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Abstract

Transformer-based models have demonstrated remarkable
performance in various domains, including natural language
processing, image processing and generative modeling. The
most significant contributor to the successful performance of
Transformer models is the self-attention mechanism, which
allows for a comprehensive understanding of the interactions
between tokens in the input sequence. However, there is a
well-known scalability issue, the quadratic dependency (i.e.
O(n2)) of self-attention operations on the input sequence
length n, making the handling of lengthy sequences chal-
lenging. To address this limitation, there has been a surge
of research on efficient transformers, aiming to alleviate the
quadratic dependency on the input sequence length. Among
these, the Nyströmformer, which utilizes the Nyström method
to decompose the attention matrix, achieves superior perfor-
mance in both accuracy and throughput. However, its land-
mark selection exhibits redundancy, and the model incurs
computational overhead when calculating the pseudo-inverse
matrix. We propose a novel Nyström method-based trans-
former, called Proxyformer. Unlike the traditional approach
of selecting landmarks from input tokens, the Proxyformer
utilizes trainable neural memory, called proxy tokens, for
landmarks. By integrating contrastive learning, input injec-
tion, and a specialized dropout for the decomposed matrix,
Proxyformer achieves top-tier performance for long sequence
tasks in the Long Range Arena benchmark.

Introduction
Transformer-based models (Vaswani et al. 2017) such as
BERT (Kenton and Toutanova 2019) and GPT-3 (Brown
et al. 2020) have demonstrated state-of-the-art performance
in various Natural Language Processing (NLP) tasks, in-
cluding question answering (Rajpurkar et al. 2016), summa-
rization (Miller 2019), and language modeling (Child et al.
2019). Recently, they have extended their influence to a wide
range of applications, including image processing (Touvron
et al. 2021) and generative modeling (Child et al. 2019). The
most significant factor contributing to the successful perfor-
mance of Transformer models is the self-attention mecha-
nism. This key component enables transformer models to
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Figure 1: Performance on the Long Range Arena (LRA)
benchmark (y axis), inference throughput (samples/sec) at a
single GTX3090 GPU (x axis), and memory footprint (size
of the circles) of various models on 4096 sequence length.

effectively understand interactions between tokens in the in-
put sequence, model long-range dependencies, and capture
contextual information from the entire sequence. However,
a well-known scalability issue arises from the quadratic de-
pendency (i.e., O(n2)) of self-attention operations on the
input sequence length n, leading to slow and memory-
intensive processing for long sequence inputs.

To tackle the scalability challenge, several Efficient Trans-
formers (Tay et al. 2022) have been recently introduced,
aiming to reduce the quadratic dependency to a sub-
quadratic level. For example, BigBird (Zaheer et al. 2020)
exploits the sparsity of attention to reduce the complexity
of attention operation. Reformer (Kitaev, Kaiser, and Lev-
skaya 2020) learns the sparse attention pattern in a data-
driven fashion. Linformer (Wang et al. 2020) leverages the
low-rankness of the attention map. Nyströmformer (Xiong
et al. 2021) decomposes the softmax matrix of self-attention
with the Nyström method (Wang and Zhang 2013). For an
efficient approximation, the decomposed matrix uses land-
marks sampled from the input sequence.

Although these techniques have all demonstrated suc-
cessful optimization of self-attention operations, they have
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their respective limitations. Fig. 1 illustrates a compara-
tive overview of the performance, inference throughput, and
memory footprint of various existing efficient transformer
models on the Long Range Arena (LRA) benchmark (Tay
et al. 2021). BigBird achieves a better throughput than the
standard transformer. However, its irregular sparse attention
pattern leads to a limited throughput enhancement on real
hardware platforms. Reformer, Linformer, and Performer
have effectively optimized attention operations in terms of
throughput and memory footprint. Nevertheless, they can be
vulnerable to specific tasks and show lower accuracy com-
pared to the standard transformer model.

The most successful technique to date for creating effi-
cient transformers is Nyströmformer, which achieves supe-
rior results in both accuracy and inference throughput. We
analyzed Nyströmformer in depth and found several limita-
tions. Firstly, Nyströmformer selects landmarks by sampling
(i.e., average pooling) for the input sequence tokens without
considering the redundancy among the selected landmarks.
Secondly, the presence of a pseudo-inverse process during
the approximation stage can lead to computation overhead.

