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Abstract
We study a novel variant of a contextual bandit problem with
multi-dimensional reward feedback formulated as a mixed-
effects model, where the correlations between multiple feed-
back are induced by sharing stochastic coefficients called ran-
dom effects. We propose a novel algorithm, Mixed-Effects
Contextual UCB (ME-CUCB), achieving Õ(d

√
mT ) regret

bound after T rounds where d is the dimension of contexts
and m is the dimension of outcomes, with either known or
unknown covariance structure. This is a tighter regret bound
than that of the naive canonical linear bandit algorithm ig-
noring the correlations among rewards. We prove a lower
bound of Ω(d

√
mT ) matching the upper bound up to log-

arithmic factors. To our knowledge, this is the first work pro-
viding a regret analysis for mixed-effects models and algo-
rithms involving weighted least-squares estimators. Our the-
oretical analysis faces a significant technical challenge in that
the error terms do not constitute martingales since the weights
depend on the rewards. We overcome this challenge by using
covering numbers, of theoretical interest in its own right. We
provide numerical experiments demonstrating the advantage
of our proposed algorithm, supporting the theoretical claims.

Introduction
Many real-world decision-making problems involve multi-
ple outcomes for each decision. As an example, clinical
trials in medicine often yield multivariate outcomes in re-
sponse to a treatment. Measurements obtained from dif-
ferent parts of the brain (Lennihan et al. 2000), as well
as assessments involving the eyes, ears, or psychological
distress comprising depression and stress scales, can ex-
hibit correlations with one another. This correlation arises
as all these measurements are derived from the same indi-
vidual. For behavioral intervention trials, treatments such
as standard of care in a hospital and educational interven-
tion are implemented collectively, and the outcomes of the
subjects who receive intervention in the same session are
correlated. Another example of correlated responses arises
in user-rating systems, where each user evaluates multiple
items. The ratings provided by the same user can exhibit
correlation (Karumur, Nguyen, and Konstan 2016). In sce-
narios where we recommend a bundle of items to a single
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user and observe the ratings for each item, these ratings are
stochastically correlated. The correlation does not stem from
the items being related to each other but from the inclusion
of unobservable variables specific to that user, such as the
user’s preferences or mood at the time, which act as shared
random effects across all ratings. While this problem setting
of multiple correlated responses per decision is prevalent
in various applications, the study of such aspects in online
decision-making has been limited.

In this paper, we propose a novel contextual bandit model
where the reward feedback from a single action is given
as vector and rewards can be correlated with each other
in a vector. We formulate this model using a mixed-effects
model. In statistical literature (Laird and Ware 1982; Zhang
et al. 2016), mixed-effects model is a multivariate regres-
sion model with both fixed effects and random effects to
handle the correlated structure among longitudinal/clustered
outcomes. Fixed effects refer to usual non-stochastic regres-
sion coefficients common to all subjects, while random ef-
fects refer to stochastic coefficients specific for each subject.
In mixed-effects model, outcomes from the same subject are
correlated by sharing the random effects common to all mea-
surements from the same subject. Typically, weighted esti-
mators taking the correlations into account are utilized to
efficiently estimate the regression parameters. To the best
of our knowledge, our work is the first to adapt the mixed-
effects model to contextual bandits.

In other variants of multi-armed bandit for a vector of
rewards, such as combinatorial bandits (Chen, Wang, and
Yuan 2013; Qin, Chen, and Zhu 2014; Li et al. 2016), po-
tential correlations among rewards are commonly ignored.
It is well known that when the outcomes are correlated, the
weighted least-squares estimator (WLSE) with the weight
incorporating correlation has a smaller variance than the
ordinary least-squares estimator. Since the regret is com-
monly related to the estimation error, utilizing an efficient
estimator has the potential for a tighter bound for the re-
gret. However, incorporating correlation between rewards in
bandit algorithms poses technical challenges in analysis. Us-
ing the weighted estimator addressing correlation requires a
novel yet more involved analysis since the self-normalized
martingale theorem (de la Pena, Klass, and Lai 2004) does
not apply as in the regret analysis of canonical linear ban-
dit algorithms (Abbasi-Yadkori, Pál, and Szepesvári 2011;
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Agrawal and Goyal 2013), or their combinatorial variants
(Qin, Chen, and Zhu 2014; Li et al. 2016). Elaborating on
the technical challenge in more detail, the issue arises when
the weighted least-squares estimator is used with the inverse
of the estimated covariance matrix as weights. An empiri-
cal covariance matrix, defined as V̂τ,t in (4), involves data
observed later than time τ and is not independent of the
error terms. This lack of independence impedes invoking
the self-normalizing theorems (de la Pena, Klass, and Lai
2004) highly utilized in many of the contextual bandit liter-
ature. These challenges have not been addressed in previous
works since in the statistical literature, asymptotic results on
the mixed-effects models are well established (Jiang 2017)
but not the non-asymptotic results. We present a novel non-
asymptotic error bound on the weighted least-squares esti-
mator (WLSE) for the mixed-effects models.

