q(s, a, s′) and define the

norm ∥q − q′∥1 ≜
∑
s,a∈S×A |q(s, a)− q′(s, a)|.

Dynamic Regret. It can be verified the dynamic regret
in (2) can be written into a form about occupancy measures:

D-RegK(πc1, . . . , π
c
K) =

K∑
k=1

⟨qP,πk − qP,π
c
k , ℓk⟩. (3)

We introduce πc0 = πc1 and use qk = qP,πk , qck = qP,π
c
k

to simplify the notation. In the work of Zhao, Li, and Zhou
(2022), they define two types of non-stationarity measures.
The first measure is related to the compared policies and is
denoted as PK =

∑K
k=1

∑H
h=1∥πck,h − πck−1,h∥1,∞. The

second pertains to the occupancy measures and is repre-
sented by P̄K =

∑K
k=1∥qck − qck−1∥1. Zhao, Li, and Zhou

(2022, Lemma 6) show that these two measures satisfy
P̄K ≤ HPK . We thus focus on the P̄K-type upper bound,
which directly implies an upper bound in terms of HPK .
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A General Framework
In this section, we propose a general framework for learn-
ing adversarial MDPs with the unknown transition kernel.
In this setting, we encounter the challenge of handling un-
certainties regarding the unknown transition kernel, as well
as the unknown non-stationarity of environments. To tackle
this challenge, we introduce a general framework that ef-
fectively separates these two sources of uncertainties. At a
high level, our framework comprises two key components:
the transition estimation step and the policy update step.

Transition Estimation. During the transition estimation
step, at episode k, the algorithm utilizes k−1 previously ob-
served trajectories to estimate the unknown transition. The
underlying approach involves two key steps. Firstly, the al-
gorithm computes the empirical transition kernel P̄k, which
serves as an estimate based on the available historical data.
Subsequently, a confidence setPk is maintained, which aims
to contain the true transition kernel P with high probability.
In subsequent sections, we will delve into the specific details
of the transition estimation step for various types of MDPs,
highlighting the tailored methodologies for each case.

Policy Update. In the policy update step, we update the
policy based on the estimated transition. Following the study
for dynamic regret of adversarial tabular MDPs with known
transition (Zhao, Li, and Zhou 2022), we apply Online Mir-
ror Descent (OMD) (Orabona 2019) to update the occu-
pancy measure and adopt a two-layer online ensemble struc-
ture to address the non-stationarity of environments.

At each episode k ∈ [K], the basic idea is to perform
OMD over the clipped occupancy measure space induced
by the confidence set Pk, defined as ∆(Pk, α) = {q ∈
∆(Pk) and q(s, a, s′) ≥ α, ∀s, a, s′} with 0 ≤ α < 1 be-
ing the clipping parameter. The clipping operation can be
regarded as forcing some amount of uniform exploration to
deal with non-stationary environments. The learner updates

q̂k+1 = arg minq∈∆(Pk,α)
η⟨q, ℓk⟩+Dψ(q∥q̂k), (4)

where Dψ(q∥q′) =
∑
s,a,s′ q(s, a, s

′) log q(s,a,s′)
q′(s,a,s′) is the

normalized KL-divergence, η > 0 is the step size, and we
use the notation q̂ to emphasize that the occupancy measure
is over the confidence set P and is not necessarily an occu-
pancy measure over the true transition P. We start by consid-
ering the ideal setting where the confidence set only contains
the true transition kernel, that is ∆(Pk, α) = ∆(P, α). In
this ideal case, Zhao, Li, and Zhou (2022, Lemma 1) show
that the dynamic regret of (4) is bounded by

D-RegK ≤ ηT +
1

η
(H log(S2A) + P̄K log

1

α
).

It is clear that to obtain a favorable dynamic regret, we need
to set the step size η optimally to balance the number of
steps T and the non-stationary measure P̄K , more specifi-
cally, set η ≈

√
(H + P̄K)/T . However, we do not have

prior knowledge of P̄K even after the horizon ends since
the compared policies can be arbitrarily chosen. To address
this issue, Zhao, Li, and Zhou (2022) adopt a two-layer
online ensemble method (Zhou 2012; Zhao et al. 2021).