We introduce an advanced variant of Nyströmformer,
called Proxyformer. It introduces trainable special tokens,
termed proxy tokens, to establish effective landmarks with-
out sampling. These learned proxy tokens are used as land-
marks to decompose attention operations with the Nyström
method. To ensure minimal redundancy between these proxy
tokens, we employ contrastive loss during their training. Ad-
ditionally, we uses an input injection module at the first layer
to adapt the learned tokens based on the information of input
tokens. Each layer passes its own proxy token outputs to the
following layer, ensuring every layer remains contextually
aware of the input.

Similar approaches, such as Set Transformer (Lee et al.
2019) and Luna (Ma et al. 2021), have used learned tokens
(inducing points) to decompose attention operations. How-
ever, these methods rely on two nested-attention blocks, re-
quiring intricate layer designs. This deviates from the con-
ventional structure of standard transformer models, hinder-
ing the adoption of pre-trained weights. Notably, Set Trans-
former lags in performance compared to Nyströmformer due
to its inducing points being oblivious to input context, as
shown in Fig. 1. While Luna seeks to rectify this by assim-
ilating input context and transmitting the encoded data to
subsequent layers, its performance remains similar to that of
Nyströmformer. Conversely, Proxyformer retains the orig-
inal transformer’s structure by approximating the attention
matrix using the Nyström method, which facilitates the use
of pre-trained weights. Moreover, Proxyformer outperforms
Nyströmformer in both accuracy and throughput.

Our main contributions are as follows:

• We integrate trainable proxy tokens with the Nyström
approximation method to decompose the attention ma-
trix, eliminating sampling overhead, achieving a linear
dependency O(n) on the input sequence length n, akin
to Nyströmformer.

• Using contrastive loss and input injection, we generate
input-aware proxy tokens that exhibit minimal redun-

dancy.
• We present a dropout technique specifically designed for

the Nyström-based decompsoed attention matrix.
• Our experiments demonstrate that Proxyformer achieves

top-tier performance on the LRA benchmark and consis-
tently performs well across all tasks.

Background and Motivation
Self-attention operation. The self-attention opera-
tion (Vaswani et al. 2017) stands as a pivotal element within
transformer models. Fig. 2 illustrates a comparison of
various attention techniques. In the conventional approach,
shown in Fig. 2(a), each token attends to every other
token, including itself. In the self-attention operation, the
hidden states X = (x1, x2, ..., xn) ∈ Rn×d of an input
sequence have n tokens in d dimensions. They are projected
to query (Q), key (K), and value (V ) by three weight
matrices, WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv

(dq = dk), respectively, as follows:

Q = XWQ,K = XWK , V = XWV (1)

Q,K, V ∈ Rn×dq,k,v

Then, the attention values between tokens are computed as:

Attention(Q,K, V ) = S
(
QKT

√
dk

)
V = AV (2)

Here, S(·) denotes the row-wise softmax normalization
operation, and A ∈ Rn×n is the attention matrix, which
contains the attention weights between tokens. The self-
attention operation represents the value of a token as a
weighted sum of all token values, based on their attention
weights. The computation in Eq. 2 exhibits a quadratic com-
plexity of O(n2dk + n2dv) for an input sequence length n.
As the input sequence length grows, this computation turns
into a significant computational and memory challenge for
the transformer model, thereby restricting its ability to han-
dle longer input sequences.

Efficient Transformers. Numerous studies have been
conducted on efficient transformers with the goal of alleviat-
ing the quadratic dependency on input sequence length. The
first approach is to exploit the sparsity of attention maps.
It restricts attention computation to a specific sparse atten-
tion pattern. Local attention (Parmar et al. 2018) and Strided
attention (Child et al. 2019) focus on the locality of atten-
tion maps and perform computations only within such fixed
localized regions, as shown in Fig. 2(b).

