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Abstract

Two-sided matching markets have been widely studied in the
literature due to their rich applications. Since participants are
usually uncertain about their preferences, online algorithms
have recently been adopted to learn them through iterative in-
teractions. An existing work initiates the study of this problem
in a many-to-one setting with responsiveness. However, their
results are far from optimal and lack guarantees of incentive
compatibility. We first extend an existing algorithm for the one-
to-one setting to this more general setting and show it achieves
a near-optimal bound for player-optimal regret. Nevertheless,
due to the substantial requirement for collaboration, a single
player’s deviation could lead to a huge increase in its own
cumulative rewards and a linear regret for others. In this paper,
we aim to enhance the regret bound in many-to-one markets
while ensuring incentive compatibility. We first propose the
adaptively explore-then-deferred-acceptance (AETDA) algo-
rithm for responsiveness setting and derive an upper bound for
player-optimal stable regret while demonstrating its guarantee
of incentive compatibility. This result is a significant improve-
ment over existing works. And to the best of our knowledge,
it constitutes the first player-optimal guarantee in matching
markets that offers such robust assurances. We also consider
broader substitutable preferences, one of the most general con-
ditions to ensure the existence of a stable matching and cover
responsiveness. We devise an online DA (ODA) algorithm and
establish an upper bound for the player-pessimal stable regret
for this setting.

Introduction

The problem of two-sided matching markets has been studied
for a long history due to its wide range of applications in real
life including the labor market and college admission (Gale
and Shapley 1962; Roth 1984a; Roth and Sotomayor 1992;
Abdulkadiroğlu and Sönmez 1999; Epple, Romano, and Sieg
2006; Fu 2014). There are two sides of market participants,
e.g., employers and workers in the labor market, and each side
has a preference ranking over the other side. The matching
reflects the bilateral nature of exchange in the market. For
example, a worker works for an employer and the employer
employs this worker. Stability is a key concept describing the
equilibrium of a matching, which ensures the current bilateral
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exchange cannot be easily broken. A rich line of works study
how to find a stable matching in the market (Gale and Shapley
1962; Kelso Jr and Crawford 1982; Roth 1984a; Roth and
Sotomayor 1992; Erdil and Kumano 2019). However, all
of them assume the preferences of market participants are
known a priori, which may not be satisfied in practice. For
example in labor markets, workers usually have unknown
preferences over employers since they do not know whether
they like the task type or the employer. With the emergence of
online marketplaces such as online labor market Upwork and
crowdsourcing platform Amazon Mechanical Turk where
employers have numerous similar tasks to delegate, workers
are able to learn the uncertain preferences during the iterative
matching process with employers through these tasks.
Multi-armed bandit (MAB) is a core problem that char-

acterizes the learning process during iterative interactions
when faced with uncertainty (Auer, Cesa-Bianchi, and Fis-
cher 2002; Lattimore and Szepesvári 2020). There are also
two sides of agents: a player on one side and K arms on the
other side. The player has unknown preferences over arms.
At each time, it selects an arm and receives a reward. The
player’s objective is to maximize the cumulative reward over
a specified horizon. To better measure the performance of the
player’s strategy, an equivalent objective of minimizing the
cumulative regret is widely studied, which is defined as the
cumulative difference between the reward of the optimal arm
and that of the selected arms.
Recently, a rich line of works study the bandit learning

