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Abstract

Deep neural networks are susceptible to catastrophic for-
getting when trained on sequential tasks. Various continual
learning (CL) methods often rely on exemplar buffers or/and
network expansion for balancing model stability and plastic-
ity, which, however, compromises their practical value due to
privacy and memory concerns. Instead, this paper considers a
strict yet realistic setting, where the training data from previ-
ous tasks is unavailable and the model size remains relatively
constant during sequential training. To achieve such desider-
ata, we propose a conceptually simple yet effective method
that attributes forgetting to layer-wise parameter overwrit-
ing and the resulting decision boundary distortion. This
is achieved by the synergy between two key components:
HSIC-Bottleneck Orthogonalization (HBO) implements non-
overwritten parameter updates mediated by Hilbert-Schmidt
independence criterion in an orthogonal space and EquiAn-
gular Embedding (EAE) enhances decision boundary adapta-
tion between old and new tasks with predefined basis vectors.
Extensive experiments demonstrate that our method achieves
competitive accuracy performance, even with absolute supe-
riority of zero exemplar buffer and 1.02× the base model.

Introduction
Current deep learning models have shown promising perfor-
mance in various fields, but they lack the ability of continual
learning (CL) that humans possess (Kang et al. 2022; Smith
et al. 2023). CL entails progressively acquiring knowledge
from sequentially presented tasks, with access to only cur-
rent task data and no past data (Li and Zeng 2023b). As a
result, directly retraining a well-trained model on new task
data using stochastic gradient descent (SGD) leads to the
well-known phenomenon of catastrophic forgetting (Mc-
Closkey and Cohen 1989), which refers to abrupt and signif-
icant performance degradation on previously learned tasks.

Recent works have experienced a remarkable surge in ad-
dressing catastrophic forgetting (Wang et al. 2021a; Tong
et al. 2023; Zhou et al. 2023). However, it is noteworthy
that the merits of CL come with costs. Rehearsal-based ap-
proaches, as the mainstay of CL, explicitly buffer a small
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Figure 1: Comparison between our method and representa-
tive CL approaches. (a) Rehearsal-based ones are often sen-
sitive to buffer sizes. (b) Some architecture-based ones scale
rapidly during sequential training. (c) Most regularization-
based ones struggle with the stability-plasticity dilemma
whose performance is not satisfactory in the class-IL (hy-
brid with (a) or/and (b) excluded). By contrast, our method
reaches multiple CL desiderata simultaneously.

subset of past samples and retrain them with those from a
new task jointly (Liu et al. 2020; Hayes et al. 2020; Bon-
icelli et al. 2022; Guo, Liu, and Zhao 2022; Luo et al.
2023). Critically, these methods pose a threat to data pri-
vacy and often decline performance as buffer size decreases,
as depicted in Figure 1(a). Architecture-based approaches
dynamically modify the network architecture to accommo-
date knowledge needed for new tasks (Serrà et al. 2018; Ke
et al. 2021; Yang et al. 2023a; Hu et al. 2023). In partic-
ular, network expansion involves adding a sub-network for
each task and utilizing aggregated feature representation for
final prediction (Yan, Xie, and He 2021; Wang et al. 2022a).
As shown in Figure 1(b), their model size expands rapidly
as the number of tasks grows, which should be counted
into the memory budget for a fair comparison (Zhou et al.
2023). Regularization-based approaches penalize parame-
ter variations over an over-parameterized network, where
each network parameter is associated with weight impor-
tance (Kirkpatrick et al. 2017; Zeng et al. 2019; Wołczyk
et al. 2022). However, the performance of these methods that
do not store any past data is yet unsatisfactory, especially in
the class-incremental learning (class-IL) scenario, which ad-
dresses the most common problem of incrementally learning
new classes without the provision of test-time task identities
(Zhuang et al. 2022; Wang et al. 2022b) (see Figure 1(c)).
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In summary, for alleviating catastrophic forgetting, many
CL methods prioritize accuracy performance to the detri-
ment of other fronts. This motivates us to find new methods
against forgetting while satisfying multiple CL desiderata:
(i) It should no longer access the training data of previous
tasks. While keeping prior observations demonstrates supe-
rior ability in combating forgetting, reliance on rehearsal
buffers may not be memory-efficient (Zhang et al. 2020; Li
et al. 2023b; Luo et al. 2023). Importantly, this involves vi-
olating practical constraints such as privacy and security is-
sues (Shokri and Shmatikov 2015), which are common in
domains like federated learning (Qi, Zhao, and Li 2023).
(ii) It should remain the model size relatively unchanged
during sequential training. Instead of buffering data, stor-
ing backbones from the history (e.g., network expansion)
pushes the performance towards the upper bound progres-
sively (Yan, Xie, and He 2021; Zhou et al. 2023; Hu et al.
2023). The drawback lies in the growth can be computation-
ally expensive and it is intractable to customize the growth
quota compactly matching the difficulty of a newly arriving
task (Dai et al. 2019). (iii) It should strike a balance be-
tween the stability and plasticity (Rajasegaran et al. 2019;
Kim and Han 2023), ensuring not only the persistent knowl-
edge retention of past tasks but also the sufficient capacity to
accommodate new ones. Intuitively, it is difficult, if not im-
possible, for pure parameter regularization to achieve such
balance via the current learning paradigm.