To learn the sparse access pattern from the data set, Re-
former (Kitaev, Kaiser, and Levskaya 2020) trains the query
and key matrices to be clustered into buckets by locality sen-
sitive hashing and considers the relationship between tokens
only within the same bucket at attention operations, as de-
picted in Fig. 2(c). It reduces dot-product operations and
achieves a complexity of O(nlogn). There are also similar
approaches using sorting or clustering-based methods (Tay
et al. 2020; Vyas, Katharopoulos, and Fleuret 2020).
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Figure 2: Comparison on different efficient transformers, including our Proxyformer.

The second approach is to leverage low-rank approxi-
mation and kernelization. Linformer (Wang et al. 2020)
projects the key and value matrices to a reduced dimension
to exploit the low-rankness of self-attention, as illustrated
in Fig. 2(d), thereby reducing the complexity to O(n). Per-
former (Choromanski et al. 2021) achieves linear complex-
ity O(n) by approximating the softmax attention kernel us-
ing orthogonal random features.

Lastly, there are neural memory approaches. The neu-
ral memory has additional trainable special tokens to com-
prehend the entire sequence with a reduced computational
complexity. The neural memory was originally used by
BERT (Kenton and Toutanova 2019) and Vision Trans-
former (Dosovitskiy et al. 2021) as a form of [CLS] to-
kens to aggregate information from the entire context. To
address the limitation of local attention at fixed sparse pat-
tern techniques, Longformer (Beltagy, Peters, and Cohan
2020) and BigBird (Zaheer et al. 2020) incorporated addi-
tional ‘global attention’ tokens as a neural memory to en-
able effective computation on global contextual informa-
tion. Particularly, BigBird combined window-based local at-
tention, global attention, and random attention, as shown
in Fig. 2(e). Set Transformer (Lee et al. 2019), illustrated
in Fig. 2(f), also uses the neural memory technique. It re-
places self-attention with two cross-attentions between the
learned ‘inducing points’ and the input sequence. The input
sequence is encoded and subsequently decoded, effectively
optimizing self-attention computations.

Nyströmformer (Xiong et al. 2021) uses a downsampling
approach rather than training a neural memory. It derives
landmarks from input tokens via pooling, which are then
employed to reconstruct the softmax matrix in an approx-
imated self-attention mechanism. Given that the count of
landmarks is considerably less than the sequence length, a
linear complexity is achieved. Nonetheless, the method em-
ployed for landmark sampling is susceptible to redundancy.
Furthermore, Nyströmformer incurs a significant computa-
tional overhead when calculating the pseudo-inverse of the
attention matrix between the landmarks.

As depicted in Fig. 2(h), our Proxyformer integrates the
Nyström method with neural memory (proxy tokens), rather
than relying on landmark sampling. While Nyströmformer
discards intermediate results generated with landmarks af-
ter the attention matrix approximation, Proxyformer conveys
the data from the proxy tokens to the next layer. As a result,
only the initial layer utilizes the pre-learned proxy tokens,

with succeeding layers inheriting their landmarks from the
preceding layer.

Proxy Token-Based Linear Transformer
In this section, we begin with a concise overview of
Nyström-based attention, which employs the Nyström
method for self-attention approximation. Subsequently, we
delve into Proxyformer and elaborate on its contrastive loss,
input injection, and attention dropout strategies.

Nyström-Based Self-Attention
The Nyström method is used by Nyströmformer (Xiong
et al. 2021) and Orthoformer (Patrick et al. 2021) for ap-
proximating the full attention matrix A. The key idea of this
method is to sample landmark vectors Q̃ and K̃ from from
the matrices Q and K, which originate from the input se-
quence. The full attention matrix is decomposed with these
landmarks to approximate it.

Given the query matrix Q = [q1, . . . , qn] ∈ Rn×dq and
the key matrix K = [k1, . . . , kn] ∈ Rn×dk , the landmark
matrices, Q̃ and K̃, are derived, through a sampling opera-
tion on Q and K such as strided-pooling.

Q̃ = [q̃1, · · · , q̃m] ∈ Rm×dq (3)

K̃ = [k̃1, · · · , k̃m] ∈ Rm×dk (4)

q̃j ∈ R1×dq and k̃j ∈ R1×dk represent the determined land-
marks. Utilizing the Nyström method, the approximated at-
tention matrix Ã ∈ Rn×n can be represented as:

Ã =

[
S
(

QK̃T√
dq

)]
n×m

[A+
s ]m×m

[
S
(

Q̃KT√
dq

)]
m×n

(5)

Here, A+
s is Moore-Penrose inverse of As = S

(
Q̃K̃T√

dq

)
.