To this end, we provide both algorithmic and theoreti-
cal contributions in this paper. First, we propose a novel al-
gorithm for the mixed-effects bandit model, Mixed-Effects
Contextual UCB (ME-CUCB). As a theoretical contribution,
we provide the regret analysis of ME-CUCB achieving prov-
able efficiency, yielding a tighter regret bound than that of
the naive canonical linear bandit algorithm ignoring the cor-
relation structure. To the best of our knowledge, this is the
first to present a regret analysis for mixed-effects models and
for algorithms involving weighted least-squares estimators.
Our main contributions are summarized as follows:

Contributions
• We propose a new contextual bandit problem that al-

lows for multi-dimensional reward feedback and poten-
tial correlations among rewards, using the mixed-effects
model. We propose UCB-type algorithms (ME-CUCB, Al-
gorithms 1 and 2) that achieve superior regret performance
compared to the naive contextual bandit algorithm, with
provable guarantees (Proposition 2).

• We provide an estimation error bound for the weighted re-
gression coefficients where the estimator is a sum of con-
tributions of each time point, but the weights depend on
the data obtained from future time points (Theorem 4). To
the best of our knowledge, this is the first error bound of
such an estimator without martingale property.

• We provide the regret analysis of our proposed algorithms.
We establish O(d

√
mT log T ) worst-case regret bound for

the both cases where the covariance structure is known
(Theorem 3) and unknown (Theorem 6), for our proposed
algorithms.

• We prove a lower bound of Ω(d
√
(mλmax(D) + σ2)T )

for cumulative regrets of our problem considering the co-
variance matrix D and noise variance σ2 (Theorem 7).
This lower bound matches the regret upper bound of
ME-CUCB up to logarithmic factors, proving the near-
optimality of our method.

• Our numerical experiments demonstrate that our proposed
algorithms outperform benchmarks in terms of cumulative
regret.

Related Works
Multi-armed bandit algorithms based on upper confidence
bounds (UCB) select arms by the principle of optimism in
the face of uncertainty. The UCB approach was introduced
by Lai, Robbins et al. (1985) and proven to achieve logarith-
mic regret bound with a known gap between optimal/sub-
optimal arms (Auer, Cesa-Bianchi, and Fischer 2002). Auer
(2002) introduced a contextual bandit algorithm LinRel
with linear reward function. Li et al. (2010) proposed
LinUCB with Õ(d

√
T ) regret bound and applied the al-

gorithm to news recommendation. Chu et al. (2011) pro-
posed SupLinUCB with a tighter Õ(

√
dT ) regret bound

and proved matching lower bound up to logarithmic factors.
There are variants of contextual bandit problem that al-

low for multi-dimensional vector reward feedback: combi-
natorial bandits (Chen, Wang, and Yuan 2013; Qin, Chen,
and Zhu 2014; Li et al. 2016) and multi-objective bandits
(Tekin and Turgay 2017; Lu et al. 2019). In either case, the
correlation structure has not been addressed. In combina-
torial bandits, the agent pulls a set of multiple base arms,
called super-arm at each round. A vector of outcomes with
multiple values corresponding to multiple base arms are ob-
served, and a specified reward function aggregates multiple
values into a scalar reward. Qin, Chen, and Zhu (2014) intro-
duced C2UCB achieving O(d

√
mT log T ) regret rate where

m is the size of a super-arm, which corresponds to the di-
mension of a reward vector in our case. Another example
is a multi-objective bandit (Drugan and Nowe 2013; Busa-
Fekete et al. 2017; Turgay, Oner, and Tekin 2018) where a
vector of rewards are observed when pulling an arm. In this
setting, element-wise comparison is of interest. A particu-
lar element in the outcome vector can be better in one di-
mension, but another element is worse in another dimension.
Drugan and Nowe (2013) proposed Pareto regret summariz-
ing element-wise performance of multi-objective outcomes.

In statistical literature, to handle clustered data, mixed-
effects models (Laird and Ware 1982) or generalized es-
timating equation (Liang and Zeger 1986) are commonly
used. Both methods employ weighted least-squares estima-
tors utilizing the covariance structure of clustered data to re-
duce the variance of the regression coefficient estimators.
In contextual bandit algorithms, such estimators can poten-
tially reduce the regret bound through smaller estimation er-
ror bound, but to our knowledge, no existing algorithms take
advantage of weighted least-squares estimators.