With these considerations, a straightforward attempt is to
seek alternative solutions to parameter regularization, with
extra care to not infringe its inherent merits. Inspired by
this insight, in this paper, we develop a drastically differ-
ent training objective that recasts a representative regularizer
in reaching multiple CL desiderata. Termed CLDNet, we
avoid the conventional cross-entropy loss and instead incor-
porate statistical dependency and distance metric, achieving
a better stability-plasticity trade-off in a rehearsal-free and
minimal-expansion fashion. To this end, we decompose the
CL process into dual problem-solving: (1) How to address
the layer-wise parameter overwriting due to the scarcity of
prior task data? (2) How to mitigate the inter-/intra-task con-
fusion caused by distortions in decision boundaries?

To approach the first question, we leverage the interplay
of Hilbert-Schmidt independence criterion (HSIC) and or-
thogonal projection, hence the name HSIC-Bottleneck Or-
thogonalization (HBO). Taking a close look at both: HSIC
is a non-parametric kernel-based technique utilized to as-
sess the statistical (in)dependence of different layers, which
has been widely adopted for various learning tasks (Wang,
Dai, and Liu 2021) but is under-investigated in CL commu-
nity (Wang et al. 2023); And a basic idea behind the or-
thogonal projection is to regularize gradient update direc-
tions that do not disturb the weights of previous tasks (Zeng
et al. 2019). Based on them, the introduced HBO imple-
ments non-overwritten parameter updates facilitated by the
HSIC-bottleneck training in an orthogonal space, where one
can exploit readily available gradient updates by measuring
nonlinear dependencies between the inputs and outputs. It
requires no access to or storing of previous data, no archi-
tecture growth, and no awareness of test-time task identities.

To address the aforementioned second question, we draw
inspiration from the recently proposed equiangular basis
vectors (EBVs) (Shen, Sun, and Wei 2023). Unlike the
trainable fully-connected layer with softmax, the EBVs is
parameter-free since its learning objective is to minimize the
spherical distance of learned representations with predefined
basis vectors. This ensures that the trainable parameters of
deep neural networks are constant even with the growth of
tasks. Though attractive, it remains unclear how to extend
EBVs to CL. To bridge this gap, we design an EquiAngu-
lar Embedding (EAE) component that sits atop HBO. Dur-
ing each CL session, we vectorize the embedding of HBO
output and optimize it towards its class-specific equiangular
basis vector in a scalable manner. Compared to the standard
classification, EAE exhibits a stronger discriminative abil-
ity through the tailored distance metric, thereby enhancing
decision boundary adaptation between old and new tasks.

Benefiting from the synergy between HBO and EAE, our
CLDNet reaches multiple CL desiderata. Empirical eval-
uation across a range of widely used benchmark datasets
demonstrates the superiority of our approach in terms of ex-
emplar buffers, network expansion, and competitive perfor-
mance. On CIFAR-100, for instance, CLDNet outperforms
the state-of-the-art rehearsal-based baseline by 7.54% with
a minimal expansion ratio of 1.02× and buffer size of 0.

Related Work
Prior works to address catastrophic forgetting in CL can be
broadly divided into three categories, from which we dis-
cuss a selection of representatives and focus on ones mostly
related to our work. Rehearsal-based approaches preserve
model stability by keeping a memory buffer of past sam-
ples at either input layer (Liu et al. 2020; Bonicelli et al.
2022) or hidden layer (Yang et al. 2023b) for joint training.
GDumb (Prabhu, Torr, and Dokania 2020) employs a limited
memory to buffer data in the order of arrival and dynami-
cally replaces previously stored data. Rather than pixel-level
exemplars, i-CTRL (Tong et al. 2023) is founded on com-
pact and structured representations, while REMIND (Hayes
et al. 2020) stores hidden representations and reconstructs
synthesized features for rehearsal.

Architecture-based approaches either isolate model pa-
rameters (Serrà et al. 2018; Ke et al. 2021) or expand addi-
tional network branches (Yang et al. 2023a; Hu et al. 2023).
PNN (Rusu et al. 2016) gradually adds new branches for all
layers horizontally. RPS-Net (Rajasegaran et al. 2019) uses
parallel modules at each layer where a possible searching
space is formed to contain previous task-specific knowledge.
Methods such as PCL (Hu et al. 2021), DER (Yan, Xie, and
He 2021), and FOSTER (Wang et al. 2022a) acquire suffi-
cient model plasticity by allocating a sub-network per task.