The self-attention operation can be efficiently approxi-
mated by computing the product of the attention matrix Ã
and the value matrix V .

AV ≈ ÃV = S
(
QK̃T√
dq

)
A+

s S
(
Q̃KT√
dq

)
V (6)

The Nyström-based approximated self-attention operation
has a complexity ofO(nm), wherem is the number of land-
marks. When m � n, it exhibits linear dependency with
O(n) (Xiong et al. 2021).
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Algorithm 1 Nyströmformer attention

1: procedure Nyströmformer(Q,K,V)
2: Lq,Lk ← SegmentMeans(Q,K,m)

3: K1 = S(QLk
T/
√
dk)

4: K2 = S(LqLk
T/
√
dk)

5: K+
2 = Iterative Inverse(K2, Niter)

6: K3 = S(LqK
T/
√
dk)

7: Y = K1(K+
2 (K3V))

8: end procedure

Algorithm 2 Orthoformer attention

1: procedure Orthoformer(Q,K,V)
2: L← MostOrthogonalSubset(Q,K,m)
3: K1 = S(QLT/

√
dk)

4: K2 = S(LKT/
√
dk)

5: Y = K1(K2V)
6: end procedure

Algorithm 3 Proxyformer attention

1: procedure Proxyformer(Q,K,V,L)
2: K1 = S(QLT/

√
dk)

3: K2 = S(LKT/
√
dk)

4: Yp = K2V
5: Yx = K1Yp

6: Y = [Yp;Yx]
7: end procedure

1Figure 3: Comparision of Nyström-based self-attention variants
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Figure 4: Transformer encoder of Proxyformer.

Algorithm 1 and Algorithm 2 in Fig. 3 represent the atten-
tion algorithms of Nyströmformer and Orthoformer, respec-
tively. These algorithms differ in two main operational as-
pects. Firstly, while Nyströmformer uses strided-based pool-
ing (SegmentMeans) from queries and keys to determine
m landmarks, Orthoformer builds orthogonal landmarks to
minimize the redundancy among landmarks. It is done by
incremental landmark selection. At each step, an orthogonal
landmark is selected based on its cosine similarity with land-
marks chosen in prior steps. Secondly, while Nyströmformer
employs a pseudo-inverse ofAs (K+

2 in Algorithm 1), which
is determined through an iterative approximation technique,
instead of calculating A+

s , Orthoformer does not require the
calculation of A+

s because its landmarks are orthogonal.
Orthoformer enhances self-attention performance by re-

ducing redundancy among landmarks and eliminating the
need for inverse calculations. However, its orthogonal land-
mark searching method incurs significant runtime over-
head. Consequently, as illustrated in Fig. 1, Orthoformer’s
throughput is not better than that of the standard transformer.
In contrast, Proxyformer employs trainable proxy tokens in-
stead of input-based landmarks. This allows for the orthogo-
nality of proxy tokens to be established during model train-
ing, facilitating a more efficient and effective construction of
the landmarks.

Proxy self-attention. Fig. 4 illustrates the structure of
Proxyformer encoder, which consists of alternating layers of
Proxy attention blocks and FFN blocks, following the typi-
cal encoder structure of Transformer model (Vaswani et al.
2017). In addition to the input sequence X , Proxyformer

employs m trainable proxy tokens P = (p0, . . . , pm) ∈
Rm×d. The proxy tokens are fed into the proxy atten-
tion block along with the input tokens X . The proxy self-
attention performs the Nyström attention using landmarks
constructed by trained proxy tokens. Algorithm 3 in Fig. 3
shows the algorithm of proxy attention. While the input to-
ken sets X is projected to Q, K, and V , the m proxy to-
ken sets P is projected to landmarks L ∈ Rm×dl through
WL ∈ Rd×dl (dl = dk = dq), i.e., L = PWL.

