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Abstract

Thompson sampling (TS) has been known for its outstand-
ing empirical performance supported by theoretical guaran-
tees across various reward models in the classical stochastic
multi-armed bandit problems. Nonetheless, its optimality is
often restricted to specific priors due to the common obser-
vation that TS is fairly insensitive to the choice of the prior
when it comes to asymptotic regret bounds. However, when
the model contains multiple parameters, the optimality of TS
highly depends on the choice of priors, which casts doubt on
the generalizability of previous findings to other models. To
address this gap, this study explores the impact of selecting
noninformative priors, offering insights into the performance
of TS when dealing with new models that lack theoretical
understanding. We first extend the regret analysis of TS to
the model of uniform distributions with unknown supports,
which would be the simplest non-regular model. Our findings
reveal that changing noninformative priors can significantly
affect the expected regret, aligning with previously known
results in other multiparameter bandit models. Although the
uniform prior is shown to be optimal, we highlight the inher-
ent limitation of its optimality, which is limited to specific pa-
rameterizations and emphasizes the significance of the invari-
ance property of priors. In light of this limitation, we propose
a slightly modified TS-based policy, called TS with Trunca-
tion (TS-T), which can achieve the asymptotic optimality for
the Gaussian models and the uniform models by using the
reference prior and the Jeffreys prior that are invariant under
one-to-one reparameterizations. This policy provides an alter-
native approach to achieving optimality by employing fine-
tuned truncation, which would be much easier than hunting
for optimal priors in practice.

Introduction
In the classical parametric stochastic multi-armed bandit
(MAB) problems, an agent plays an arm at every round.
In each round, the agent observes a reward generated from
the distribution associated with the played arm, whose func-
tional form is known, but the specific values of parameters
are unknown. Since the agent observes a reward only from
the played arm and is not aware of the true parameters, they
have to choose an arm carefully to maximize rewards based
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on the history of their choices and corresponding rewards.
Therefore, the MAB problem is one of the elementary mod-
els that exemplify the tradeoff between the exploration to
learn parameters and the exploitation of knowledge to accu-
mulate rewards.

For this problem, we can evaluate the performance of an
agent’s policy by the regret defined as the difference be-
tween maximum rewards and the rewards obtained from the
policy since minimizing the expected regret is equivalent to
maximizing expected rewards. Lai and Robbins (1985) pro-
vided an asymptotic problem-dependent lower bound on the
expected regret that captures the optimal problem-dependent
performance, which was generalized by Burnetas and Kate-
hakis (1996). Note that their regret bounds are on the fre-
quentist’s view, where the parameters are regarded as fixed
quantities, and we say a policy matching this lower bound to
be asymptotically optimal.

Out of the various policies in the bandit literature, this
paper focuses on the asymptotic optimality of Thomp-
son sampling (TS) due to its outstanding empirical perfor-
mance (Chapelle and Li 2011). TS is a randomized Bayesian
policy that maintains a posterior distribution over the un-
known parameters (Thompson 1933). Therefore, the choice
of the priors would be important since TS plays an arm ac-
cording to the posterior probability of being the best arm.
When there is no prior knowledge of the parameters, it is rea-
sonable to utilize noninformative priors based on the inter-
pretation initially proposed by Kass and Wasserman (1996)
and subsequently discussed by Robert (2007, Section 3.5):

Noninformative priors should be taken as default pri-
ors, upon which everyone could fall back when the
prior information is missing.

In this study, we translate this description to the useful-
ness of TS with noninformative priors as a starting point
for bandit problems where no prior knowledge is available.
One naive choice would be the uniform prior that assigns
equal probability to all possible values over the parameter
space (Laplace 1820), which obviously represents the igno-
rance of the parameters and can be defined for any model.
However, as pointed out in literature (Datta and Ghosh
1996), uniform priors can vary depending on the parameter-
ization of the distribution, which means that when the same
distribution is modeled by different parameters, the resulting
posterior distributions may also be different. Robert (2007)
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also emphasized the importance of invariance properties, es-
pecially when one makes inferences on multiple parameters.

Nevertheless, when it comes to the problem-dependent
regret bounds of TS, it is often reported that TS is not
too sensitive to the choice of the prior for the model of
single-parameter distributions. For example, both the uni-
form prior (Kaufmann, Korda, and Munos 2012) and the Jef-
freys prior (Korda, Kaufmann, and Munos 2013) are found
to be optimal for the Bernoulli models. Note that the ref-
erence prior also leads to the optimal regret bound for the
Bernoulli bandit models since the Jeffreys prior coincides
with the reference prior for the regular single-parameter
models (Ghosh 2011). This would be due to the fact that
in MAB problems, the focus is solely on inferring the mean
of the reward model, which differs from other pure inference
tasks that involve multiple parameters of interest.