Regularization-based approaches mainly employ penalty
terms to impose constraints on weights deemed important
for old tasks (Zhang et al. 2020; Li and Zeng 2023a). The
pioneering work was conducted by EWC (Kirkpatrick et al.
2017), followed by SI (Zenke, Poole, and Ganguli 2017),
and MAS (Aljundi et al. 2018). On the other hand, orthogo-
nal projection-driven methods address forgetting by design-
ing network parameter updating rules (Farajtabar et al. 2020;
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Li et al. 2023a). OWM (Zeng et al. 2019) constructs an or-
thogonal projector such that its gradient updates only occur
in directions orthogonal to the input of previous tasks. In
the multi-head setting (e.g., a separate classifier per task),
GPM (Saha, Garg, and Roy 2021) stores the bases of core
gradient space while FS-DGPM (Deng et al. 2021) further
predicts the importance of such bases aided with a rehearsal
buffer. Our work is also built on the basis of orthogonal pro-
jection but is very different from existing approaches as its
training objective consists of the statistical dependency and
distance metric, achieving a better stability-plasticity trade-
off in a rehearsal-free and minimal-expansion fashion.

Among the latest CL approaches, our work is closely re-
lated to AOP (Guo et al. 2022), OCM (Guo, Liu, and Zhao
2022), and DualHSIC (Wang et al. 2023). (1) AOP aims to
improve OWM itself by introducing a rule of expectation
serving to strengthen orthogonal projectors. By contrast, in-
spired by HSIC (Ma, Lewis, and Kleijn 2020), we refor-
mulate the OWM process as dependence minimization or
maximization problems in a unified way. To the best of our
knowledge, it is the first orthogonal projector that utilizes
HSIC for CL. (2) OCM turns to a complicated contrastive
learning proxy over two models to maximize the mutual in-
formation (MI), while CLDNet’s HBO detects nonlinear de-
pendencies with the advantage of easy empirical estimation
over MI. (3) DualHSIC realizes CL by considering the inter-
task relationship into task-specific and task-invariant knowl-
edge, while CLDNet directly addresses forgetting via non-
parameter overwriting and decision boundary adaptation.
Note that both OCM and DualHSIC rely on rehearsal buffers
that we do not. Interestingly, we observe that both OCM and
DualHSIC require the additional trainable projection head;
Instead, we bring a parameter-free classifier to CL, which
enhances model decision ability as evidenced by the recent
study (Shen, Sun, and Wei 2023). Therefore, our work dif-
fers significantly in terms of motivation and methodology.

Preliminaries
Hilbert-Schmidt Independence Criterion HSIC is a
kernel-based measure of dependence between random vari-
ables (Gretton et al. 2005). With it, one can transform many
existing learning tasks into statistical independence mini-
mization (or maximization) problems, much akin to MI. Un-
like the indirect variational bounds on MI (Poole et al. 2019),
it can be directly estimated given a finite number of observa-
tions. Therefore, it has been used in a variety of applications
for machine learning (Ma, Lewis, and Kleijn 2020; Wang
et al. 2021b; Li et al. 2021; Kawaguchi et al. 2023).

Formally, given two random variables X and Y jointly
drawn from probability distribution PXY , HSIC identifies
their dependency by first taking a nonlinear feature transfor-
mation of each, say φ : X → H and ψ : Y → G, with h
and g being kernel functions in the H and G Hilbert spaces
respectively. Let (X

′
, Y
′
) be independent copies of (X,Y ):

HSIC(PXY ,H,G) = EXYX′Y ′ [h(X,X
′
)g(Y, Y

′
)]

+ EXX′ [h(X,X
′
)]EY Y ′ [g(Y, Y

′
)]

− 2EXY [EX′ [h(X,X
′
)]EY ′ [g(Y, Y

′
)]]

(1)

The formulation suggests that HSIC captures nonlinear de-
pendencies between X and Y , with the magnitude of the
index indicating the strength of associations.

To render HSIC a practical measure for learning tasks,
it has proven to be easily evaluated from mini-batches of
data (Gretton et al. 2005; Song et al. 2012). Given n i.i.d.
samples D = {(xi, yi)}ni=1 drawn from PXY , the empirical
estimation of HSIC is:

ĤSIC(D,H,G) = (n− 1)−2tr(HKGK) (2)

where tr(·) is the trace operator,Hij = h(xi, xj) andGij =
g(yi, yj) are kernel matrices, and K = In − 1

n1n1Tn is the
centering matrix. In our CLDNet, we evaluate the HSIC term
in this empirical expression and denote it as HSIC(X,Y ).

Equiangular Basis Vectors Although a trainable classi-
fier with softmax cross-entropy remains the predominant ap-
proach for classification tasks, the potential of using a pre-
assigned classifier has been explored (Mettes, Van der Pol,
and Snoek 2019; Zhou et al. 2022). The general idea is to
replace the classifier weight with the class prototype, e.g.,
fixing the classifier as a Hadamard matrix (Hoffer, Hubara,
and Soudry 2018), regular polytope (Pernici et al. 2021), and
simplex ETF (Yang et al. 2022). In this paper, we are en-
couraged by the recently proposed equiangular basis vectors
(EBVs) (Shen, Sun, and Wei 2023), characterized by sim-
plicity and effortless implementation over prior studies.