Algorithm 1: Overall Algorithm framework

Input: step poolH, learning rate ε, and clipping param α.
1: Set q̂1,i(s, a, s′) = 1/(Sh ·A ·Sh+1), ∀(s, a, s′) ∈ Sh×
A× Sh+1 and p1,i = 1/N, ∀i ∈ [N ].

2: for k = 1 to K do
3: Receive q̂k,i from base-learner Bi for i ∈ [N ].
4: Compute q̂k =

∑N
i=1 pk,iq̂k,i and play policy πq̂k .

5: Obtain trajectory Uk = {(sk,h, ak,h)}Hh=1.
6: Pk ← EstimateTransition(k, Uk).
7: Each base-learner updates by (5).
8: Update the weights by (6).
9: end for

They first construct a step size pool H = {η1, . . . , ηN}
(N = O(log T )) to discretize the range of the optimal step
size, then maintain multiple base-learners B1, . . . ,BN , each
of which is associated with a step size ηi ∈ H. Finally,
they use Hedge algorithm (Freund and Schapire 1997; Cesa-
Bianchi and Lugosi 2006) to track the unknown best base-
learner. Specifically, the base learner Bi updates policy by

q̂k+1,i = arg minq∈∆(Pk,α)
ηi⟨q, ℓk⟩+Dψ(q∥q̂k,i). (5)

The meta-algorithm updates weights by
pk+1,i ∝ pk,i exp(−ε⟨q̂k,i, ℓk⟩), (6)

where ε > 0 is the learning rate of meta-algorithm, ⟨q̂k,i, ℓk⟩
evaluates the performance of the base-learner Bi. The final
occupancy measure is given by q̂k+1 =

∑N
i=1 pk+1,iq̂k+1,i

and the learner plays the policy π = πq̂k+1 . The detailed pro-
cedures are summarized in Algorithm 1. Notice that for the
general case, the obtained occupancy measure might not be
in ∆(P, α) since the confidence set Pk not necessarily only
contains the true transition, that is ∆(Pk, α) ̸= ∆(P, α).
Nevertheless, we show Algorithm 1 enjoys a favorable dy-
namic regret guarantee once the occupancy measure differ-
ence due to the estimation of the transition is well controlled.
Theorem 1. Set the step size pool as H = {ηi =

2i−1
√

K−1 log(S2A/H)|i ∈ [N ]}, where N = ⌈ 12 log(1+
4K log T

log(S2A/H) )⌉ + 1, the learning rate ε =
√
(logN)/(HT )

and the clipping parameter α = 1/T 2. Suppose ∆(P, α) ∈
∆(Pk, α), ∀k ∈ [K], Algorithm 1 ensures

D-RegK =
K∑
k=1

⟨qk − q̂k, ℓk⟩ −
K∑
k=1

⟨q̂k − qck, ℓk⟩

≤
K∑
k=1

∥qk − q̂k∥1 +O
(√

T (H log (S2A) + P̄K log T )
)

with non-stationarity measure P̄K =
∑K
k=1∥qck − qck−1∥1.

Remark 1. The algorithmic dependence on T can be re-
moved by the standard doubling trick (Auer, Cesa-Bianchi,
and Gentile 2002). Theorem 1 consists of two parts, the first
arising from exploration, which deals with the uncertainty
of transition, and the other arising from adaptation, which
deals with non-stationary environments. We can handle the
unknown non-stationarity with the online ensemble frame-
work. It remains to deal with the uncertainty of transition.
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The Tabular MDP Case
In this section, we apply our general algorithm to the tabular
MDP case. We begin by presenting the approach for con-
structing the confidence set and demonstrating that the oc-
cupancy measures difference resulting from estimating the
transition is well controlled. Then, we establish the upper
and lower bound of the dynamic regret for tabular MDPs.