However, it has been shown that the choice of noninfor-
mative priors can significantly impact the performance of
TS for noncompact multiparameter bandit models, such as
the Gaussian models (Honda and Takemura 2014) and the
Pareto models (Lee et al. 2023). These results indicate that
the choice of noninformative priors becomes more challeng-
ing in multiparameter models than that in single-parameter
models. In this paper, we first show that the prior sensitiv-
ity of TS occurs not only in the noncompact multiparam-
eter models but also in the uniform model with unknown
supports, which is a compact non-regular multiparameter
model. Specifically, we show that TS with the uniform prior
with location-scale (LS) parameterization is asymptotically
optimal, while TS with the reference prior and the Jeffreys
prior are suboptimal. The implication of this discovery is
twofold. Firstly, the bounds show the importance of select-
ing priors in multiparameter models, extending the under-
standing provided by Honda and Takemura (2014) and Lee
et al. (2023). Moreover, the invariance problems of the uni-
form priors mentioned above make the optimal regret bound
less informative. This is demonstrated in the O-T column of
Gaussian and uniform models in Table 1, where we showed
that some uniform priors are optimal while others are not.

Moreover, recent findings have demonstrated that select-
ing the uniform prior with scale-shape parameterization is
suboptimal for Pareto bandits (Lee et al. 2023). These results
raise concerns about the reliability of the uniform prior as a
fallback option, as it becomes evident that the choice of pa-
rameterization in statistical models requires meticulous con-
sideration. This brings us to the central question that serves
as the driving force behind this paper:

Is there a universally applicable prior in general ban-
dit models that consistently leads to high-performance
outcomes when employed in posterior sampling?

As noted in Berger and Bernardo (1992), the three most im-
portant criteria for noninformative priors would be simplic-
ity, generality, and trustworthiness. Although several well-
known noninformative priors have been studied for multi-
parameter models, none of them simultaneously satisfy all
three criteria in the context of MAB problems. In general,
there is no silver bullet that can optimally address all prob-
lems. However, it might be possible to discover a “bronze

Model R C T Parameter θ Priors O-T O-TT

Uniform ✗ ✓ L

location and scale
(µ, σ) ∈ R× R+

πµ,σ
u ✓ ✓
πj ✗ ✓
πr ✗ ✓

location and rate
(µ, σ−1) ∈ R× R+

π
µ, 1

σ
u ✗ ✓

Gaussian ✓ ✗ L

location and scale
(µ, σ) ∈ R× R+

πµ,σ
u ✓H ✓
πj ✗H ✓
πr ✗H ✓

location and rate
(µ, σ−1) ∈ R× R+

π
µ, 1

σ
u ✗ ✓

Pareto ✗ ✗ H

scale and shape
(σ, α) ∈ R+ × R≥1

πσ,α
u ✗L ✓L

πj ✗L ✓L

πr ✗L ✓L
rate and shape

(σ−1, α) ∈ R+ × R≥1
π

1
σ ,α
u ✗ ?

Table 1: Asymptotic optimality with different noninforma-
tive priors for multiparameter models. R, C, and T denote
whether the model satisfies the Fisher regularity or not,
whether it is compact or non-compact, and whether its func-
tion is light-tailed (L) or heavy-tailed (H). O-T and O-TT
indicate the optimality of TS and TS with truncation (TS-
T), respectively, in terms of whether they can achieve the
asymptotic regret lower bound for the corresponding model
or not. Notice that H and L indicate that the results are
derived by Honda and Takemura (2014) and by Lee et al.
(2023), respectively. πu, πj, and πr denote the uniform prior,
the Jeffreys prior, and the reference priors, respectively. For
the uniform priors, we specify the parameterization in the
superscript. ? denotes unknown results.

bullet”, a solution that achieves optimal performance in cer-
tain scenarios while still maintaining reasonable effective-
ness in others, which can serve as a valuable baseline.

On the other hand, one might be looking forward to an al-
ternative approach with renowned (invariant) priors that can
provide practical and optimal solutions rather than hunting
for good priors. In this regard, we propose a variant of TS,
called TS with Truncation (TS-T), for the uniform models
and the Gaussian models. We provide a finite-time regret
analysis of TS-T, which demonstrates its asymptotic opti-
mality under the reference prior and the Jeffreys prior for
both models. Our approach builds upon the basic strategy of
TS, but with key modifications that improve the performance
and address the limitations of TS. In particular, we devise
an adaptive truncation procedure on the parameter space of
the posterior distribution to control the problems in the early
stage of learning, hence the name truncation in TS-T. The
proposed policy is inspired by the policies proposed in Jin
et al. (2021) and Lee et al. (2023), extending and generaliz-
ing their approaches. We further provide a high-level design
idea that can be generalized to other reward models easily.