problem in matching markets where more than one player
and arms exist. These works study the case where players
have unknown preferences over arms and arms can deter-
mine their preferences over players based on some known
utilities such as the profile of workers in online labor mar-
kets. To characterize the stability of the learned matching,
the objective of stable regret is adopted and studied (Das
and Kamenica 2005; Liu, Mania, and Jordan 2020; Liu et al.
2021; Sankararaman, Basu, and Sankararaman 2021; Basu,
Sankararaman, and Sankararaman 2021; Kong, Yin, and Li
2022; Zhang, Wang, and Fang 2022; Kong and Li 2023;
Wang et al. 2022). Previous works mainly focus on two types
of objectives: the player-optimal stable regret and the player-
pessimal stable regret. The former is defined as the cumula-
tive difference between the reward of the arm in the players’
most preferred stable matching and the accumulated reward
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by the player. The latter is defined compared with the reward
of the arm in the players’ least preferred stable matching.
Liu, Mania, and Jordan (2020) first study the centralized
version where a central platform assigns an allocation of
arms to players in each round and provide theoretical guar-
antees. Since such a platform may not always exist in real
applications, the following works mainly focus on the decen-
tralized setting where each player makes her own decision
(Liu et al. 2021; Sankararaman, Basu, and Sankararaman
2021; Basu, Sankararaman, and Sankararaman 2021; Kong,
Yin, and Li 2022; Maheshwari, Mazumdar, and Sastry 2022).
These works only achieve guarantees on the player-pessimal
stable regret (Liu et al. 2021; Kong and Li 2023) or study
special markets where unique stable matching exists. Until
recently, Zhang, Wang, and Fang (2022) and Kong and Li
(2023) independently propose algorithms that can reach the
player-optimal stable matching.
All of the above works study the one-to-one matching

markets where each player proposes to one arm at a time
and each arm could accept at most one player. The many-
to-one setting is more general and common in real life such
as in labor markets where an employer usually has a cer-
tain quota and can recruit a group of workers (Roth 1984b;
Roth and Sotomayor 1992; Abdulkadiroğlu 2005; Che, Kim,
and Kojima 2019). Wang et al. (2022) initiate the study in
many-to-one markets by considering that arms have respon-
sive preferences. However, their algorithm is only able to
achieve player-pessimal stable matching and lacks guaran-
tees on incentive compatibility. Incentive compatibility is a
crucial property in multi-player systems as it ensures players
are incentivized to act in ways that align with desired sys-
tem outcomes, thereby promoting cooperation and efficiency
rather than encouraging competitive or destructive behaviors.
Deriving algorithms that can achieve better regret and enjoy
guarantees on this property is important in matching markets.

In this paper, we aim to provide algorithms with improved
regret guarantee and incentive compatibility for many-to-one
markets. For the sake of the generality, we also study the de-
centralized setting. We propose an adaptive explore-then-DA
(AETDA) algorithm for markets with responsive preferences
and derive O(N min {N,K}C log T/�2) upper bound for
the player-optimal stable regret as well as a guarantee of
incentive compatibility, where N is the number of players,
K is the number of arms, C is arms’ total capacities, T is the
horizon, and � is some preference gap among players and
arms. To the best of our knowledge, it is the first guarantee
for the player-optimal regret in decentralized many-to-one
markets and is also the first that simultaneously enjoys such
robust assurance in one-to-one markets. Since arms prefer-
ences may possess a combinatorial structure which may not
be well characterized by responsiveness, we also consider
a more general setting with substitutability (Roth and So-
tomayor 1992), one of the most generally known conditions
to ensure the existence of a stable matching and naturally
holds under responsiveness (Roth and Sotomayor 1992; Ab-
dulkadiroğlu 2005). We design an online deferred acceptance
(ODA) algorithm for this more general setting and prove
that the regret against the player-pessimal stable matching is
bounded by O(NK log T/�2). Table 1 provides a compre-

hensive comparison between our work and related results.