For the Nyström-based attention operation, Proxyformer
also uses the same approximation operation in Eq. (6). How-
ever, the landmark L substitutes Q̃ and K̃. To approxi-
mate the attention in a decomposed form, we computes
K1 ∈ Rn×m through operations between Q and L, and
K2 ∈ Rm×n through operations between K and L. The op-
eration between K2 and V compute the compressed form of
V represented as YP ∈ Rm×dv . Finally, the operation be-
tween K1 and YP yields the output YX ∈ Rn×dv for the
input sequence. While Nyströmformer discards the interme-
diate result on landmarks (K3V in Algorithm 1) after the
attention operation, Proxyformer passes it (Yp in Algorithm
3) to the next layer, and the subsequent layer uses it as the
proxy token set for the layer.

Contrastive landmarks. To approximate the attention
matrix using a minimal set of landmarks in the Nystörm-
based attentions, it’s crucial to ensure minimal redundancy
among these landmarks. Orthoformer achieves this by in-
crementally selecting the most orthogonal subset from the
query and key set. Starting with a randomly chosen land-
mark, each subsequent landmark is picked to be as orthog-
onal as possible to the previously selected ones. This pro-
cess, however, demands repeated cosine similarity computa-
tions during the runtime. Moreover, the incremental greedy
search could not find the optimal landmarks. On the other
hand, Proxyformer uses a contrastive loss to train proxy to-
kens. This approach facilitates the creation of landmarks
with minimal redundancy, without introducing additional
runtime overhead.

Contrastive learning (Hadsell, Chopra, and LeCun 2006)
can learn representations by contrasting positive pairs
against negative pairs. We adopt cosine similarity as the sim-
ilarity function between two landmarks and utilize the con-
trastive loss, denoted as Lc, to guide the learning towards
separating the directions of each two landmarks, as proposed
in SupContrast (Khosla et al. 2020). The model is trained
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Figure 5: Dropout on decomposed attention matrix. (a) represents normal dropout on K1 matrix. (b) represents normal dropout
on K2 matrix. (c) represents column dropout on K2 matrix (proposed decomposed dropout).

using both the cross-entropy loss LCE for the task and the
contrastive loss Lc.

zi = Li/||Li||2, i = 1, 2, . . . ,m (7)

Lc =
1

m

m∑
i=1

Lc
i = −

m∑
i=1

log
exp(zi · zi/τ)∑m
j=1 exp(zi · zj/τ)

(8)

Ltot = LCE +
1

T

T∑
t=1

Lc
t , t = 1, · · · , T (9)

Here, zi ∈ Rd represents the i-th normalized landmarks in-
dicating the direction. t denotes the layer index, and τ ∈ R+

representing a scalar temperature parameter.
Contrastive learning has an additional advantage. We can

eliminate the iterative computation for the pseudo inverse of
A+

s of Nyströmformer. Because the landmarks are trained
to reduce the cosine similarity between each other, the ma-
trix As ∈ Rm×m computes closely to the identity matrix
I ∈ Rm×m. This enables us to circumvent operations asso-
ciated with A+

s .

As = S(LLT/
√
dq) ≈ I, A+

s ≈ I (10)
Injection module. In Proxyformer, each layer generates
the proxy tokens for the next layer, accumulating informa-
tion about the input sequence. This enables the construction
of effective landmarks that take the input context into ac-
count. However, in the first encoder block, attention is ap-
proximated solely based on trained tokens, which fails to in-
corporate the information from the input context, leading to
a performance degradation. To address this issue, we use an
injection module to the embedding layer, aiming to provide
the input context information to the proxy tokens.

Patch Merger (Renggli et al. 2022), a computation-
efficient vision transformers, compresses n input patches X
into m sequences before passing them to the next encoder.
This is achieved through cross-attention operations with a
trainable weight matrix W ∈ Rm×d. We leverage the idea
of Patch Merger to design the injection module that effec-
tively injects input sequence information into the proxy to-
kens. The injection module generates m compressed tokens
from the input sequence X through cross-attention with the
learned proxy tokens P , and subsequently injections them
into the proxy tokens via a residual connection:

P = P + S
(
PXT /

√
d
)
X (11)

The injection module has a minimal impact on the overall
computational cost while successfully injecting information
about the input sequence to the proxy tokens.