The main results of this paper and related works are sum-
marized in Table 1, and our contributions are summarized as
follows:

• We prove the asymptotic optimality/suboptimality of TS
with noninformative priors for the uniform bandits. This
extends the understanding of TS in the multiparameter
models, which have not been well studied so far, empha-
sizing the significance of selecting noninformative priors.
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• We show that some uniform priors with different param-
eterizations are suboptimal. This makes the optimality of
TS with the uniform prior less attractive in general, as it
inherently involves the non-trivial task of selecting ap-
propriate parameterizations.

• We propose a variant of TS that is asymptotically opti-
mal for the uniform models and the Gaussian models un-
der the reference prior and the Jeffreys prior, where the
vanilla TS is found to be suboptimal. This provides opti-
mal results that remain consistent regardless of the way
of parameterizing the models, which addresses the limi-
tations of the vanilla TS.

Preliminaries
In this section, we formulate K-armed bandit problems and
the asymptotic regret lower bound for the uniform models
and Gaussian models.

Problem Formulation
Suppose that there are finite K arms associated with a re-
ward distribution νθ belonging to the LS family, whose den-
sity function is denoted by fl,σ(x) with location l ∈ R and
scale σ ∈ R+. Here, the parameters θ = (l, σ) ∈ R×R+ are
unknown to the agent. Note that we consider MAB problems
where every arm is modeled by the same type of distribution
but with possibly different parameters.

If a random variable X with the density function fθ(x)
belongs to the LS family, then fl,σ can be written using a
probability density function f0,1(·) as

fl,σ(x) =
1

σ
f0,1

(
x− l

σ

)
. (1)

Although location l is not necessarily equivalent to the ex-
pectation µ(θ) = Eνθ

[X] in general, we use them inter-
changeably in this paper since they coincide for both the
Gaussian and uniform models. One can retrieve the density
function of the Gaussian distribution Gaussian(µ, σ) with
location (mean) µ and scale σ, fG

µ,σ(x), by substituting the
standard normal density for f0,1. The uniform distribution
can be obtained by letting f0,1(x) = 1[0 ≤ x ≤ 1] for the
indicator function 1[·]. If X follows the uniform distribution
Uniµσ(µ, σ) under the LS parameterization, then it has the
density of the form with location (mean) µ and scale σ,

fUµσ
µ,σ (x) =

1

σ
1
[
µ− σ

2
≤ x ≤ µ+

σ

2

]
.

The uniform distribution can be reparameterized in terms
of the boundary of the support by letting (a, b) =(
µ− σ

2 , µ+ σ
2

)
, denoted by Uniab(a, b), whose density

function is given as fUab

a,b (x) = 1
b−a1[a ≤ x ≤ b]. Here,

we assume that the arm 1 is the unique optimal arm that
has the maximum expected reward for convenience with-
out loss of generality, i.e., µ1 = maxi∈[K] µi and µ1 > µi

for i ∈ {2, . . . ,K}. This assumption is made to simplify
the analysis, and it is worth noting that incorporating addi-
tional optimal arms can only decrease the expected regret of
TS (see Agrawal and Goyal 2012, Appendix A).

Denote the index of the arm played at round t by j(t) and
the number of rounds that the arm i is played until round t

by Ni(t) =
∑t−1

s=1 1[j(s) = i]. Then, the regret at round T
is defined with the sub-optimality gap ∆i := µ1 − µi as

Reg(T ) =
T∑

t=1

∆j(t) =
K∑
i=2

∆iNi(T + 1).

When the sub-optimality gap is regarded as a fixed quan-
tity, Burnetas and Katehakis (1996) showed that any policy,
satisfying Reg(T ) = o(tα) for all α ∈ (0, 1), must satisfy

lim inf
T→∞

E[Reg(T )]
log T

≥
K∑
i=2

∆i

infθ:µ(θ)>µ1
KL(νθi ; νθ)

, (2)

where KL(·; ·) denotes the Kullback-Leibler (KL) diver-
gence. Here, an algorithm is said to be asymptotically op-
timal if it satisfies

lim sup
T→∞

E[Reg(T )]
log T

≤
K∑
i=2

∆i

infθ:µ(θ)>µ1
KL(νθi ; νθ)

.

The infimum over the KL divergence can be explicitly com-
puted for any i ̸= 1 under uniform models (Cowan and Kate-
hakis 2015) as

inf
θ:µ(θ)>µ1

KL(νθi ; νθ) = log

(
1 +

2∆i

σi

)
(3)

and under Gaussian models (Honda and Takemura 2014) as

inf
θ:µ(θ)>µ1

KL(νθi ; νθ) =
1

2
log

(
1 +

(
∆i

σi

)2
)
. (4)

Thompson Sampling and the Choice of Priors
In this section, we instantiate TS and propose a variant of
TS, TS-T, for the uniform model and the Gaussian model
based on the noninformative priors.