Zhu and Kveton (2022a) proposed random effects ban-
dit for the non-contextual case assuming the mean reward
of each arm arising from a distribution. The setting differs
from ours as they consider a single reward for each arm, and
the rewards from same arm are correlated across time. We
consider multiple outcomes for each arm correlated at each
time point but independent across time.

Aouali, Kveton, and Katariya (2023) introduced a mixed-
effect Thompson sampling algorithm, using similar termi-
nology to our proposed mixed-effects contextual bandits. In
this work, mixed-effect implies that the coefficients for each
arm are sampled from a prior distribution based on a mixture
of multiple effect parameters, within a Bayesian hierarchical
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framework, and is different from the statistical mixed-effects
model of Laird and Ware (1982). The mixed-effects in our
work differs, as we employ a statistical mixed-effects model
that combines fixed-effects and random-effects from a fre-
quentist perspective.

Distinction From Bayesian Hierarchical Bandit Models
Several Bayesian hierarchical bandit models have been pro-
posed to handle correlated rewards across arms (Kveton
et al. 2021; Wan, Ge, and Song 2021; Hong et al. 2022a;
Zhu and Kveton 2022b; Aouali, Kveton, and Katariya 2023)
or multiple tasks (Hong et al. 2022b). Our proposed mixed-
effects bandit model is distinct in many aspects.

Firstly, the Bayesian hierarchical models are designed for
handling correlated rewards from different arms or multiple
tasks, whereas our model deals with a single task that pulls
a single arm and returns a correlated outcome vector. This
means that the problem we handle is fundamentally different
from those addressed in the hierarchical bandit models.

Secondly, the theoretical justifications for hierarchical
bandit models formulated within a Bayesian framework re-
quire a distributional Gaussian assumption with a known
variance-covariance matrix, which is a major concern of
Bayesian theory (Demidenko 2013). In contrast, our mixed-
effects bandit model does not specify any distribution and
allows the variance-covariance matrix to be unknown. This
flexibility is a major advantage as, in practice, knowledge of
the covariance structure is often unavailable.

This distinction leads to different theoretical results, as
previous models derive Bayes regret bounds based on the
Bayesian prior, while our approach provides a frequentist’s
worst-case regret bound by estimating the unknown co-
variance. In this process, we addressed a theoretical chal-
lenge not required in Bayesian methods: bounding the self-
normalizing norm of terms that do not form a martingale.

Problem Setting and Assumptions
Mixed-Effects Bandit Problem
Consider a contextual bandit problem where pulling each
arm returns a vector of outcomes. Let T be the number of
rounds, K be the number of arms, d and k be the dimension
of the context vector of fixed effects and random effects, re-
spectively. We select an arm at at each time step t. We as-
sume that the outcome vector Yti of m elements for arm i at
round t has the form of linear mixed-effects model

Yti = Xtiβ + Ztiγti + eti = µti + ηti,

where Xti ∈ Rm×d and Zti ∈ Rm×k are the context
matrix for the fixed effect β ∈ Rd and the centered ran-
dom effect γti ∈ Rk, respectively. The random effect γti
is a random variable common to all elements in Yti and in-
duces correlation among them. We remark that we do not
require γti to be independent across arms given Ht, and in-
clude the case where γt1 = γt2 = · · · = γtK . The vector
eti ∈ Rm is the noise of arm i at round t, and µti = Xtiβ
and ηti = Ztiγti+ eti. We assume that γti is independent of
eti.

Two popular mixed-effects models are (i) random inter-
cept model and (ii) random coefficient model. In random in-
tercept model, Zti = 1m and γti is a scalar random vari-
able called random intercept. In this case, Cov(Ytil, Ytig) =
Var(γti) for l ̸= g, where Ytil denotes the lth element of
Yti. In random coefficient models, columns of Zti consist of
all or some columns of Xti. Detailed examples of these two
models are provided below.

The goal is to maximize the expected cumulative re-
ward

∑T
t=1 f(µtat) over T rounds. Here f : Rm →

R is a user-selected function measuring the quality of
the selected arm. This is equivalent to minimizing the
cumulative regret R(T ) =

∑T
t=1 regret(t), where

regret(t) = f(µta∗
t
)− f(µtat

) for the optimal arm a∗t =
argmaxi∈[K] f(µti).

Assumptions
For the theoretical regret analysis, we provide the following
assumptions.