Related Work

The matching market model characterizes many applica-
tions such as labor market (Roth 1984a), house allocation
(Abdulkadiroğlu and Sönmez 1999), college admission and
marriage problems (Gale and Shapley 1962), among which
the many-to-one setting is very common and widely stud-
ied (Roth and Sotomayor 1992). Responsiveness and substi-
tutability are the most generally known conditions to guaran-
tee the existence of a stable matching (Kelso Jr and Crawford
1982; Roth 1984b; Abdulkadiroğlu 2005) and the deferred
acceptance (DA) algorithm is a classical offline algorithm
to find a stable matching under this property (Kelso Jr and
Crawford 1982; Roth 1984b).
For simplicity, we refer to the setting where one-side par-

ticipants (players) have unknown preferences as the online
setting. This line of works relies on the technique of MAB, a
classical online learning framework with a single player and
K arms (Lattimore and Szepesvári 2020). The explore-then-
commit (ETC) (Garivier, Lattimore, and Kaufmann 2016),
upper confidence bound (UCB) (Auer, Cesa-Bianchi, and Fis-
cher 2002), Thompson sampling (TS) (Agrawal and Goyal
2012) and elimination (Auer and Ortner 2010) algorithms are
common strategies to obtain O(K log T/�) regret where �
is the minimum suboptimality gap among arms.

Multiple-player MAB (MP-MAB) generalizes the standard
MAB problem by considering more than one player in the
environment. In this setting, each player selects an arm at
each time and a player will receive nothing if it collides with
others by selecting the same arm. The MP-MAB problem
has been studied in both homogeneous and heterogeneous
settings. The former assumes different players share the same
preference over arms (Rosenski, Shamir, and Szlak 2016;
Bubeck, Budzinski, and Sellke 2021) and the latter allows
players to have different preferences (Bistritz and Leshem
2018; Shi et al. 2021). Both settings aim to minimize the
collective cumulative regret of all players.

The matching market problem is different from the above
MP-MAB framework by considering that each arm also has
a preference ranking over players. When multiple players
select one arm, the player preferred most by the arm would
not be collided and would gain a reward. The objective in this
setting is to learn a stable matching and minimize the stable
regret for players. Das and Kamenica (2005) first introduce
the bandit learning problem in one-to-one matching markets
and explore the empirical performances of the proposed algo-
rithms. Liu, Mania, and Jordan (2020) initiate the theoretical
study on this problem. They first consider the centralized
setting where a central platform assigns allocations to players
in each round. Later, Sankararaman, Basu, and Sankarara-
man (2021), Basu, Sankararaman, and Sankararaman (2021)
and Maheshwari, Mazumdar, and Sastry (2022) successively
study this setting in a decentralized manner where players
make their own decisions without a central platform. These
works additionally assume the preferences of participants sat-
isfy some constraints to ensure the uniqueness of the stable
matching. For a general decentralized one-to-one market, Liu
et al. (2021) and Kong, Yin, and Li (2022) propose UCB
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Regret bound Setting

Liu, Mania, and Jordan (2020) O
�
K log T/�2

�
⇤# one-one, known �, incentive, gap1

O
�
NK log T/�2

�
# one-one, incentive, gap5

Liu et al. (2021) O

✓
N

5
K

2 log2 T

"N
4�2

◆
one-one, gap5

Sankararaman, Basu, and Sankararaman (2021) O
�
NK log T/�2

�
one-one (serial dictatorship), -

⌦
�
N log T/�2

�
incentive, gap1

Basu, Sankararaman, and Sankararaman (2021) O

✓
K log1+"

T + 2(
1

�2 )
1
"

◆
⇤ one-one, gap5

O
�
NK log T/�2

�
one-one (uniqueness), gap1

Maheshwari, Mazumdar, and Sastry (2022) O
�
C

0
NK log T/�2

�
one-one (↵-reducible), gap1

Kong, Yin, and Li (2022) O

✓
N

5
K

2 log2 T

"N
4�2

◆
one-one, gap5

Zhang, Wang, and Fang (2022) O
�
K log T/�2

�
⇤ one-one, gap5

Kong and Li (2023) O
�
K log T/�2

�
⇤ one-one, gap4

responsiveness (ours), gap4

Wang et al. (2022)
O
�
K log T/�2

�
⇤# responsiveness, known �, gap1

O
�
NK

3 log T/�2
�
# responsiveness, gap5

O

✓
N

5
K

2 log2 T

"N
4�2

◆
responsiveness, gap5

Ours
O

✓
N min {N,K}C log T

�2

◆
⇤ responsiveness, incentive, gap3

O
�
NK log T/�2

�
substitutability, incentive, gap2

Table 1: Comparisons of settings and regret bounds with most related works. ⇤ represents the player-optimal stable regret
and bounds without labeling ⇤ are for player-pessimal stable regret, # represents the centralized setting. N,K,�, C, ", C