Noninformative Priors in the LS Family
To develop an invariant noninformative prior, one can con-
sider the Fisher information matrix (FIM), which does not
rely on any prior information on unknown parameters. The
FIM for the LS family is given as follows (Ghosh 2011):

I(l, σ) = σ−2

[
c1 c2
c2 c3

]
,

where c1, c2, and c3 are functions of f and do not involve
parameters θ = (l, σ). Then, the FIM for the uniform model
and the Gaussian model are given as follows:

(c1, c2, c3) =

{
(0, 0, 1) if fl,σ = f

Uµσ
µ,σ ,

(1, 0, 2) if fl,σ = fG
µ,σ.

Since c2 = 0, from the orthogonality, the first-order prob-
ability matching prior is of the form σ−k for k ∈ R (Tib-
shirani 1989; Nicolaou 1993). This prior not only provides
the posterior in a close form, but also encompasses various
well-known noninformative priors as special cases in the LS
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family such as the uniform prior πu(l, σ) ∝ 1 by k = 0.
Throughout the rest of the paper, unless otherwise stated, πu

denotes the uniform prior with (l, σ) parameterization.
Furthermore, when k = 1, it coincides with the refer-

ence prior πr(l, σ) ∝ σ−1, which is the unique second-order
probability matching prior (Datta and Mukerjee 2004). On
the other hand, the Jeffreys prior is not defined well for the
uniform model since the determinant of the FIM is zero.
Nevertheless, in this paper, we call prior with k = 2 as the
Jeffreys prior πj(l, σ) ∝ σ−2 even for the uniform model to
maintain consistency with the Gaussian model. More details
on the noninformative priors are provided in the appendix
for completeness.

Thompson Sampling
For the priors σ−k, we denote the joint posterior distribu-
tion after observing n rewards from the arm i, Xi,n :=
(xi,1, . . . , xi,n) by πk(µ, σ|Xi,n) or simply πk

i,n(µ, σ). Let
us denote the (classical) sufficient statistic T (Xi,n) for the
parameter (µi, σi). Since the sufficient statistic is always
Bayes-sufficient (Blackwell and Ramamoorthi 1982), one
can rewrite the posterior distribution using the sufficient
statistic as

πk(µ, σ|Xi,n) = πk(µ, σ|T (Xi,n)).

The vanilla TS observes samples (µ̃i(t), σ̃i(t)) generated
from the posterior πk

i,Ni(t)
(µ, σ) at each round. Since max-

imum likelihood estimators (MLEs) can be chosen as a
function of sufficient statistics if any MLE exists (Moore
1971), we denote the posterior after n observations as
πk(µ, σ|µ̂i,n, σ̂i,n), instead of πk(µ, σ|T (Xi,n)), to explic-
itly indicate the estimates after n observations for the priors
σ−k. We adopt this notation as it facilitates a clear distinc-
tion between the vanilla TS and TS-T.

Thompson Sampling with Truncation
As shown in previous studies on the multiparameter ban-
dit models (Honda and Takemura 2014; Lee et al. 2023),
TS sometimes plays only suboptimal arms when the pos-
terior of the optimal arm has a very small variance in the
early stage of learning, which contributes to the suboptimal-
ity in expectation. To avoid such problems, TS-T samples
parameters from the distributions obtained by replacing an
MLE of the scale σ̂n with a truncated estimator σ̄n satisfy-
ing σ̄n = Ω(n−β) for some β > 0. Note that we choose
a specific β to make regret analysis simple, but our discus-
sion can be easily extended to any β > 0. Such truncation
prevents an extreme case where σ̂n ≈ 0 for small n in the
regret analysis. In summary, TS-T is a policy that samples
parameters from the distribution at every round, which is

π̄k
i,n(µ, σ) = πk(µ, σ|µ̂i,n, σ̄i,n). (5)

Strictly speaking, TS-T is not a Bayesian policy but rather a
kind of randomized probability matching policy as the dis-
tribution in (5) is not a posterior distribution anymore. How-
ever, TS-T can be seen as a pre-processed posterior proba-
bility matching policy since the truncation is applied before
sampling and will behave like TS as n increases where the
truncation has almost no effect.

Arm1 Arm2

0

1

2

Sa
m

pl
ed

 m
ea

n 
va

lu
e True mean of the arm 1

True mean of the arm 2

(a) Posterior distribution.

Arm1 Arm2

0

1

2
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m
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ed
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n 
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lu
e True mean of the arm 1

True mean of the arm 2

(b) “Stretched” posterior.

Figure 1: An example where the posterior distribution of
each arm belongs to the Gaussian distribution. The solid
lines represent the posterior probability of sampling mean
values, while the blue and red dashed lines indicate the true
expected rewards of each arm, respectively.

General Design Idea of TS-T Adaptive truncation in the
parameter space of the posterior was considered in Lee et al.
(2023), where they aimed to compensate for the change of
the priors by replacing the MLE with a truncated one. The
following design principle is a generalization of their ap-
proach to handling the problems in the first few rounds:

Truncate the parameter space of the posterior distri-
bution to stretch the distribution, which encourages a
policy to explore more in the early stage of learning.