Assumption 1 (Boundedness). For all i ∈ [K] and j ∈ [m],
∥Xtij∥2 ≤ 1, ∥Ztij∥2 ≤ 1 and ∥β∥2 ≤ 1 where Xtij and
Ztij are the jth row of Xti and Zti, respectively.

Assumption 2 (Sub-Gaussianity). For a symmetric positive
definite matrix D ∈ Rk×k and σ2 > 0,

E(γti) = 0,Var(γti) = D,Eexp(λ⊤γti) ≤ exp(
1

2
λ⊤Dλ)

for any λ ∈ Rk and E(eti) = 0m, Var(eti) = σ2Im,
Eexp(λ⊤eti) ≤ exp( 12σ

2λ⊤λ) for any λ ∈ Rm, where all
expectations and variances are conditioned to Ht, the history
σ-field containing all the information at the start of round t.

Assumption 3 (Assumptions on f ).
(3-1) (Monotonicity). If Y1 ≤ Y2 elementwisely, then
f(Y1) ≤ f(Y2).
(3-2) (Lipschitz continuity). There exists L > 0 such that
|f(Y1)− f(Y2)| ≤ L ∥Y1 − Y2∥2 for any Y1, Y2 ∈ Rm.

Assumption 1 is widely used in the contextual bandit lit-
erature (Chu et al. 2011; Agrawal and Goyal 2013) and the
boundedness of Ztij is added. Assumption 2 is an exten-
sion of the sub-Gaussian assumption commonly used in the
bandit literature. It is required because our random effects
and noises can be vectors with certain covariance matrices.
Assumptions 3-1 and 3-2 are necessary in bandit problems
where the reward depends on an outcome vector with multi-
ple elements, such as combinatorial bandit problems (Chen,
Wang, and Yuan 2013; Qin, Chen, and Zhu 2014; Li et al.
2016; Zhang, Li, and Liu 2019).

Weighted Least-Squares Estimator
By Assumption 2, the covariance of Ytat conditioned on Ht

is Vt = ZtatDZ⊤
tat

+ σ2Im. Let V ∗
t ∈ V be an arbitrary

symmetric positive definite matrix, where V is the class of
all m-dimensional positive definite matrices with its eigen-
values in [λ0,Λ0] containing the true Vt. Write the upper
bound of the eigenvalues of Vt by Λ = mλmax (D) + σ2

where λmax (D) denoting the maximum eigenvalue of D.
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We consider the following class of weighted least-squares
estimators of β when Vt is known:

β∗
t = B∗−1

t

t∑
τ=1

X⊤
τaτ

V ∗−1
τ Yτaτ

, (1)

where B∗
t =

∑t
τ=1 X

⊤
τaτ

V ∗−1
τ Xτaτ

+ Id. This class of es-
timators includes the ridge ordinary least-squares estimator
when V ∗

τ = Im, and the ridge weighted least-squares esti-
mator when V ∗

τ = Vτ . The variability of β∗
t is captured by

Ct = B∗−1
t (

t∑
τ=1

X⊤
τ,aτ

V ∗−1
τ VτV

∗−1
τ Xτ,aτ

+ Id)B
∗−1
t .

(2)
The following proposition shows that Ct determines the up-
per bound of the estimation error of β∗

t .
Proposition 1. For any {Vτ}tτ=1 ⊂V , x ∈ Rd with proba-
bility 1− δ,

|x⊤(β∗
t − β)| ≤ α∗

t ∥x∥Ct
, (3)

α∗
t =

√
d log(

mΛ

λ2
0d

t+ 1)δ−
2
d = O(

√
d(log t+ logm)).

When V ∗
t = Vt, that is, the true covariance matrices

are used, the value of Ct is given by Ct = B−1
t , where

Bt =
∑t

τ=1 X
⊤
τaτ

V −1
τ Xτaτ . Later in Proposition 2, we

prove that the use of true covariance values results in the
smallest instantaneous regret bound.

For the case where the D and σ2 are unknown, we con-
sider the following WLS estimator:

β̂t = B̂−1
t

t∑
τ=1

X⊤
τaτ

V̂ −1
τ,t Yτaτ

(4)

for matrix B̂t =
∑t

τ=1 X
⊤
τaτ

V̂ −1
τ,t Xτaτ + Id and V̂τ,t =

Zτaτ
D̂tZ

⊤
τaτ

+ σ̂2
t Im.