Prior to learning, the EBVs assignsC d-dimensional basis
vectors on the surface of a unit hypersphere Sd ∈ Rd, de-
noted by the set W = {wc}Cc=1. In the predefined process,
these basis vectors are pairwise separated by the common
angle γ ∈ [0, 1), which satisfies:

−γ ≤ wT
i · wj

‖wi‖‖wj‖
≤ γ, ∀wi, wj ∈ W , i 6= j (3)

where ‖ ·‖ is the Euclidean norm. Let ϕ denote the spherical
distance function. The EBVs produces a distribution over
classes based on softmax:

p(y = yc|z) =
exp(ϕ(z, wc))∑C

c′=1 exp(ϕ(z, wc′))
(4)

where z ∈ Rd denotes the learned feature representation by
a backbone network given the input x and y is the class label.
During the learning process, its objective is to minimize the
spherical distance of feature representations with predefined
basis vectors within such a setW .

Methodology
We propose a conceptually simple yet effective method
that reaches multiple Continual Learning Desiderata within
a single Network (CLDNet). This is accomplished by the
synergy between two key components: HBO implements
non-overwritten parameter updates mediated by the Hilbert-
Schmidt independence criterion in an orthogonal space, and
EAE enhances decision boundary adaptation between old
and new tasks with predefined basis vectors. As depicted in
Figure 2, our model is formulated by two nested parts: the
backbone network fθ and the parameter-free classifier σ; For
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Figure 2: Overview of CLDNet. HBO transforms learning
task t into a constrained statistical dependency mini-max
problem and EAE predicts by matching class-specific basis
vectors. Systematically, the last-layer hidden representation
ZL is bound to any one of the available basis vectors in grey
for recognizing a new class. We mark this process in red.

a single input x, we have its output o(x) = σ(fθ(x)). The
following explains how CLDNet learns continually via the
statistical dependency and distance metric.

Before elaboration, some definitions related to CL set-
ting are introduced as follows. CL trains a model incremen-
tally on a sequence of task datasets {D(1),D(2), . . . ,D(T )},
where D(t) = {(x(t)i , y

(t)
i )
|D(t)|
i=1 } (or denoted by X(t) and

Y (t)) and |D(t)| is the number of samples from task t. The
output class C(t) has no overlap, i.e., C(t) ∩ C(t′) = ∅(t 6=
t′). Once a task is learned, its training data is often no longer
accessible. At inference time, we mainly focus on one of the
most challenging class-IL scenarios where task identities of
test instances from classes seen so far are unknown.

HSIC-Bottleneck Orthogonalization (HBO)
We first present the learning objective of the HBO process.
We then iteratively calculate the orthogonal projector facil-
itated by HSIC terms in batch learning form.

Suppose we have the backbone network fθ with L hidden
layers activated by the function Sl(·) : Rdl−1 → Rdl , yield-
ing hidden representations Zl ∈ Rm×dl (l = 1, 2, . . . , L),
where m is the batch size. Denote by θl the parameter to
be updated, Zl = Sl(Zl−1θl). Following OWM (Zeng et al.
2019), we adopt the orthogonal projector1 Pl = α(AT

l Al +
αI)−1 that regularizes gradient update directions orthogonal
to the input of previous tasks. The difference lies in that we
recast it via the HSIC-bottleneck training. Then, HBO trans-
forms CL into a constrained statistical dependency problem:

min
Zl

:
L∑
l=1

HSIC(Zl, X
(t))− βHSIC(Zl, Y

(t))

s.t. : θtl = θ
(t−1)
l − λPHSIC

l ∆θ
(t−1)
l , PHSIC

l Al = O

(5)

where β is the balancing factor of HSIC terms, ∆θ
(t−1)
l

is the parameter update via HSIC-bottleneck training, λ is
the learning rate, and PHSIC

l is the orthogonal projector for

1This form is equivalent to Pl = I−Al(A
T
l Al+αI)

−1Al used
in OWM, where Al consists of all learned hidden representations
Zl−1 and α is a small constant.

modulating gradients. Unlike OWM, we construct it by cap-
turing nonlinear dependencies of different layers. As formu-
lated by Equation (5), for each layer of backbone network
fθ, the dependence between the input X(t) and hidden rep-
resentations Zl is minimized while that between the output
Y (t) and hidden representations Zl is maximized.

To gain insights into HBO, we want to emphasize that the
optimal hidden representation Zl is more amenable to CL,
which inherently contributes to non-overwritten parameter
updates in the perspective of reducing feature bias:

The conventional cross-entropy loss learns more on dis-
criminative features (e.g., the dominant parts) that can rec-
ognize the classes of the task (Hu et al. 2021). During se-
quential training, some of those not previously learned fea-
tures (e.g., the non-dominant parts) may become dominant
for recognizing the new task classes, resulting in feature
bias in the backbone network, as revealed by the recent
study (Guo, Liu, and Zhao 2022). By contrast, HBO encour-
ages learning all possible features from a sequence of tasks,
implying that some of the features that may not be suffi-
ciently discriminative for the current task are also holisti-
cally considered. This is achieved by optimizing hidden rep-
resentation Zl layer by layer to seek a balance between in-
dependence from unnecessary details of the input X(t) and
dependence on the output Y (t). In this sense, the information
needed to predict the label is well acquired and permeated in
Zl(l = 1, 2, . . . , L) when Eq. (5) converges. This not only
mitigates the feature bias but also constructs a more accurate
projector, thereby facilitating non-overwritten parameter up-
dates. With this pitfall addressed, we achieve significant ac-
curacy gains over OWM in empirical evaluation.