Dropout for decomposed matrix. Dropout (Srivastava
et al. 2014) is a regularization technique used to prevent
the model from overfitting on specific features. In Trans-
former models, dropout is applied to the weights computed
by the Softmax function in the attention mechanism. It ran-
domly sets some weights to zero, preventing excessive re-
liance on specific token relationships and enabling the model
to extract information from various perspectives (Zehui et al.
2019). There are two decomposed weight matrices, K1 and
K2, in Proxyformer. Implementing a conventional dropout
method to either, as depicted in Fig. 5(a) and (b), results in
merely a partial dropout of some weight values (i.e., they are
not zeroed.) in the reconstructed attention matrix. This does
not fully eliminate the inter-token relationships. In addition,
if the dropout is applied to K1, all keys within specific rows
of the reconstructed attention matrix are affected, making
distorted relationships. With this in mind, we propose two
effective dropout approaches for decomposed matrices:

• Dropout is applied on K2 in Algorithm 3 so that not all
keys related to a particular query are affected.

• Dropout is employed to the full column of chosen keys
to completely remove certain weights within the recon-
structed matrix.

By applying a column-wise dropout only on the K2 matrix,
as shown in Fig. 5(c), we successfully achieve the regular-
ization effect on the decomposed attention matrix.

Complexity analysis of Proxyformer. In Proxyformer,
for each layer, there is a linear projection for proxy tokens
and an additional operation by the FFN. The complexity of
the linear projection depends on the number of landmarks,
denoted asm, which results in a linear complexity ofO(m).
The proxy attention operation of Proxyformer involves the
computation of S(QLT /

√
dk)(S(LKT /

√
dk)V ), and the

complexity of this operation is O(nmdv +mndv).
Regarding memory footprint, Proxyformer requires addi-

tional memory for landmarks, whose size is proportional
to mdl. Additionally, it needs to store three matrices for
Nyström approximation, which require memory space pro-
portional to nm+mn+ndv . Therefore, the overall memory
complexity is O(mdl +mn+ nm+ ndv).

Given that the number of landmarks m is much smaller
than n, the computational and memory complexities of
Proxyformer are both O(n), scaling linearly w.r.t. the input
sequence length n.
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Model ListOps Text Retrieval Image Pathfinder AVG.
(n=2K) (n=4K) (n=4K) (n=1K) (n=1K)

Standard Transformer (Vaswani et al. 2017)* 37.10 65.02 79.35 38.20 74.16 58.77
Standard Transformer(re-impl) 37.09 64.84 80.01 38.57 72.61 58.62

Reformer-2* (Kitaev, Kaiser, and Levskaya 2020) 19.05 64.88 78.64 43.29 69.36 55.04
Linformer-256* (Wang et al. 2020) 37.25 55.91 79.37 37.84 67.60 55.59
Performer-256* (Choromanski et al. 2021) 18.80 63.81 78.62 37.07 69.87 53.63
Nyströmformer-256* (Xiong et al. 2021) 37.15 65.52 79.56 41.58 70.94 58.95

Linformer-128 (Wang et al. 2020) 37.92 54.59 77.69 34.91 66.63 54.35
Performer-128 (Choromanski et al. 2021) 28.38 64.67 79.85 38.19 68.77 55.97
Set Trasnformer-ISAB-128 (Lee et al. 2019) 18.52 63.63 77.80 36.39 49.97 49.26
Bigbird (Zaheer et al. 2020) 37.23 63.94 80.44 39.46 71.53 58.52
Nyströmformer-128 37.18 65.73 80.44 38.64 71.18 58.63
Orthoformer-128 (Patrick et al. 2021) 37.16 65.12 79.53 39.69 72.48 58.80
Luna-128 (Ma et al. 2021) 37.29 64.47 78.12 34.84 69.11 56.77

Proxyformer-128 (ours) 37.22 65.49 80.23 40.14 74.07 59.43

Table 1: Classification accuracy results on Long Range Arena (LRA) benchmark. The symbol of ∗ denotes 256 projection
dimension results reported at Nyströmformer (Xiong et al. 2021). The best result for each benchmark task is bolded.