Consistent closed-form estimators D̂t, σ̂
2
t ∈ Ht for D

and σ2 are available for the random intercept models. One
approach involves constructing an estimating equation us-
ing the sample covariance matrix of Yt and its expected
value. Another method is to maximize the marginal likeli-
hood function of multivariate normal Yt using Expectation-
maximization (EM) algorithm (Dempster, Laird, and Rubin
1977) with respect to D and σ2. Score functions for D and
σ2 are unbiased estimating equations even when Yt is not
distributed as Gaussian, as long as the variance structure is
correctly specified. Unbiasedness ensures that the solutions
of the equations converge to the true values of D and σ2 in
probability.

Algorithm
We present novel algorithms, mixed-effects contextual UCB
for mixed-effects contextual bandit problem for two differ-
ent cases. ME-CUCB1 (algorithm 1) is for the case where the
true D and σ2 are known, so that one needs not to estimate
the covariance matrices. ME-CUCB2 (algorithm 2) is for the
general case where we estimate unknown D and σ2.

Algorithm 1:
Mixed-Effects Contextual UCB1 (ME-CUCB1)

1: INPUT: Covariance parameters D, σ2 and exploration param-
eter α.

2: for t ∈ [T ] do
3: observe the contexts {Xt}, {Zt} and compute Ŷti for each

arm i using equation (5).
4: Play arm at = argmaxi∈[m] f(Ŷti) and observe Ytat .
5: Select V ∗

t ∈ V and update B∗
t = B∗

t−1 +X⊤
tat

V ∗−1
t Xtat .

6: Update β∗
t = B∗−1

t

t∑
τ=1

X⊤
τaτ

V ∗−1
τ Yτaτ and

Ct := B∗−1
t (

t∑
τ=1

X⊤
τaτ

V ∗−1
τ VτV

∗−1
τ Xτaτ + Id)B

∗−1
t .

7: end for

ME-CUCB for Known D and σ2

For the case where D and σ2 are known, we present
ME-CUCB1 in algorithm 1, an UCB-type algorithm for
mixed-effects bandit problem. At time step t we choose an
arm at = argmaxi∈[K] f(Ŷti) and observe Ytat

, where the
jth element of the upper confidence bound vector Ŷti is

Ŷtij = X⊤
tijβ

∗
t−1 + α∗

t ∥Xtij∥Ct−1
. (5)

The following proposition presents the instantaneous re-
gret bound of ME-CUCB1 and demonstrates that the bound
is minimized by utilizing the true covariance matrices.
Proposition 2. Under the event where (3) holds, the regret
of ME-CUCB1 at time step t is bounded by regret(t) ≤

2Lα∗
t

√
m∑
j=1

∥Xtatj∥
2
Ct−1

. The upper bound is minimized us-

ing the true V ∗
t = Vt.

Proposition 2 shows that among the estimators considered
in (1), the estimator using true covariance yields the tightest
bound by achieving the smallest estimation variance. Taking
the correlation into account lead to a better regret bound than
the standard UCB, ignoring the correlation.

ME-CUCB for Unknown D and σ2

For the general case where the D and σ2 are unknown, we
present ME-CUCB2 in algorithm 2.

The key difference is that we estimate D̂t and σ̂2
t at each

round and we replace β∗
t−1 and Ct−1 with their plug-in es-

timators β̂t−1 from (4) and B̂−1
t−1 respectively to construct

the UCB in (6). Although D̂t and σ̂2
t are plugged in instead

of the true values D and σ2, we show later that under mild
assumptions, the estimation error of β̂t has the same order
as the error of β∗

t . Consequently, the formula in (6) is a valid
UCB as well. After c random exploration rounds, at the start
of round t we obtain D̂t, σ̂

2
t ∈ Ht. In practice, we do not

need to update D̂t and σ̂2
t at every time step but only update

occasionally. Given β̂t−1, the upper bound of the jth element
of Yti is computed by

Ŷtij = X⊤
tij β̂t−1 + αt ∥Xtij∥B̂−1

t−1
(6)
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Algorithm 2:
Mixed-Effects Contextual UCB2 (ME-CUCB2)

1: INPUT: number of random exploration rounds c, exploration
parameter α.

2: for t ≤ c do
3: Sample an arm at ∈ [K] randomly and observe Ytat .
4: end for
5: Compute D̂c, σ̂

2
c , V̂τ,c, B̂c and β̂c by equation (4).

6: for t > c do
7: Observe the contexts {Xt}, {Zt} and compute D̂t, σ̂

2
t ∈

Ht.
8: Compute Ŷti for each arm i using equation (6).
9: Play arm at = argmaxi∈[m] f(Ŷti) and observe Ytat .

10: Compute V̂τ,t = Zτ,aτ D̂tZ
⊤
τ,aτ

+ σ̂2
t Im for τ ∈ [t] and

B̂t =
t∑

τ=1

X⊤
τaτ

V̂ −1
τ,t Xτaτ + Id.