Now let us compute the orthogonal projector using the
mini-batches of data, denoted byZ0(k) = X(t)(k), Zl(k) =
[z1l , z

2
l , . . . , z

k
l ]. We embed the recursive least square algo-

rithm (Golub and Van Loan 2013) into HSIC-bottleneck
training. The derivation progress is based on Woodbury ma-
trix identity, from which we get the following iterative ex-
pression:

PHSIC
l (k + 1) =PHSIC

l (k)−
PHSIC
l (k)zk+1

l (zk+1
l )TPHSIC

l (k)

α+ (zk+1
l )TPHSIC

l (k)zk+1
l

(6)

We make two remarks about the above derivation. (1)
Equation (6) circumvents the matrix-inverse operation in the
original matrix form. Meanwhile, both inputs and learned
hidden representations from previous tasks are no longer re-
visited; Instead only the most recently updated PHSIC

l (k)
is required. (2) As mentioned in related work, AOP im-
proves OWM itself by converting the small constant α into
an adaptive one associated with each training batch. How-
ever, our work differs significantly in terms of motivation
and methodology, and optionally, incorporates it for hyper-
parameter selection, as is demonstrated in the experiments.

EquiAngular Embedding (EAE)
This part first describes the indispensability of the EAE pro-
cess for decision boundary adaptation and then elaborates
on how it works together with HBO.
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In our CLDNet, the HBO-trained backbone network out-
puts its last-layer hidden representation, which contains the
information necessary for decision, but not necessarily in
the available form like the logit of each class. One simple
way is to append a single output layer (or projection head)
trained with softmax cross-entropy (Ma, Lewis, and Kleijn
2020). However, this fully-connected layer would be added
in a fully parametric manner, requiring additional consider-
ation of parameter overwriting issues; Importantly, the deci-
sion boundary/output space of old tasks would be squeezed
by the new task. To tackle these, inspired by the recently
proposed EBVs (Shen, Sun, and Wei 2023), we design a
novel EquiAngular Embedding (EAE) which replaces the
trainable classifier parameters with predefined basis vectors.

EAE starts with a data-independent predefined process.
Recall that, in the preliminary part, we denote by W =
{wc}Cc=1 the set composed of C d-dimensional basis vectors
on the surface of a unit hypersphere Sd ∈ Rd, and γ ∈ [0, 1)
the common angle pairwise separating these basis vectors.
The question arises of how to construct such a setW which
satisfies Equation (3) when given fixed γ, d, and C. Specif-
ically, we randomly initialize a matrix W ∈ Rd×C with
normalized rows such that the angle between any two vec-
tors arccos(wi, wj) equals wT

i · wj , in which wi, wj ∈ Rd
(wi ← wi

|wi| , i, j = 1, 2, . . . , C , i 6= j). Then, we further
tweak unit basis vectors in W by the following optimization
function (Shen, Sun, and Wei 2023):

W ∗ = arg min
W

∑N−1

i=1

∑N

j>i
max(|wT

i · wj | − γ, 0) (7)

This formulation cuts out the gradient of those unit vector
pairs that hold −γ ≤ wT

i · wj ≤ γ and optimizes the re-
maining ones.

Now let us consider EAE in the context of CL. When
it comes to decision-making, classes from different tasks
would be sequentially bound to some w∗c ∈ Rd in W ∗ ∈
Rd×C , allowing models to scale to a large number of possi-
ble outputs, without a linear cost in the number of parame-
ters. For a single input x(t)i of task t, we have the backbone
network output z(t)i of the Lth-layer (we omit the subscript
L for brevity); According to Equation (4), the probability of
z
(t)
i recognized as the class y(t)i can be rewritten as:

P (y = y
(t)
i |z

(t)
i ) =

exp(z
(t)
i w̃∗c )∑C(t)

c′=1 exp(z
(t)
i w̃∗c′)

(8)

where w̃∗c denotes the `2-normalized w∗c . Intuitively, this is
equivalent to optimizing the cosine similarity between each
z
(t)
i and w̃∗c . Therefore, based on Equations (5) and (8), the

overall training objective of our CLDNet can be converted
into minimizing the negative log-likelihood over task t:

min
θ

: − 1

|D(t)|
∑

(x
(t)
i ,y

(t)
i )

logP (y = y
(t)
i |fθ(x

(t)
i )) (9)

where |D(t)| is the number of training samples from task t.
Therefore, as an alternative to logits, the prediction is made
by keeping the input x(t)i with representation z(t)i as close

Algorithm 1: CLDNet Training and Test algorithm

Input: A sequence of task datasets {D(1),D(2), . . . ,D(T )},
backbone network fθ with L hidden layers, followed by the
parameter-free classifier σ, learning rate λ, batch sizem, etc.
Output: σ(fθ(·))

1: # predefine basis-vector matrix prior to training
2: Initialize W ∈ Rd×C with normalized rows;
3: Obtain W ∗ by tweaking W with Equation (7);
4: # during sequential training in batch learning
5: for t = 1, 2, . . . , T do
6: for j = 1, 2, . . . , |D(t)|/m do
7: Calculate hidden representations {Zl}Ll=1;
8: Assign last-layer hidden representation ZL class-

specific basis vectors from W ∗;
9: Solve the constrained statistical dependency prob-

lem with Equation (5);
10: Update the backbone network parameter θ with

Equation (9);
11: end for
12: end for
13: # at test time
14: Draw test instances from any of tasks 1 to T ;
15: return predicted labels by retrieving their closest class-

specific basis vectors.

as possible to its class-specific basis vectors. Owe to our
unique training objective, we only use a simple loss with-
out storing any old task exemplars or backbones, suggesting
that our CLDNet differs from most existing CL methods sig-
nificantly. Please refer to Algorithm 1 for more.