Experiments
To compare the performance of Proxyformer with those of
other efficient transformer models, we carried out experi-
ments using the Long Range Arena (LRA) benchmark (Tay
et al. 2021). The LRA benchmark is commonly utilized
to assess the capability of transformer models in captur-
ing long-range dependencies. We present the average accu-
racy, memory usage, and computational efficiency of various
transformers in scenarios involving long sequences.

Implementation Details
We used Nyströmformer’s LRA PyTorch implementation,
which employs a two-layer transformer model with 64 em-
bedding dimensions, 128 feed-forward dimensions, and two
attention heads. To ensure similar computational complex-
ity across all variants, we set the projection dimension
(e.g., # of proxy tokens and # of landmarks) to 128 for
all projection-based variants. For Reformer and Bigbird, we
used 2-hashing functions and a block size of 64, respectively.
The temperature parameter for contrastive loss and dropout
probability were set to 0.07 and 0.1, respectively. Further-
more, to observe only the capability of the self-attention
operation, we removed the convolution module from the
Nyströmformer implementation, which has been employed
to enhance the performance on vision task.

For experiments focusing on inference-time efficiency, we
used a more extensive transformer model featuring six en-
coder layers, following the structure of the standard trans-
former. We recorded the memory usage per sequence and
throughput on a single NVIDIA GeForce RTX 3090 GPU.

Results: Accuracy and Efficiency
Table 1 illustrates the accuracy of various transformers, and
Table 2 presents the efficiency results. The reported ac-
curacy is the average value of five random seed experi-
ments. Proxyformer exhibits superior accuracy compared
to other self-attention operations, demonstrating robustness

Sequence Length 2048 4096

Model MEM↓ TP↑ MEM↓ TP↑
Standard 1(286.8MB) 1(65) 1(1091.7MB) 1(20)
Set Transformer 0.16 2.32 0.09 3.83
Reformer 0.19 2.21 0.10 3.62
Linformer 0.16 2.46 0.08 4.01
Performer 0.23 2.04 0.12 3.32
Bigbird 0.69 1.24 0.37 2.00
Nyströmformer 0.20 2.19 0.11 3.74
Orthoformer 0.17 0.56 0.10 0.91
Luna 0.16 2.56 0.08 4.22

Proxyformer 0.17 2.27 0.08 3.80

Table 2: Average memory footprint per one input sequence
(MEM) and throughput (TP) results for 2K and 4K input
sequence lengths. The throughput means the number of in-
puts per seconds. These values are normalized to those of
the standard transformer. The absolute result values of the
standard transformer are provided in parentheses.

across all LRA tasks. This is attributed to the Proxyformer’s
ability to encapsulate the context within the proxy tokens
at each layer. In particular, it shows 0.8% higher accu-
racy compared to the Nyströmformer-128. (For comparison,
Nyströmformer-256 is a convolution-enabled version.)

Proxyformer shows a substantial decrease in memory
footprint, 83% and 92% reductions compared to the stan-
dard transformer for 2048 and 4096 sequence lengths, re-
spectively. The throughput increases by 2.27× and 3.8× for
the mentioned sequence lengths. Notably, as the sequence
length increases, its efficiency becomes more significant ow-
ing to its linear complexity w.r.t. the sequence length n.

Although Orthoformer achieves higher accuracy
(+0.17%) than Nyströmformer due to the orthogonal
landmark sampling, this comes with a notable sampling
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Model ListOps
(n=2K)

Text
(n=4K)

Retrieval
(n=4K)

Image
(n=1K)

Pathfinder
(n=1K) AVG.

Dropout Contrastive Injection Train/Test Train/Test Train/Test Train/Test Train/Test Train/Test

- - - 39.2/36.9 84.6/65.2 86.6/80.1 66.7/39.0 80.9/72.5 71.6/58.7
- X - 36.1/37.0 82.3/65.4 86.7/80.4 63.4/38.7 79.4/73.0 69.6/58.9

Normal on K1 - - 36.0/36.9 84.3/65.1 86.2/80.2 66.6/38.9 81.0/72.8 70.8/58.8
Normal on K2 - - 39.1/37.0 84.8/64.8 86.4/80.3 66.9/39.5 79.8/70.2 71.4/58.4
Decomposed - - 37.5/37.0 81.6/65.2 85.2/80.0 63.7/40.1 80.0/73.3 69.5/59.2
Decomposed X - 34.3/37.0 78.9/65.5 85.0/80.1 61.1/40.2 77.7/73.6 67.4/59.3
Decomposed X X 37.1/37.2 80.0/65.5 85.6/80.2 61.9/40.1 78.5/74.1 68.6/59.4