Here, stretching the posterior distribution can be seen as flat-
tening the posterior distributions, which prevents them from
overly concentrating on the specific value in the first few
rounds. By flattening the distributions, we encourage explo-
ration and avoid prematurely favoring a specific arm based
on the small number of observations.

As an illustration, we consider a case where the poste-
rior distribution is represented by a Gaussian distribution in
Figure 1, where Figure 1a displays the posteriors of each
arm. During the initial learning phase, the inherent random-
ness of the rewards can cause the posterior distribution of
the optimal arm (arm 1) to be concentrated around a small
value, such as 0, in this particular example. As a result, this
concentration of the posterior may result in suboptimal be-
havior, where the vanilla TS is more likely to play the arm 2
that exhibits a higher expected reward according to the cur-
rent posterior distribution. To address this issue, one can lift
the scale parameter of the Gaussian (posterior), as depicted
in Figure 1b, in order to prevent the occurrence of extreme
cases during the early stage of learning. Obviously, one has
to design the truncation carefully to cover the entire parame-
ter space of the posterior as the number of samples increases.

In this paper, we truncate the parameter space by replac-
ing sufficient statistics with truncated ones, which induces a
truncated estimator instead of the MLE. Therefore, we ex-
pect that our approach can be easily applied to any model
where sufficient statistics have a constant dimension, such
as the (quasi-)exponential family (Robert 2007). This offers
an alternative approach to achieving optimality without the
need to search for an optimal or appropriate prior for each
specific problem, a process we expect will be significantly
more convenient in practical applications.
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Comparison with Different Adaptive Approaches It is
worth noting that a similar adaptive approach has been con-
sidered in the Gaussian model with known variance (Jin
et al. 2021) and linear models (Hamidi and Bayati 2020).
In these approaches, the posterior distribution was modeled
as a Gaussian distribution and an adaptive inflation value
ρt was introduced to the scale parameter, which effectively
flattened the posterior distributions. If one extends their ap-
proaches to the LS family, it becomes a probability match-
ing policy with the modified posterior πk(µ, σ|µ̂i,n, ρtσ̂i,n).
However, we found that this still has a similar problem to the
naive TS in our analysis, which is related to Lemmas 10 and
12 in the appendix1. In addition, Jin et al. (2021) clipped the
outputs after sampling to achieve minimax optimality, which
can be seen as a post-processed posterior matching policy.
While our paper does not establish the minimax optimality
of TS-T, we expect that combining similar techniques with
our approach could be a promising direction for the simul-
taneous achievement of asymptotic optimality and minimax
optimality in multiparameter models, which presents an in-
teresting problem for follow-up investigation.

Analytical Expressions of Posterior Distributions
Here, we present the formulation of the posterior for TS
and TS-T in the uniform and Gaussian models. The detailed
derivation for the uniform model is given in the appendix.

Uniform Bandits If rewards (xi,s) follow Uniµσ(µi, σi),
the sufficient statistic is given as T (Xi,n) = (x

(1)
i , x

(n)
i ) for

x
(1)
i = mins∈[n] xi,s and x

(n)
i = maxs∈[n] xi,s. Then, the

marginal posterior of σ and the conditional posterior of µ
given σ under the prior σ−k are given as follows:

πU,k(σ|µ̂i,n, σ̂i,n)

= nk(nk + 1) (σ̂i,n)
nk

σ − σ̂i,n

σnk+2
1 [σ ≥ σ̂i,n] , (6)

πU,k(µ|µ̂i,n, σ̂i,n, σ = σ̃) = f
Uµσ

µ̂i,n,σ̃−σ̂i,n
(µ), (7)

where MLEs µ̂i,n =
x
(n)
i +x

(1)
i

2 and σ̂i,n = x
(n)
i − x

(1)
i , and

nk = n+ k − 2.
Here, following Lee et al. (2023), we employ a sequential

sampling scheme to avoid the use of computationally costly
approximation methods. This means that σ̃ is sampled first
from the marginal posterior in (6), which can be easily im-
plemented by using the inverse transform sampling method.
Then we sample µ̃ from the conditional posterior given the
sampled scale parameter σ̃ in (7). This sequential sampling
approach yields the same result as sampling µ from the
joint posterior πi,n(µ, σ) = πi,n(σ)πi,n(µ|σ). Here, initial
n0 = max(2, 3− ⌈k⌉) plays are required to avoid improper
posteriors, where ⌈·⌉ denotes the ceiling function.

1This does not necessarily imply that this approach cannot pro-
vide the optimal solution to our problem. Therefore, one might be
able to show its suboptimality in a similar way to Theorem 2 or
set adaptive inflation ρt to achieve the regret lower bounds in (3)
and (4) asymptotically although it would be more difficult than our
approach in the multiparameter bandit models.