Reaching Continual Learning Desiderata
Here we discuss how CLDNet reaches multiple CL desider-
ata. The above formulations in our method clearly require no
rehearsal buffer and substantial network expansion, which
are non-trivial. For example, although a limited rehearsal
buffer is allowed in the CL community, some prior works
opt for sufficiently large buffer sizes that even suffice to train
a supervised counterpart, as revealed by GDumb (Prabhu,
Torr, and Dokania 2020). The same goes for arbitrarily ex-
panding task-specific backbone networks, which would re-
sult in misleading high-accuracy performance. We think un-
derstanding this question is very important for future re-
search, e.g., one should count these non-desiderata into the
memory budget for a fair comparison (Zhou et al. 2023).

Focusing on such a strict yet realistic setting, it is nat-
ural to think of whether our CLDNet achieves the stability
and plasticity trade-off. We would still like to emphasize that
this balance is realized by the synergy of HBO and EAE. On
the one hand, HBO addresses the layer-wise parameter over-
writing in the backbone network, followed by the parameter-
free EAE classifier. This ensures the persistent knowledge
retention of past tasks. On the other hand, the rank of orthog-
onal projectors theoretically matters in the backbone net-
work capacity available for incoming tasks and we construct
such a nonzero matrix PHSIC

l (k), allowing for some degree
of freedom to learn new tasks; Meanwhile, since predefined
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basis vectors are exactly equivalent, the output space is no
longer constrained to the number of classes. This maintains
the required network capacity to accommodate new tasks.

Empirical Evaluation
We perform extensive experiments to evaluate the proposed
CLDNet in the challenging class-IL setting. First, we intro-
duce the experimental setup. We then provide the experi-
mental results and discussion, following which we conduct
ablation studies on the core components in our algorithm.

Experiment Setting

Dataset and Split. We experiment on multiple evaluation
benchmarks for class-IL. Small Scale: MNIST (LeCun et al.
1998) contains 60,000 handwritten digit images in the train-
ing set and 10,000 samples in the test set, which is split into 5
disjoint tasks with 2 classes per task; FashionMNIST (Xiao,
Rasul, and Vollgraf 2017) is an MNIST-like fashion product
benchmark where the ten objects are split into five two-class
classification tasks; CIFAR-10 (Krizhevsky, Hinton et al.
2009) has 10 classes with 50,000 samples for training and
10,000 for testing, which is divided into 5 tasks with 2
classes per task. Medium Scale: CIFAR-100 (Krizhevsky,
Hinton et al. 2009) comprises 60,000 images belonging to
100 distinct classes, which are further divided into 10 tasks
with each task containing 10 disjoint classes. Large Scale:
ImageNet-R (Hendrycks et al. 2021) has 200 classes with
24,000 samples for training and 6,000 for testing. It is split
into 10 tasks with 20 classes in each task. ImageNet-R in-
corporates newly curated data encompassing diverse styles,
such as cartoons, graffiti, and origami, alongside challeng-
ing examples from ImageNet that conventional models (e.g.,
ResNet) fail to recognize. The substantial intra-class vari-
ability renders it more akin to intricate real-world problems.

Training Details. Architectures: In our experiments,
all methods use similar-sized neural network architectures.
For MNIST and FashionMNIST, following the setting in
(Wołczyk et al. 2022), we use a standard MLP with 2 hid-
den layers of size 400; For CIFAR-10, following the setting
in (Zeng et al. 2019; Guo et al. 2022), we use a CNN with 3
convolutional layers; For CIFAR-100, following the similar
setting in (Bonicelli et al. 2022; Wang et al. 2023), we use a
wide-adopted ResNet18; For ImageNet-R, following the set-
ting in (Wang et al. 2022b), we use the ViT-B/16 pre-trained
on ImageNet and allow all methods to start from the same
pre-training for a fair comparison. Hyper-parameters: We
either reproduce results using suggested hyper-parameters in
their source code repositories or directly take existing results
reported in state-of-the-art (SOTA) baselines. In our CLD-
Net, for HBO we set the coefficient β = 500 and adopt
the Gaussian kernel as suggested by (Ma, Lewis, and Kleijn
2020), as well as the adaptive α with an initial value 0.01 for
the orthogonal projector, like (Guo et al. 2022); For EAE we
set γ = 0.04, d = 1000, and C = 1000 following the rec-
ommendations by EBVs (Shen, Sun, and Wei 2023). Com-
puting Infrastructure: All experiments are run in PyTorch
using NVIDIA RTX 3080-Ti GPUs with 12GB memory.