0

are the number of players and arms, some preference gap among players and arms, the total capacities of all arms under the
responsiveness condition, the hyper-parameter of algorithms which can be very small, and the parameter related to the unique
stable matching condition which can grow exponentially in N , respectively. ‘Incentive’ means that there is a guarantee for
incentive compatibility. The definition of � requires particular care in different results. It may be defined as the minimum
preference gap between the player-optimal stable arm and the next arm among all players (labeled as gap1); the minimum
preference gap between the player-pessimal stable arm and the next arm among all players (labeled as gap2); the minimum
preference gap between any arms that have higher ranking than the arm after the player-optimal stable arm (labeled as gap3); the
minimum preference gap between any arms that have higher ranking than min {N + 1,K} (labeled as gap4); and the minimum
preference gap between any different arms among all players (labeled as gap5). Based on the fact that the player-optimal stable
arm must be the first min {N,K}-ranked (proved in Appendix), it holds that gap1 > gap3 > gap4 > gap5, and gap2 > gap5.

and TS-type algorithms, respectively. However, they only
derive guarantees on the player-pessimal stable regret. Until
recently, the theoretical analysis for the player-optimal stable
regret has been derived by Zhang, Wang, and Fang (2022)
and Kong and Li (2023) independently.

Due to the generality when modeling real applications,
Wang et al. (2022) start to study the bandit problem in many-
to-one settings. They assume arms have responsive prefer-
ences and derive algorithms in both centralized and decen-
tralized settings. For the decentralized setting, only an upper
bound for the player-pessimal stable regret is provided. Ta-
ble 1 compares our results with the most related works for
matching markets. As shown in the table, our results not only
work under a more general setting but also achieve a great

advantage over Wang et al. (2022).

Setting

The two-sided market consists of N players and K arms.
Denote the player and the arm set as N = {p1, p2, . . . , pN}
and K = {a1, a2, . . . , aK}, respectively. Just as in common
applications such as the online labor market, players have
preferences over individual arms. The relative preference of
player pi for arm aj can be quantified by a real value µi,j 2
(0, 1], which is unknown and needs to be learned during
interactions with arms. For each player pi, we assume µi,j 6=
µi,j0 for distinct arms aj , aj0 as in previous works (Kelso Jr
and Crawford 1982; Roth 1984b; Liu, Mania, and Jordan
2020; Liu et al. 2021; Kong and Li 2023; Wang et al. 2022).
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And µi,j > µi,j0 implies that player pi prefers aj to aj0 . For
the other side of participants, arms are usually certain of their
preferences for players based on some known utilities, e.g.,
the profiles of workers in the online labor markets scenario.
In many-to-one markets, when faced with a set P ✓ N of
players, the arm can determine which subset of P it prefers
most. Denote Chj(P ) as this choice of arm j when faced with
P . Then for any P

0 ✓ P , arm aj prefers Chj(P ) to P 0.
At each round t = 1, 2, . . ., each player pi 2 N proposes

to an armAi(t) 2 K. LetA�1
j (t) = {pi : Ai(t) = aj} be the

set of players who propose to aj . When faced with the player
set A�1

j (t), arm aj only accepts its most preferred subset
Chj(A

�1
j (t)) and would reject others. Once pi is successfully

accepted by arm Ai(t), it receives a utility gain Xi,Ai(t)(t),
which is a 1-subgaussian random variable with expectation
µi,Ai(t). Otherwise, it receives Xi,Ai(t)(t) = 0. We further
denote Āi(t) as pi’s matched arm at round t. Specifically,
Āi(t) = Ai(t) if pi is successfully matched and Āi(t) = ;
otherwise. Inspired by real applications such as labor market
where workers usually update their working experience on
their profiles, we also assume each player can observe the
successfully matched players Chj(A