As described in (5), TS-T is a sampling policy with the
distribution parameterized by a truncated scale estimator.
For the uniform models, we simply replace x(n) with a
truncated statistic x̄(n) = max(x(1) + n−1, x(n)). In other
words, we replace σ̂n with σ̄n = x̄(n)−x(1), which satisfies
σ̄n ≥ n−1. This truncation procedure is specific to the pos-
terior sampling in (6) and (7), and is introduced to avoid the
situation where parameters are sampled from a distribution
whose density function is similar to the Dirac delta function.
Therefore, under the TS-T policy, an agent observes samples
from the following distributions:

π̄U,k
i,n (σ) = πU,k(σ|µ̂i,n, σ̄i,n) (8)

π̄U,k
i,n (µ|σ = σ̃) = f

Uµσ

µ̂i,n,σ̃−σ̄i,n
(µ), (9)

where we simply replaced σ̂i,n with σ̄i,n in (6) and (7).

Gaussian Bandits For the Gaussian model, the sufficient
statistic is given as T (Xi,n) = (x̂i,n, Si,n) where x̂i,n =
1
n

∑n
s=1 xi,s, and Si,n =

∑n
s=1(xi,s − x̂i,n)

2. Then, the
marginal posterior distribution of µ under the priors σ−k is
given as

πG,k (µ|µ̂i,n, σ̂i,n) = f t
nk
(µ|µ̂i,n, σ̂i,n), (10)

where f t
nk
(·|µ̂i,n, σ̂i,n) denotes the density function of the

non-standardized t-distribution with the degree of freedom
nk = n + k − 2, location µ̂i,n = x̂i,n, and scale σ̂i,n =√

Si,n/n. Honda and Takemura (2014) showed that TS with
priors k ≥ 1 could not achieve the lower bound with (4).

For the realization of the TS-T policy in the Gaussian
models, we consider a truncated statistic and the correspond-
ing scale estimator as follows:

S̄i,n = max(1, Si,n) =⇒ σ̄i,n =
√
S̄i,nn−1 ≥ n− 1

2 .

This implies that TS-T draws a sample from the distribution
whose density function is given as

π̄G,k
i,n (µ) = πG,k (µ|µ̂i,n, σ̄i,n) = f t

nk
(µ|µ̂i,n, σ̄i,n), (11)

where we just replaced σ̂i,n with σ̄i,n in (10). In the Gaus-
sian models, we can easily sample the location parameter di-
rectly from its marginal posterior distribution as it can be ex-
pressed by a well-known probability distribution. Note that
we require n0 initial plays to avoid improper posteriors.

Main Results
This section provides the main theoretical results of this pa-
per, whose detailed proofs are postponed to the appendix.
Theorem 1. Assume that the arm 1 is the unique optimal
arm with a finite mean. Given arbitrary ϵ ∈

(
0,mini̸=1

∆i

2

)
,

the expected regret of TS with the prior σ−k with k < 1 for
the uniform models is bounded as

E[Reg(T )] ≤
K∑
i=2

∆i

(
log T

log
(
1 + 2∆i−4ϵ

σi

)
+

2σi

ϵ
+

11

2
− ⌈k⌉ − k

)
+∆maxC(ϵ, k, σ1),
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where ∆max = maxi̸=1 ∆i and C(ϵ, k, σ1) = 1 + 9σ1

ϵ +
3

16(1−k)
σ2
1

ϵ2 (2e
2ϵ
σ1 − 1) = O

(
σ2
1

(1−k)ϵ2

)
.

Since Theorem 1 holds for any ϵ ∈
(
0,mini̸=1

∆i

2

)
, let-

ting ϵ = O((log T )−1/3) directly implies that

lim inf
T→∞

E[Reg(T )]
log T

≤
K∑
i=2

∆i

log
(
1 + 2∆i

σi

) ,
which shows the asymptotic optimality of TS with k < 1
in terms of the regret lower bound with (3). Notice that our
bound is tighter than the optimal upper-confidence bound
(UCB) based policy of Cowan and Katehakis (2015), where
the remaining term is O(ϵ−3).

Theorem 1 not only establishes asymptotic optimality but
also provides two additional observations: (i) A moderate
choice of k can be beneficial because having a too small k
induces larger regrets as it requires many initial plays, while
large k increases C(ϵ, k, σ1). The reduction in C(ϵ, k, σ1)
is preferable when ϵ is sufficiently small. (ii) We need a
more delicate approach to consider the worst-case scenario
where both ∆i and σi are extremely large. Since σi is an
unknown problem-dependent constant in this paper, we can-
not directly apply the techniques used in the case where σi

is assumed to be a given fixed constant (Agrawal and Goyal
2017; Jin et al. 2021).