11: Update β̂t = B̂−1
t

t∑
τ=1

X⊤
τaτ

V̂ −1
τ,t Yτaτ .

12: end for

for some αt > 0. Then we choose an arm with maximum
value of f(Ŷti) by at = argmaxi∈[K] f(Ŷti) to observe
Ytat

. In the following section, we conduct regret analysis
for the cases when D and σ2 are known and unknown.

Regret Analysis
Why the Usual Self-Normalizing Martingale Norm
Technique Cannot Be Applied?
In the regret analysis of ME-CUCB2, an additional term
emerges compared to that of ME-CUCB1 due to the estima-
tion error in D̂t and σ̂2

t . Using the approach in Lattimore,
Crammer, and Szepesvári (2015), it is possible to construct
a martingale based only on data up to round τ < t. How-
ever, this approach fails to fully exploit the available data
up to round t, leading to an inability to fully leverage the
consistency of the estimators. This could result in additional
regret bound terms that cannot be neglected.

To overcome this limitation, our proposed algorithm uses
V̂τ,t as the weight matrix. The computation of V̂τ,t uses
all the available data up to round t. As a result, a depen-
dency between the weight and error term emerges, caus-
ing the terms to not satisfy the martingale property. This
non-martingale property prevents conventional techniques
for martingale norms from being applicable. As an alterna-
tive, we introduce a new approach that utilizes the covering
number to derive the regret bound.

Regret Bound of ME-CUCB1 (Algorithm 1) for
Known D and σ2

Theorem 3 (Regret bound of ME-CUCB1). With probabil-
ity 1 − δ, the cumulative regret of ME-CUCB1 by time T is
bounded by

R(T ) ≤ 2
√
2Ld

√
ΛT

√
log

mT
σ2d + 1

δ2/d

√
log(

mT

Λd
+ 1).

Since Λ = mλmax (D) + σ2, the regret bound rate is
R(T ) = O(d

√
mT log T ). The regret bound of ME-CUCB1

does not depend on k, the dimension of random effects. Intu-
itively, we do not estimate the random effects that determine
the covariance structure; the impact of random effects on the
regret bound is reflected in the value of Λ.

Regret Bound of ME-CUCB2 (Algorithm 2) Using
Consistent Estimator of D and σ2

A natural question that arises is whether plugging in a ‘good’
estimator for D and σ2 provides a comparable regret bound.
Here, we provide an affirmative answer to this question. For
any δ > 0, consider a monotonically decreasing ϵt such that,
with probability 1− δ,∥∥∥D̂t −D

∥∥∥
F
≤ ϵt, |σ̂t

2 − σ2| ≤ ϵt (7)

for all t ∈ [T ]. That is, the estimators of D and σ2 are
assumed to be consistent with a rate of ϵt. An example
of such an estimator is the maximum likelihood type esti-
mator of D and σ2, which satisfies the condition (7) with
ϵt = O(t−1/2), under mild regularity conditions. This en-
sures the existence of the estimators D̂t and σ̂2

t assumed in
this section. In the following section, we use ϵt = t−1/2 up
to a constant coefficient, without loss of generality.

Let E1 be the event where (7) holds so that P(E1) ≥ 1−δ,
and define Λ1 = mλmax (D) + σ2 + m + 1, the upper
bound of the eigenvalues of V̂τ,t under E1. For ME-CUCB2,
one need invertibility of V̂τ,t to bound the regret. The ex-
ploration rounds with c = ⌈4/σ4⌉ guarantee the minimum
eigenvalue of V̂τ,t to be bounded below by σ2/2 under E1.
The regret incurred by c exploration rounds is bounded by∑c

τ=1(f(µτa∗
τ
)− f(µτaτ

)) ≤ 2L
√
mc, independent of T .

Estimator Error Bound We proceed our analysis un-
der E1 from now on. de la Pena, Klass, and Lai (2004)
and Abbasi-Yadkori, Pál, and Szepesvári (2011) derived
tight bounds for estimation errors when the error is ex-
pressed as a normalized martingale, where the normaliza-
tion term has dependency on data from all time steps. The
error of our estimator also decomposes as a normalized
sum, β̂t − β = B̂−1

t

∑t
τ=1 X

⊤
τ V̂ −1

τ,t ητ . However, the term∑t
τ=1 X

⊤
τ V̂ −1

τ,t ητ without normalization is not a martingale
since V̂τ,t involves the data observed after τ , so we cannot
apply corollary 4.3 of de la Pena, Klass, and Lai (2004) or
theorem 1 of Abbasi-Yadkori, Pál, and Szepesvári (2011).
To address this new challenge, we decompose the error into
three terms, and use the covering number arguments to break
the dependency between V̂ −1