To construct the confidence set, the general idea (Burne-
tas and Katehakis 1997; Jaksch, Ortner, and Auer 2010) is
to first compute the empirical transition P̄k based on the ob-
served samples and then construct a confidence set which
includes all transition functions with bounded total varia-
tion compared to the empirical transition. This ensures that
the true transition kernel is included within the confidence
set with high probability. Specifically, we maintain coun-
ters to record the number of visits of each state-action pair
(s, a) and each state-action-state triple (s, a, s′). To reduce
the computational complexity, the estimation proceeds in a
doubling epoch schedule, where a new epoch starts when-
ever there exists a state-action pair whose counter is doubled
and the estimation is only updated at the beginning of each
epoch. For epoch i > 1, denote by Ni(s, a) and Ni(s

′ | s, a)
the total number of visits of pair (s, a) and triple (s, a, s′)
before epoch i, i(k) the epoch that episode k belongs to.
The empirical transition P̄i for epoch i is given by

P̄i,h(s′ | s, a) =
Ni,h(s

′ | s, a)
max{1, Ni,h(s, a)}

, ∀h ∈ [H].

The following lemma shows that the empirical transition P̄i
is close to the true transition kernel P with high probability.
Lemma 1 (Jaksch, Ortner, and Auer (2010, Lemma 17)).
With probability at least 1− ζ, it holds that

∥Ph(· | s, a)− P̄i,h(· | s, a)∥1 ≤

√
2Sh+1 log(TSA/ζ)

max{1, Ni,h(s, a)}
for all epochs and all (s, a) ∈ Sh ×A, h ∈ [H].

Then, a confidence set for epoch i which includes all tran-
sition functions with bounded total variation compared to the
empirical transition kernel P̄i is given by

Pi = {P̂ | ∥P̂h(·|s, a)− P̄i,h(·|s, a)∥1 ≤ ξi,h(s, a)}. (7)
for all (s, a) ∈ Sh × A, h ∈ [H] where ξi,h(s, a) is set as√

2Sh+1 log(TSA/ζ)/max{1, Ni,h(s, a)} by Lemma 1.
We present the lemma below which shows the occupancy

measure difference in the confidence set is well controlled.
Lemma 2. With probability at least 1−ζ, for any collection
of transitions {Pk} such that Pk ∈ Pi(k) for all s, we have

K∑
k=1

∥qP,πk − qPk,πk∥1 ≤ O
(
S
√
HAT log(SAT/ζ)

)
.

Combining Lemma 2 with Theorem 1, we obtain the fol-
lowing dynamic regret bound for tabular MDPs.
Theorem 2. Set parameters as in Theorem 1, Algorithm 1
with Algorithm 2 as subroutine ensures with probability at
least 1−ζ, the dynamic regret D-RegK is upper bounded by

O
(
S
√

HAT log(SAT/ζ) +
√
T (H log (S2A) + P̄K log T )

)
.

Algorithm 2: EstimateTransition (Tabular MDPs)

Input: episode index k, trajectory Uk.
Output: confidence set Pk.
1: for h = 1 to H do
2: Ni,h(si,h, ai,h) = Ni,h(si,h, ai,h) + 1
3: Ni,h(si,h, ai,h, si,h+1) = Ni,h(si,h, ai,h, si,h+1) + 1
4: if ∃Ni,h(·, ·) ≥ max{1, 2Ni−1,h(·, ·)} then
5: Increase epoch index i = i+ 1
6: Ni,h(·, ·, ·), Ni,h(·, ·) = Ni−1,h(·, ·, ·), Ni−1,h(·, ·)
7: end if
8: end for
9: Compute confidence set Pi(k) as in (7).

Remark 2. Setting compared policies πc1:K = π∗(P̄K = 0),
Theorem 2 recovers the Õ(S

√
HAT ) best so far static regret

bound of Rosenberg and Mansour (2019).
Remark 3. Setting compared policies as πc1:K = π∗

1:K ,
Theorem 2 implies an Õ(S

√
HAT +

√
HT (1 + PK))

worst-case dynamic regret, which strictly improves the
Õ(S
√
H3AT +H

4
3T

2
3P

1
3

K) result of Fei et al. (2020).
We finally establish the lower bound in the theorem below.