Table 3: Ablation study using the Long Range Arena (LRA) benchmark. We evaluate the performance of the proposed decom-
posed dropout, contrastive loss, and injection module. The results showcase the train/test classification accuracy for each task.
The train accuracy represents the average accuracy over the last 10 batches.
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Figure 6: Average of cosine similarity between landmarks on
Retrieval and Image test dataset. NF: Nyströmformer, OF:
Orthoformer, PF: Proxyformer, C: contrastive loss

overhead, as observed in Table 2. However, Proxyformer
minimizes redundancy via contrastive loss, ensuring ef-
ficient computations without runtime overhead. It also
attains lower memory footprint and higher throughput than
Nyströmformer by eliminating pseudo-inverse operations.

We analyzed the cosine similarity among landmarks for
the Nyströmformer, Orthoformer, and Proxyformer, as de-
picted in Fig. 6. The Nyströmformer displays significant re-
dundancy, particularly evident in the Retrieval tasks. While
Orthoformer mitigates this redundancy using its landmark
selection algorithm, the results remain less than ideal. Prox-
yformer, on the other hand, significantly reduces redundancy
via contrastive learning. Without the application of con-
trastive learning in the Proxyformer, the proxy tokens tend to
exhibit high redundancy. With contrastive learning, Proxy-
former consistently delivers superior results across all tasks.

Despite Linformer (Wang et al. 2020) and Luna (Ma et al.
2021) being more efficient than Proxyformer, they show in-
ferior accuracies compared to Proxyformer (-5.08% and -
2.66%). Proxyformer facilitates efficient self-attention oper-
ations, successfully balancing efficiency and accuracy.

Ablation Study
Table 3 demonstrates the average accuracy of Proxyformer
under various settings. Without dropout or contrastive loss,
proxy tokens tend to focus on specific input tokens, result-
ing in a test accuracy that is notably lower than its training

counterpart. Introducing the contrastive loss causes a dip in
training accuracy as it inhibits the model from becoming too
aligned with a particular task. Yet, this results in a 0.2% in-
crease in test accuracy. This underscores the idea that mini-
mizing redundancy in landmarks serves as an effective regu-
larization technique, ultimately improving the model’s over-
all performance.

When applying standard dropout (Srivastava et al. 2014)
to theK1 matrix, the decomposed matrix was not effectively
regularized, making the benefits of regularization barely no-
ticeable. Applying standard dropout to the K2 matrix did
present some regularization effects. Yet, this led to a sub-
stantial accuracy decline for the Pathfinder task, causing
an overall reduction in average accuracy. Conversely, the
decomposed dropout resulted in roughly a 0.5% accuracy
boost, showcasing the effect of dropout regularization.

Combining both contrastive loss and decomposed dropout
improved overfitting across most tasks, leading to about a
0.6% increase in test accuracy. Furthermore, integrating the
injection module led to a rise in both training and testing ac-
curacy (+1.2%/+0.1%), underscoring its efficacy in crafting
input-sensitive landmarks.

Conclusion
We presented Proxyformer, a Nyström-based model that
uses trainable proxy tokens as landmarks, facilitating effi-
cient attention with linear complexity. Our findings indicate
that landmarks for Nyström-based decomposition can be ef-
fectively trained to minimize redundancy and maintain sen-
sitivity to input context. This is achieved through the incor-
poration of contrastive loss, injection module, and tailored
dropout. Proxyformer not only showcased leading perfor-
mance on LRA tasks but also optimized computation and
memory usage.

In future research, we plan to extend our validation
of Proxyformer’s effectiveness by integrating it with vari-
ous transformer models like BERT (Kenton and Toutanova
2019) and ViT (Dosovitskiy et al. 2021). Furthermore, we
intend to delve into challenges that may arise when apply-
ing proxy self-attention during the fine-tuning phase of pre-
trained models, especially focusing on the initialization of
proxy tokens.
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