τ,t and ητ .
Theorem 4 (estimation error bound of ME-CUCB2). For
any x ∈ Rd and all t ≥ c, with probability 1− 3δ∣∣∣x⊤(β̂t − β)

∣∣∣ ≤ αt(1 +Rt) ∥x∥B−1
t

(8)

for αt =

√
d log

mt
σ2d + 1

δ2/d
= O(

√
d log t) and Rt =

O(m
√
dϵt) = O(m

√
dt−1/2).
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Theorem 4 shows that the estimation error bound from
algorithm ME-CUCB2 is of the same main order as that of
algorithm ME-CUCB1 using true D and σ2. The extra term
including Rt is of non-dominant order.

Regret Analysis Finally, we take care of the fact that the
output at each round is a vector and the expected rewards
depend on the f , and present the instantaneous regret bound.
Proposition 5. With probability 1 − 3δ, for all t > c, the
regret at time step t is bounded above by

regret(t) ≤ 2Lαt(1 + 2St)

√√√√ m∑
j=1

∥Xtatj∥
2
B−1

t−1
,

St = 2σ−2√mϵt +Rt−1 = O(
√
mϵt) = O(

√
mt−1/4).

The first term of St emerges due to using B̂t instead of Bt

in the bonus term in (6) while the second term, Rt, is extra
variation for estimating the variance in the WLSE as shown
in Theorem 4. We are now ready to bound the cumulative
regret of ME-CUCB2.
Theorem 6 (Regret bound of ME-CUCB2 with consistent
estimators). With probability 1 − 3δ, with c random explo-
ration rounds the cumulative regret R(T ) of the algorithm 2
is bounded by

R(T ) ≤ 2
√
2Ld

√
ΛT

√
log

mT
σ2d + 1

δ2/d

√
log(

mT

Λd
+ 1)

+O(dmT 1/4 log T ).

The regret bound rate for ME-CUCB2 is expressed as
O(d

√
mT log T )+O(dmT 1/4 log T ). The second term cap-

tures the additional variation that arises from using the es-
timated covariance instead of the true covariance. The the
term O(dmT 1/4 log T ) represents the difference between
the regret bounds of ME-CUCB2 and ME-CUCB1, which is
negligible compared to the leading term O(d

√
mT log T ).

This implies that ME-CUCB2 employing the consistent es-
timator for D and σ2, achieves the same regret rate as the
optimal ME-CUCB1.

Matching Lower Bounds
We establish the regret lower bound for the multi-
dimensional feedback bandit problem matching the regret
upper bound outlined in Theorems 3 and 6 up to logarith-
mic factors. We present instances that achieve a lower bound
of Ω(d

√
ΛT ) = Ω(d

√
(mΛmax(D) + σ2)T ). To construct

the context for random effects, we decompose the D as
D = P Λ̄P⊤, for an orthonormal matrix P and the diago-
nal matrix Λ̄ with sorted eigenvalues of D as its elements,
with λmax(D) = Λ̄11. Denote the first column of P as P1.
We can prove the following theorem.

Theorem 7. Consider an instance with {Xtij}2
d

i=1 =

{−
√

Λd/T ,
√
Λd/T}d for all j ∈ m and {Ztij} = P⊤

1

for all i ∈ [2d] and j ∈ m. Then for any algorithm, there
exists β ∈ {−1/

√
d, 1/

√
d}d such that R(T ) = Ω(d

√
ΛT )

for T > (mλmax(D) + σ2)d2.

The lower bound in Theorem 7 matches our regret upper
bound for ME-CUCB as stated in Theorems 3 and 6 up to a
logarithmic factor. Therefore, our proposed algorithms are
provably near-optimal.

Numerical Experiments
Simulation Data
We compare the cumulative regret of the following algo-
rithms: (i) C2UCB (Qin, Chen, and Zhu 2014) (ii) the pro-
posed ME-CUCB1 with true D and σ2 (iii) the proposed
ME-CUCB2 with estimated D and σ2. For C2UCB we re-
strict the super-arms to K arms containing m context vec-
tors. All three have α as a hyperparameter to control the ex-
ploration rate. We run the experiments with α ∈ {10−3, 2 ·
10−3, 10−2, 10−1, 1, 10} and choose the value with small-
est average cumulative regret. We present the results for the
random intercept model and the random coefficient model.