Theorem 3. For any online algorithm and any γ ∈ [0, 2T ],
there exists an episodic loop-free MDP with K episodes, H
layers, S states and A actions and a sequence of compared
policies πc1, . . . , π

c
K such that P̄K(πc1, . . . , π

c
K) ≤ γ and

D-RegK ≥ Ω
(√

HSAT +
√
T (H + γ)

)
under the full-information and unknown transition setting.

Remark 4. Combining Theorem 2 and Theorem 3, we see
that our dynamic regret bound is (nearly) optimal regard-
ing the dependence on H , A, K, P̄K , yet looses a factor of
O(
√
S). Closing this gap is an important open problem.

The Linear MDP Case
To handle large-scale MDPs, we consider the MDPs with
linear function approximation. In this section, we study one
of the most popular models, namely, the linear MDPs. First,
we introduce the definition and present the method to con-
struct the confidence set. Then, we establish the upper and
lower bounds for the dynamic regret of linear MDPs.
Definition 1 (Linear MDPs). An MDP instance M =
{S,A, H, {Ph}Hh=1, {ℓk}Kk=1} is called an inhomogeneous,
episode B-bounded linear MDP, if there exist a known fea-
ture mapping ϕ(s, a) : S ×A → Rd and unknown measures
µ∗
h ∈ RS×d such that for any h and any (s, a, s′) ∈ S×A×S

(i) Ph(s′ | s, a) = µ∗
h(s

′)ϕ(s, a); (ii) ∥ϕ(s, a)∥2 ≤ 1,
∥v⊤µ∗

h∥2 ≤ B for ∀v ∈ RS , ∥v∥∞ ≤ 1.
Remark 5. Different from previous works on linear
MDPs (Jin et al. 2020b; He et al. 2023), we do not assume
the losses admit a linear structure, which is more general.

We estimate the unknown transition via solving a multi-
variate linear regression problem. Specifically, denote by
δs ∈ {0, 1}S the Dirac measure at s, namely, an one-hot
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vector with 1 at the s-th entry and note that Ph(· | s, a) =
µ∗
h(·)ϕ(s, a) by definition. For any episode i, si,h+1 is sam-

pled from Ph(· | si,h, ai,h) conditioned on (si,h, ai,h), thus
δsi,h+1

is an unbiased estimate of Ph(· | si,h, ai,h) condi-
tioned on (si,h, ai,h). This leads us to estimate µ∗

h by solving
the following ridge linear regression:

µk,h = arg min
µ∈RS×d

k−1∑
i=0

∥∥µϕ (si,h, ai,h)− δsi,h+1

∥∥2
2
+ λ∥µ∥2F .

The closed-form solution of µk,h is µk,h = Γk,hΛ
−1
k,h with

Λk,h =
k−1∑
i=1

ϕ(si,h, ai,h)ϕ(si,h, ai,h)
⊤ + λI,

Γk,h =
k−1∑
i=1

δsi,h+1
ϕ (si,h, ai,h)

⊤ (8)

We present the following lemma, which shows that µk,h is
close to the true parameter µ∗

h with high probability.

Lemma 3. Let ζ ∈ (0, 1), ∀k ∈ N and simultaneously ∀h ∈
[H], with probability at least 1− ζ, it holds that µ∗

h ∈ Ck,h,
where Ck,h = {µ ∈ RS×d | ∥µ⊤(·)− µ⊤

k,h(·)∥Λk,h
≤ βk,h}

with βk,h = B
√
λ+

√
2 log (H/ζ) + log (det (Λk,h)/λd).

We construct the confidence set Pk = {Pk,h}Hh=1 below.

Pk = {P̂ | ∃µ ∈ Ck,h, P̂h (s′|s, a) = µ(s′)ϕ (s, a)} (9)

for all (s, a, s′) ∈ Sh×A×Sh+1, h ∈ [H]. The detailed al-
gorithm is presented in Algorithm 3. We show the following
lemma which bounds the occupancy measure difference.