Next, we show that the vanilla TS with k ≥ 1 based on
the posteriors in (6) and (7) cannot achieve the regret lower
bound in the theorem below. To simplify the analysis, we
consider two-armed bandit problems where two arms have
the same left-boundary point of the support. Furthermore,
we provide the full information on the arm 2 to the agent
following the previous proofs (Honda and Takemura 2014;
Lee et al. 2023), where the prior on the arm 2 is the Dirac
measure so that µ̃2(t) = µ2 holds for any round t ∈ N.
Theorem 2. Assume that the arm 1 follows Uniab(a1, b1)
and the arm 2 follows Uniab(a2, b2) with a1 = a2 and
b2 < b1, where µ1 > µ2 holds. When σ̃1(t) and µ̃1(t) are
sampled from the posteriors in (6) and (7) with the priors
k ≥ 1, and µ̃2(t) = µ2 holds, there exists a constant ξU > 0
independent of σ2 satisfying

lim inf
T→∞

E[Reg(T )]
log T

≥ ∆2ξ
U.

If k > 1, then there exist constants ξUk > 0 independent of
σ2 satisfying

lim inf
T→∞

E[Reg(T )]
T

k−1
k

≥ ∆2ξ
U
k .

Theorem 2 shows that TS with k ≥ 1 suffers at least log-
arithmic regrets in expectation. Although the regret lower
bound with (3) approaches zero for sufficiently small σ2 =
b2−a2, the regret of TS is lower-bounded by a non-zero term
since the coefficient of log T converges to a non-zero con-
stant. Therefore, TS with prior k ≥ 1 is suboptimal, at least
for sufficiently small σ2, where the same result was found
in the Gaussian models (Honda and Takemura 2014). Fur-
thermore, one can see that priors with k > 2 are suboptimal

even in the view of the worst-case analysis since their regret
can be larger than

√
T order for some instances.

From Theorem 2, we can obtain the following corollary,
which shows the suboptimality of some uniform priors with
different parameterizations.

Corollary 3. For any one-to-one transformations g(µ) and
h(σ), if d

dµg
−1(µ) ∝ 1 and d

dσh
−1(σ) ∝ σ−k hold

with some k ≥ 1, then TS with the uniform priors with
(g(µ), h(σ)) parameterization, πg(µ),h(σ)

u is suboptimal.

Proof. The uniform prior with (g(µ), h(σ)) parameter-
ization indicates that π

g(µ),h(σ)
u ∝ 1. Let us define

f(µ, σ) = (g−1(µ), h−1(σ)). Then, the corresponding prior
with (µ, σ) parameterization can be obtained by multiplying
the absolute value of the Jacobian determinant of f , which
is given as | det∇f | · πg(µ),h(σ)

u = σ−k. Since k ≥ 1 holds
from the assumption, the proof follows from Theorem 2 in
this paper for the uniform models and from Theorem 2 in
Honda and Takemura (2014) for the Gaussian models.

The result of Corollary 3 would not be surprising since
one can easily expect that some arbitrary parameterizations
can result in poor performance of TS with the uniform prior.
However, this variability can introduce unnecessary con-
cerns about the appropriate way to parameterize models.
While the uniform prior with the LS parameterization might
seem like a natural choice in the LS family, this idea cannot
be generalized to other models. For instance, the uniform
prior with the scale-shape parameterization in the Pareto
model was shown to be suboptimal (Lee et al. 2023) and
Corollary 3 further demonstrates the suboptimality of the
rate-shape parameterization. Another consideration would
be the use of natural parameters for exponential family mod-
els. However, the uniform prior with

(
µ
σ2 ,− 1

2σ2

)
parame-

terization can be seen as prior with k = 5 in the LS pa-
rameterization, which is suboptimal in the Gaussian bandits.
Therefore, such observations emphasize the importance of
the invariance property of the priors in the MAB problems,
which is related to the trustworthiness of priors.

The theorem below shows the asymptotic optimality of
TS-T with the prior with any k, including the reference
prior2 and the Jeffreys prior that are invariant under any one-
to-one transformations.

Theorem 4. With the same notation as Theorem 1, the ex-
pected regret of TS-T with prior k ∈ R for the uniform mod-
els is bounded as

E[Reg(T )] ≤
K∑
i=2

∆i

(
log T

log
(
1 + 2∆i−4ϵ

σi

) +
2σi

ϵ

+
1

σi
+max

(
7

2
,
9

2
− ⌈k⌉

))
+∆maxC

′(ϵ, k, σ1),

2Although the reference priors are invariant under the transfor-
mation that preserves the group order of parameters in general (see
Datta and Ghosh 1996, Theorem 2.1), it is invariant under any one-
to-one transformation in the LS family (Ghosh 2011).
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where C ′(ϵ, k, σ1) = 1+ 9σ1

ϵ + 3
16

σ2
1

ϵ2 (2e
2ϵ
σ1 −1) = O

(
σ2
1

ϵ2

)
for k < 1, C ′(ϵ, 1, σ1) = O

(
σ2
1 log(σ1)

ϵ2

)
, and for k > 1

C ′(ϵ, k, σ1) = O
(

σ2k
1

ϵk+1

)
.