Method MNIST FMNIST CIFAR-10

EWC 36.52 ± 2.54 35.16 ± 5.33 18.92 ± 4.88
MAS 38.74 ± 2.67 33.78 ± 6.42 17.79 ± 6.04
OEWC 40.52 ± 6.84 38.17 ± 4.02 16.98 ± 5.21
SI 45.28 ± 0.57 40.23 ± 3.34 17.38 ± 4.13
ICNet 40.73 ± 3.26 35.11 ± 0.02 19.07 ± 0.15
DMC 90.76 ± 0.25 72.54 ± 1.25 51.28 ± 0.95
OWM 91.60 ± 0.13 80.32 ± 0.73 52.83 ± 0.87
AOP 94.43 ± 0.21 82.97 ± 0.95 53.56 ± 0.29
CRNet 94.45 ± 0.36 90.98 ± 0.83 50.01 ± 0.58

Ours 96.61 ± 0.15 95.37 ± 0.68 56.12 ± 0.33

Table 1: Average accuracy (%) across all five tasks of the
Split MNIST, FashionMNIST (FMNIST), and CIFAR-10,
evaluated after learning the whole sequence. All methods are
run 5 times, with the mean and standard deviation reported.

Results and Comparison
This paper considers a strict yet realistic setting for defying
forgetting, covering three aspects of CL desiderata: ideally
(i) accessing no training data of previous tasks, (ii) main-
taining the model size relatively unchanged during sequen-
tial training, and (iii) striking a balance between stability and
plasticity. To demonstrate the superiority of our work, we ex-
tensively compare it with the representative and SOTA com-
petitors. Since different methods have very different require-
ments in data, networks, and computation, it is intractable to
compare all in the completely same experimental conditions.
Therefore, we compare our CLDNet with regularization-,
rehearsal-, and architecture-based approaches respectively.

Comparison with Regularization-based Approaches.
Table 1 compares our CLDNet with regularization-based
approaches, which typically penalize parameter variations
over an over-parameterized network by regularizers or or-
thogonal projectors. Without rehearsal buffers or network
expansion, class-IL is particularly difficult for these meth-
ods. The competitors include EWC (Kirkpatrick et al. 2017),
SI (Zenke, Poole, and Ganguli 2017), MAS (Aljundi et al.
2018), OEWC (Schwarz et al. 2018), OWM (Zeng et al.
2019), DMC (Zhang et al. 2020), ICNet (Wołczyk et al.
2022), and more recent SOTA methods, AOP (Guo et al.
2022), and CRNet (Li and Zeng 2023b). During class-IL,
methods like EWC, MAS, OEWC, and SI struggle with the
stability and plasticity dilemma as it is difficult to correctly
assign credit to weights with the number of tasks increasing.
Similar findings can be observed in (Wołczyk et al. 2022).
Recent AOP and CRNet are strong baselines, but our method
consistently outperforms them on all three task sequences by
clear margins. Compared with the second-best results, CLD-
Net gets an improvement of 2.16% 4.39%, and 2.56% on the
Split MNIST, FMNIST, and CIFAR-10, respectively.

Comparison with Rehearsal-based Approaches. As re-
ported in Table 2, we evaluate our CLDNet with rehearsal-
based approaches on CIFAR-100, which assume access to
partial old data. The competitors include ER (Chaudhry et al.
2019), DER++ (Buzzega et al. 2020), X-DER-RPC (Bos-
chini et al. 2022), ER-ACE (Caccia et al. 2021), more re-
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Buffer size for CIFAR-100

Method 200 500 2000

ER 18.09±1.33 28.25±0.69 43.18±2.00
X-DER-RPC 51.40±2.17 57.45 62.46
ER-ACE 41.85±0.83 48.19 57.34
DER++ 26.25±0.96 43.65 58.05
OCM 52.08±1.13 56.93±0.86 61.79±0.42
LiDER 51.23±1.93 57.76±0.75 62.78±0.51
DualHSIC 52.67±1.81 57.88±1.04 62.70±0.57

Ours 65.42±0.36 (Buffer size = 0)

Table 2: Average accuracy (%) across all ten tasks of the
Split CIFAR-100. All results except ours, OCM, and LiDER
are from (Wang et al. 2023). LiDER and DualHSIC are built
upon X-DER-RPC to report their best performance.

cent SOTA methods, OCM (Guo, Liu, and Zhao 2022),
LiDER (Bonicelli et al. 2022), and DualHSIC (Wang et al.
2023). Both LiDER and DualHSIC serve to improve the
performance of rehearsal-based counterparts. We observe
that these baselines deteriorate when buffer size decreases,
which may paralyze when buffer size is zero. By contrast,
the performance gains of CLDNet are 12.75%, 7.54%, and
2.64% from buffer size 200 to 2000, respectively, thanks to
the synergy between HBO and EAE in our CLDNet.