Lemma 4. With probability at least 1−ζ, for any collection
of transitions {Pk} such that Pk ∈ Pk for all s, we have

K∑
k=1

∥qP,πk − qPk,πk∥1 ≤ O
(
dHS

√
K log2(K/ζ)

)
.

Theorem 4. Set parameters as in Theorem 1, Algorithm 1
with Algorithm 3 as subroutine ensures with probability at
least 1−ζ, the dynamic regret D-RegK is upper bounded by

O
(
dHS

√
K log2(K/ζ) +

√
T (H log (S2A) + P̄K log T )

)
.

Remark 6. Compared with the result in Theorem 2, we re-
place Õ(HS

√
AK) term with Õ(dHS

√
K), which enjoys

better guarantees when d ≤
√
A. Our result is independent

of A though still has an undesirable dependence on S.

We finally establish the lower bound in the theorem below.

Theorem 5. For any online algorithm and any γ ∈ [0, 2T ],
there exists an episodic loop-free linear MDP with K
episodes, H layers, S states and A actions and a policy se-
quence πc1, . . . , π

c
K such that P̄K(πc1, . . . , π

c
K) ≤ γ and

D-RegK ≥ Ω
(
dH
√
K +

√
T (H + γ)

)
under the full-information and unknown transition setting.

Algorithm 3: EstimateTransition (Linear MDPs)

Input: Episode index k, trajectory Uk.
Output: Confidence set Pk.
1: for h = 1 to H do
2: Set Λk,h and Γk,h as in (8), µk,h = Γk,hΛ

−1
k,h.

3: end for
4: Set the confidence set as (9).

Remark 7. Combining Theorem 4 and 5, we claim that our
dynamic regret bound is (nearly) optimal regarding the de-
pendence on d, H , K, P̄K , yet looses a factor of O(S).
The main challenge to eliminate the dependence on S is
that though the transition P admits a linear structure, it is
not the case for the occupancy measure qP,πk , which has a
complicated recursive form. Investigating the possibility of
eliminating the dependence on S is left as future work.

The Linear Mixture MDP Case
In this section, we consider another popular function approx-
imation model, the linear mixture MDPs. We first introduce
the linear mixture MDPs and then present the method to con-
struct the confidence set. Finally, we establish the upper and
lower bound for the dynamic regret of linear mixture MDPs.
Definition 2 (Linear mixture MDPs). An MDP instance
M = {S,A, H, {Ph}Hh=1, {ℓk}Kk=1} is called an inhomoge-
neous, episode B-bounded linear mixture MDP, if there exist
a known feature mapping ϕ(s′ | s, a) : S ×A×S → Rd and
an unknown vector θ∗h ∈ Rd such that for any h ∈ [H] and
any (s, a, s′) ∈ S×A×S: (i) Ph(s′ |s, a) = ϕ(s′ |s, a)⊤θ∗h;
(ii) ∥ϕ(s′ | s, a)∥2 ≤ 1, ∥θ∗h∥2 ≤ B.

To estimate the unknown transition parameter θ∗, value-
targeted regression (VTR) is a popular approach in pre-
vious works studying linear mixture MDPs (Ayoub et al.
2020; Zhou, Gu, and Szepesvári 2021; He, Zhou, and Gu
2022; Ji et al. 2023). Specifically, for any function V :
S → [0, H], let ϕV (s, a) =

∑
s′ ϕ(s

′ | s, a)V (s′). With
the observation that Ph(· | s, a)⊤V = ⟨ϕV (s, a), θ∗h⟩, ex-
isting works regard it as solving a “linear bandit” prob-
lem (Abbasi-Yadkori, Pál, and Szepesvári 2011; Lattimore
and Szepesvári 2020) where the context is ϕV (sk,h, ak,h)
and the noise is V (sk,h+1) − [PhV ](sk,h, ak,h). Thus, this
approach can be viewed as a “model-free” method as it by-
passes the need for fully learning the transition P and only
requires [P̂hV ](s, a) = [PhV ](s, a). However, this approach
makes it hard to control the occupancy measure difference.
To overcome this challenge, following previous study (Zhao
et al. 2023), we employ a “model-based” method that fully
utilizes the transition information to learn the parameter θ∗.