Although Theorem 4 states that any prior σ−k can achieve
the regret lower bound asymptotically, we recommend using
the priors with k ∈ [0, 1] since small k requires many initial
plays from n0 = max(2, 3− ⌈k⌉), while large k will suffer
from a large regret in the finite time due to large C ′(ϵ, k, σ1).

Not only for the uniform models, but TS-T with the ref-
erence prior and the Jeffreys prior are also asymptotically
optimal for the Gaussian models, which were found to be
suboptimal for TS (Honda and Takemura 2014).

Theorem 5. Assume arm 1 is the unique optimal arm with
a finite mean. Given arbitrary ϵ ∈

(
0,mini̸=1

∆i

2

)
, there ex-

ists a problem-prior-dependent constant C ′′(ϵ, k, σ1) such
that the expected regret of TS-T with priors σ−k for the
Gaussian models is bounded for k ≤ 2 as

E[Reg(T )] ≤
K∑
i=2

∆i

(
log T

1
2 log

(
1 + (∆i−2ϵ)2

σ2
i+ϵ

) +
1

σ2
i

+ 3− k +

√
σ2
i + ϵ

∆i − 2ϵ
+

2σ2
i e

ϵ

2σ2
i + 2σ4

i e
ϵ

σ2
i

ϵ2

)
+∆maxC

′′(ϵ, k, σ1),

where C ′′(ϵ, k, σ1) = O
((

σ1

ϵ

)4+⌈k⌉1[k≥1]
)

.

Letting ϵ = O
(
(log T )−1/7

)
provides an ϵ-free bound,

which shows the asymptotic optimality of TS-T. Although
the overall proofs of Theorem 5 resemble that of Honda and
Takemura (2014), the introduction of the truncated estima-
tor σ̄ induces a technical challenge of integrating a prod-
uct of the beta function and the incomplete gamma function,
which did not occur in the previous analysis. We solve it by
exploiting the modified Bessel functions of the second kind
and confluent hypergeometric functions of the second kind
to carefully control the effect of σ̄.

Numerical Validation
This section presents simulation results to validate the theo-
retical analysis of TS and TS-T. To provide a baseline for
comparison, we present the results of asymptotically op-
timal UCB-based policies, CK-UCB for the uniform ban-
dits (Cowan and Katehakis 2015) where “CK” is the initials
of the authors following the notation in the original paper.

We considered a 6-armed uniform bandit instance with
parameters given as µ = (5.5, 5.0, 4.5, 4.0, 4.75, 3.0) and
σ = (4.5, 5.0, 4.5, 4, 3.75, 2.0), which was previously stud-
ied (Cowan and Katehakis 2015). In Figure 2, the solid lines
denote the averaged regret over 10,000 independent runs of
the policy that was found to be optimal in terms of the re-
gret lower bound with (3), whereas the dashed lines denote
that of the suboptimal policies. The dotted lines denote the
asymptotic regret lower bound. Note that the Jeffreys prior

(k = 2) coincides with the uniform prior with the location-
rate parameterizations (µ, σ−1). Validations in the Gaussian
models are given in the appendix.

In Figure 2a, TS with the uniform prior πµ,σ
u shows the

best performance, while TS with the Jeffreys prior πj and
the reference prior πr suffer from a large regret. Although
TS with the reference prior shows a similar finite-time per-
formance to CK-UCB, it seems to have a larger regret order
compared to asymptotically optimal policies. However, as
shown in Figure 2b, the performance of TS-T with the refer-
ence prior improves significantly, which highlights the effec-
tiveness of the truncation procedure in the TS-based policy.

Conclusion
In this paper, we first demonstrated the importance of choos-
ing noninformative priors for the vanilla TS under the uni-
form bandit models with unknown supports. Although the
uniform prior is optimal in terms of the expected problem-
dependent regret, we showed that the use of the uniform
prior is problematic due to its dependency on parameteriza-
tions, which makes the optimality under the specific param-
eterization less informative in general. On the other hand,
invariant noninformative priors, the reference prior and the
Jeffreys prior, are shown to be suboptimal.

Nevertheless, in the various multiparameter models, the
reference priors have been shown to be on the borderline be-
tween optimal and suboptimal in terms of prior parameter
k (Honda and Takemura 2014; Lee et al. 2023). Therefore,
we expect that TS with the reference prior could serve as a
baseline for other models since the reference posterior can
be derived generally (Berger and Bernardo 1992) and that
an optimal policy would perform at least better than TS with
the reference priors. Furthermore, by combining with TS-
T, one can focus on the adaptive truncation, which provides
an alternative solution to achieve optimality with renowned
invariant priors. We expect that adaptively truncating param-
eter space would be more convenient than finding good pri-
ors for each model in practice. Our analysis was supported
by the simulation results, where the invariant priors under
TS-T showed a better performance than those under TS.
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values over 10,000 independent runs of the policies that can and cannot achieve the lower bound, respectively.
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