Table 3 further compares with rehearsal-based approaches
on challenging ImageNet-R, including BiC (Wu et al. 2019),
GDumb (Prabhu, Torr, and Dokania 2020), Co2L (Cha, Lee,
and Shin 2021). Since we following the pre-training used
in L2P (Wang et al. 2022c) and DualPrompt (Wang et al.
2022b), these two prompt-based methods are also consid-
ered. This corresponds to two versions of the proposed
method: Ours(1) refers to only one pre-trained ViT being
used while Ours(2) involves two ViT like L2P and Du-
alPrompt. We observe that the performance of rehearsal-
based methods exhibits an obvious decline as the buffer size
decreases—the significant intra-class diversity of ImageNet-
R poses a great challenge for rehearsal-based methods to
work effectively with the buffer size of 1000. This suggests
again the necessity of CLDNet as a rehearsal-free method.
Compared with prompt-based methods, Ours(1) beats L2P
by 3.80% and falls short of DualPrompt by 2.76%; Ours(2)
surpasses DualPrompt by 3.30%. This additionally indicates
that our method can accommodate the real-world scenario
where pre-training is usually involved as a base session.

Comparison with Architecture-based Approaches. To
make the comparison more complete, we also compare our
CLDNet with architecture-based (i.e., network expansion)
approaches, which assign new branches for each task. The
competitors include PNN (Rusu et al. 2016), DEN (Yoon
et al. 2018), RCL (Xu and Zhu 2018), APD (Yoon et al.
2020), PCL (Hu et al. 2021). Table 4 reports the results on
CIFAR-100. CLDNet achieves the best Avg. Acc 64.99%
with minimal Capacity 1.02×. For a fair comparison, we do
not compare with hybrid methods that deviate significantly
from the CL desiderata that our method is designed for: this
excludes methods that heavily rely on both network expan-

Buffer size for ImageNet-R

Method 0 1000 5000

ER - 55.13±1.29 65.18±0.40
BiC - 52.14±1.08 64.63±1.27
GDumb - 38.32±0.55 65.90±0.28
DER++ - 55.47±1.31 66.73±0.81
Co2L - 53.45±1.55 65.90±0.14
L2P 61.57±0.66 - -
DualPrompt 68.13±0.49 - -
Ours(1) 65.37±0.39 - -
Ours(2) 71.43±0.22 - -

Upper bound 79.13±0.18

Table 3: Average accuracy (%) across all ten tasks of the
Split ImageNet-R. When buffer size = 0, “-” denotes most
rehearsal-based methods are not applicable anymore; When
buffer size = 1000 or 5000, “-” denotes the omitted results.

Method Buffer size Capacity Avg. Acc

PNN

0

1.71× 54.90±0.92
DEN 1.81× 57.38±0.56
RCL 1.80× 55.26±0.13
APD 1.53× 61.18±0.20
PCL 1.46× 62.58±0.32
Ours 1.02× 64.99±0.24

Table 4: Performance comparison on the Split CIFAR-100.
The metric Capacity (lower is better) measures what extent
a model scales after learning the whole sequence using the
convolutional architecture in (Yoon et al. 2020).
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Figure 3: Changes of the rank of orthogonal projectors.

sion and rehearsal buffers. On the one hand, hybrid methods
like RPS-Net and EDR do push the performance towards the
upper bound achieved by offline training. On the other hand,
e.g., for CIFAR-100, they explicitly use a buffer size of 2000
and require about 5× (RPS-Net) or 10× (DER w/o P) more
parameters than the base network.

Ablation Study. Figure 3 plots the rank of different or-
thogonal projectors under a constant or adaptive α, where
the same MLP with 3 hidden layers is trained for the split
MNIST. Interestingly, AOP improves OWM by shrinking
the change in rank as tasks increase; The HSIC used in our
method contributes to a higher rank for maintaining model
plasticity. In addition, we provide an empirical analysis of
the effectiveness of HBO for learning (see Figure 4) and
EAE for decision (see Table 5). In summary, both compo-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13470



(a) (b) (c) (d) (e)

Figure 4: t-SNE visualization based on split FashionMNIST.
Each color represents a class. We visualize two classes in
each task as a session. (a)-(e) represents the corresponding
representation visualization of classes trained so far.

Component MNIST FMNIST CIFAR-10

HBO + σθ′ 19.96 19.74 15.56
HBO + σθ′′ 95.12 92.77 53.89
HBO + σ (i.e., EAE) 96.62 95.35 56.10

Table 5: Effectiveness of the core designs in our CLDNet.
σθ′ (σθ′′ ) represents a single fully-connected output layer,
parameterized by θ′ (θ′′), and is trained by cross-entropy
loss without (with) an orthogonal projector for prediction.

nents contribute to the final performance improvement, e.g.,
parameter-free EAE classifier σ facilitates decision bound-
ary adaptation.

Conclusion
This present study considers a stringent yet practical setting
to reach multiple CL desiderata. Taking the statistical depen-
dency and distance metric as training objectives, we propose
CLDNet with two pivotal components, i.e., HBO for non-
overwritten parameter updates and EAE for decision bound-
ary adaptation. We perform extensive experiments to show
that CLDNet achieves a better stability-plasticity trade-off in
a rehearsal-free and minimal-expansion way. Moreover, we
hope that our study inspires further research in reaching CL
desiderata, e.g., this makes sense for real-world applications
under privacy-sensitive and resource-limited CL scenarios.
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