Denote by δs ∈ {0, 1}S the Dirac measure at s, namely,
an one-hot vector with 1 at the s-th entry. Since Ph(·|s, a) =
ϕ(· | s, a)⊤θ∗h, we use ϕ(· | sk,h, ak,h) as the context and
δsk,h+1

as the regression target to learn the transition param-
eter θ∗h. One may consider using all the state information to
learn θ∗h, as ϕ(· | s, a) and δs(s

′) is known for any (s, a, s′).
However, there is still one obstacle to be addressed. Partic-
ularly, let ϵi,h = Ph(· | si,h, ai,h) − δsi,h+1

be the noise at
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episode i and stage h. Then it is clear that ϵi,h ∈ [−1, 1]S ,
Ei,h[ϵi,h] = 0 and

∑
s∈Sh+1

ϵi,h(s) = 0. Therefore, the
noise ϵi,h is not independent across different states. To fur-
ther address this issue, we use the transition information
of only one state s′i,h+1 in the next layer. The most di-
rect idea is choosing the true next state si,h+1 experienced
by the learner as s′i,h+1. However, it is hard for this ap-
proach to control the estimation error of all states. Instead,
we choose the next state s′i,h+1 with the largest uncertainty.
More specifically, we construct the estimator θk,h of θ∗h by
finding the minimizer of the following objective function:
k−1∑
i=1

[〈
ϕ
(
s′i,h+1|si,h, ai,h

)
, θ
〉
− δsi,h+1

(
s′i,h+1

)]2
+ λ∥θ∥22,

and we choose s′i,h+1 as

s′i,h+1 ∈ arg maxs∈Sh+1
∥ϕ (s | si,h, ai,h)∥M−1

i,h
. (10)

The closed-form solution of θk,h is θk,h = M−1
k,hbk,h with

Mk,h =
k−1∑
i=1

ϕ(s′i,h+1|si,h, ai,h)ϕ(s′i,h+1|si,h, ai,h)⊤ + λI,

bk,h =

k−1∑
i=1

δsi,h+1
(s′i,h+1)ϕ(s

′
i,h+1 | si,h, ai,h). (11)

We present the following lemma which shows θk,h is close
to the true transition parameter θ∗h with high probability.
Lemma 5. Let ζ ∈ (0, 1), then ∀k ∈ N, and simultaneously
∀h ∈ [H], with probability at least 1− ζ, it holds that θ∗h ∈
Ck,h, where Ck,h = {θ ∈ Rd | ∥θ − θk,h∥Mk,h

≤ βk,h} with

βk,h = B
√
λ+

√
2 log (H/ζ) + log (det (Mk,h)/λd).

Then the confidence set Pk = {Pk,h}Hh=1 is given by

Pk = {P̂ | ∃θ ∈ Ck,h, P̂h (s′|s, a) = ϕ (s′|s, a)⊤ θ} (12)

for all (s, a, s′) ∈ Sh×A×Sh+1, h ∈ [H]. The detailed al-
gorithm is presented in Algorithm 4. We provide the follow-
ing lemma which shows the occupancy measure difference
in the confidence set can be upper bounded.
Lemma 6. With probability at least 1−ζ, for any collection
of transitions {Pk} such that Pk ∈ Pk for all s, we have

K∑
k=1

∥qP,πk − qPk,πk∥1 ≤ O
(
dHS

√
K log2(K/ζ)

)
.

Remark 8. Compared with the Õ(dS2
√
K) occupancy

measure difference in Zhao et al. (2023, Lemma 2), our re-
sult is better since H ≤ S by the layered structure of MDPs.