Random Intercept Model We consider the random inter-
cept model Yti = Xtiβ+bti1m+eti, and f(µ) = m−11⊤mµ
to maximize the expected average outcome. We generate
each element of Xti ∈ Rm×d from N (0, 1) and truncate
them to satisfy ∥Xtij∥2 ≤ 1. Each element of the fixed ef-
fect β is sampled from a uniform distribution U(±1/

√
d).

To generate the stochastic output we sample the random in-
tercept bti ∼ N (0, D) and the noise vector eti ∼ N (0, Im).
We fix (d,K,m) to (10, 100, 10) and choose the value of D
from {0.0, 1.0, 5.0} to observe how the algorithms perform
as the correlation changes. The case with D = 0 represents
when there is no correlation. We run c = 10 random explo-
ration rounds.

The upper row of the Figure 1 shows the mean cumu-
lative regret R(T ) for T = 1000 over 100 runs. When
D > 0, the cumulative regrets of ME-CUCB1 with the true
variance (blue) is significantly smaller than that of C2UCB
(orange) ignoring the correlation. The cumulative regrets of
ME-CUCB2 (green) gives similar values as ME-CUCB1. For
the case D = 0 all three algorithms have almost the same
cumulative regret and estimating D and σ2 does not harm
the performance even if there is no correlation.

Random Coefficient Model We generate outcomes from
the random coefficient model Yti = Xti(β+γti)+eti, where
γti ∼ N (0, D) for a covariance matrix D. We use the same
reward function, (d,K,m), contexts and fixed effect β as
in random intercept model. The value of D is chosen from
{Id, 2Id, 5Id}. We run c = 20 exploration rounds and use
EM algorithm for ME-CUCB2 to estimate D̂t and σ̂2

t . The
lower row of the Figure 1 presents the mean cumulative re-
gret for T = 1000 over 100 experiments. For all three values
of D, the ME-CUCB1 and ME-CUCB2 are compatible and
significantly outperform C2UCB.

Real-World Data: MovieLens Dataset
The MovieLens 10M dataset (Harper and Konstan 2015)
contains 10 million triplets of users, movies, and the rat-
ings from 0 to 5 across 10,681 movies. We split the dataset
into train/test sets by 8:2. The data construction process for
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Figure 1: Comparison of the average cumulative regrets on synthetic dataset from random intercept model (upper) and random
coefficient model (lower) over 100 repeated runs with T = 1000. The shaded areas show the 95% confidence interval.
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Figure 2: Comparison of the average cumulative regret on
MovieLens 10M dataset over ten repeated runs with T =
1000. The shaded areas show the 95% confidence interval.

the experiment is as follows. We apply probabilistic ma-
trix factorization (PMF, Mnih and Salakhutdinov (2007)) to
the training set to extract 10-dimensional contexts for each
movie, and gather data that contains user, movie, movie con-
text vectors, and corresponding ratings. To simulate the rec-
ommendation of bundles of movies to an individual in each
round, we sample a single user and then select K × m =
250 movie ratings from that user, to create K = 50 arms
each containing m = 5 movies with context matrix in
Rm×d. Although the individual movies are not inherently
related to each other, the ratings are provided by a sin-
gle user. This results in a shared unobserved random effect
specific to that user, leading to correlations among the rat-
ings. Consequently, the collection of movie ratings is re-

garded as correlated since they are generated from the same
user in each round. The reward function f is given as the
average of the ratings. We evaluate and compare the pro-
posed ME-CUCB2 with the benchmark models C2UCB and
LinUCB. For LinUCB, we approach the problem as maxi-
mizing the scalar reward given by the average rating, as in
the original linear bandit problem, since we utilize the av-
erage function for f . The algorithm ME-CUCB1 cannot be
applied here since the true covariance structure is unknown.
For ME-CUCB2, we assume a random intercept model. Fig-
ure 2 displays the cumulative regret of each algorithm, and
ME-CUCB2 estimating the covariance matrix achieves sig-
nificantly smaller regrets compared to the baseline algo-
rithms.

Conclusion
We address a framework called mixed-effects bandit that can
effectively handle correlations between multiple outcomes.
We developed an efficient algorithm ME-CUCB, solving the
mixed-effects bandit problem, for both the cases where the
covariance matrices are known and unknown. The proposed
algorithm achieves a regret bound of Õ(d

√
mT ), matching

the lower bound under the problem setting. To bound the
error terms that do not form a martingale, a novel cover-
ing number method has been employed. Empirical evalu-
ation on synthetic and public MovieLens dataset supports
the theoretical claims and demonstrates that the algorithm
outperforms existing methods in practice. Overall, this work
achieves both provable near-optimality and practicality for
the mixed-effects bandit problem.
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