Combining Lemma 6 with Theorem 1, we obtain the fol-
lowing dynamic regret bound for the linear mixture MDPs.
Theorem 6. Set parameters as in Theorem 1, Algorithm 1
with Algorithm 4 as subroutine ensures with probability at
least 1−ζ, the dynamic regret D-RegK is upper bounded by

O
(
dHS

√
K log2(K/ζ) +

√
T (H log (S2A) + P̄K log T )

)
.

Algorithm 4: EstimateTransition (Linear Mixture MDPs)

Input: Episode index k, trajectory Uk.
Output: Confidence set Pk.
1: for h = 1 to H do
2: Set s′k,h+1 as in (10), Mk,h and bk,h as in (11).
3: Compute θk,h = M−1

k,hbk,h.
4: end for
5: Set the confidence set as (12).

Remark 9. Compared with the result in Theorem 2, we re-
place the Õ(HS

√
AK) in the first term with Õ(dHS

√
K),

which enjoys a better guarantee when d ≤
√
A. Our result is

independent of A though still has an undesirable dependence
on S. Similar dependence on S also appears in the study of
static regret of linear mixture MDPs (Zhao et al. 2023).

We finally establish the lower bound in the theorem below.
Theorem 7. For any online algorithm and any γ ∈ [0, 2T ],
there exists an episodic loop-free linear mixture MDP with
K episodes, H layers, S states and A actions and a policy
sequence πc1, . . . , π

c
K such that P̄K(πc1, . . . , π

c
K) ≤ γ and

D-RegK ≥ Ω
(
dH
√
K +

√
T (H + γ)

)
under the full-information and unknown transition setting.
Remark 10. Combining Theorem 6 and Theorem 7, we
claim that our dynamic regret bound is optimal in d, H , K,
P̄K , yet looses a factor of O(S). The reason is the same as
that for linear MDPs, since though the transition P admits a
linear structure, it is not the case for the occupancy measure
qP,πk , which has a complicated recursive form. Eliminating
the dependence on S is an important future direction.

Conclusion and Future Work
In this work, we investigate the dynamic regret of adver-
sarial MDPs with the unknown transition and unknown
non-stationarity of the environments. We propose a general
framework to decouple the two sources of uncertainties and
show the dynamic regret bound naturally decomposes into
two terms, one due to constructing confidence sets to han-
dle the unknown transition and the other due to choosing
sub-optimal policies under the unknown non-stationarity.
To this end, we first employ the two-layer ensemble struc-
ture to handle the adaptation error due to the unknown non-
stationarity. Subsequently, we instantiate the framework to
three fundamental MDP models and present corresponding
approaches to control the exploration error due to the un-
known transition. We provide dynamic regret guarantees re-
spectively and show they are optimal in terms of the number
of episodes K and the non-stationarity measure P̄K by es-
tablishing matching lower bounds. To the best of our knowl-
edge, this is the first work that achieves the dynamic regret
with optimal dependence on K and P̄K for this problem.
There are several important future works to study. First, the
dependence on S in our dynamic regret bound is not opti-
mal. How to close the gap is an open problem. Second, how
to extend our results to the more challenging bandit feedback
setting is an important and interesting future direction.
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Lattimore, T.; and Szepesvári, C. 2020. Bandit algorithms.
Cambridge University Press.
Li, L.-F.; Zhao, P.; and Zhou, Z.-H. 2023. Dynamic Regret
of Adversarial Linear Mixture MDPs. In Advances in Neural
Information Processing Systems 36 (NeurIPS), to appear.
Luo, H.; Wei, C.; and Lee, C. 2021. Policy Optimiza-
tion in Adversarial MDPs: Improved Exploration via Dilated
Bonuses. In Advances in Neural Information Processing
Systems 34 (NeurIPS), 22931–22942.
Luo, H.; Zhang, M.; Zhao, P.; and Zhou, Z.-H. 2022. Cor-
ralling a Larger Band of Bandits: A Case Study on Switch-
ing Regret for Linear Bandits. In Proceedings of the 35th
Conference on Learning Theory (COLT), 3635–3684.
Neu, G.; György, A.; and Szepesvári, C. 2010. The Online
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