�1
j (t)) = Ā

�1
j (t) =�

pi : Āi(t) = aj

 
with each arm aj 2 K as previous works

(Liu et al. 2021; Kong, Yin, and Li 2022; Ghosh et al. 2022;
Kong and Li 2023; Wang et al. 2022).
The matching Ā(t) at round t is the set of all pairs

(pi, Āi(t)). Stability of matchings is a key concept that de-
scribes the state in which any player or arm has no incentive
to abandon the current partner (Gale and Shapley 1962; Roth
and Sotomayor 1992). Formally, a matching is stable if it can-
not be improved by any arm or player-arm pair. Specifically,
an arm aj improves Ā(t) if Chj(Ā�1

j (t)) 6= Ā
�1
j (t). That’s

to say, arm aj would not accept all members in Ā�1
j (t) when

faced with this set. A pair (pi, aj) improves the matching
Ā(t) if pi prefers aj to Āi(t) and aj would accept pi when
faced with Ā

�1
j (t) [ {pi}, i.e., pi 2 Chj(Ā

�1
j (t) [ {pi}).

That’s to say, pi prefers arm aj than its current partner and aj
would also accept pi if pi apply for aj together with aj’s cur-
rent partners (Kelso Jr and Crawford 1982; Abdulkadiroğlu
2005; Roth and Sotomayor 1992).

Responsive preferences are widely studied in many-to-one
markets which guarantee the existence of a stable matching
(Roth and Sotomayor 1992; Wang et al. 2022). Under this
setting, each arm aj has a preference ranking over individual
players and a capacity Cj > 0. When a set of players pro-
pose to aj , it accepts Cj of them with the highest preference
ranking. This case recovers the one-to-one matching when
Cj = 1. For convenience, define C =

P
j2[K] Cj as the total

capacities of all arms. Apart from responsiveness, we also
consider a more general substitutability setting in Section .

In this paper, we study the bandit problem in many-to-one
matching markets with responsive and substitutable prefer-
ences. Under both properties, the set M⇤ of stable match-
ings between N and K is non-empty (Roth and Sotomayor
1992; Kelso Jr and Crawford 1982). For each player pi, let
mi 2 [K] andmi 2 [K] be the index of pi’s most and least
favorite arm among all arms that can be matched with pi in a

stable matching, respectively. The objective of each player
pi is to minimize the cumulative stable regret defined as the
cumulative difference between the reward of the stable arm
and that the player receives during the horizon. The player-
optimal and pessimal stable regret are defined as

Ri(T ) = E
XT

t=1

�
µi,mi �Xi,Ai(t)(t)

��
, (1)

Ri(T ) = E
XT

t=1

�
µi,mi

�Xi,Ai(t)(t)
��

, (2)

respectively (Liu, Mania, and Jordan 2020; Zhang, Wang,
and Fang 2022; Kong and Li 2023; Wang et al. 2022). The
expectation is taken over by the randomness in reward gains
and the players’ policies. For convenience, we define the
preference gaps to measure the hardness of the problem.
Definition 1. For each player pi and arm aj 6= aj0 , de-
fine �i,j,j0 = |µi,j � µi,j0 | as the preference gap of pi
between aj and aj0 . Let ⇢i be the preference ranking of
player pi, where ⇢i,k represents the arm ranked k-th in
pi’s preference. With a little abuse of notation, denote
⇢i(aj) as the rank of aj in pi’s preference. Define �min =
mini,k2[min{N,K�1}] �i,⇢i,k,⇢i,k+1 as the minimum prefer-
ence gap between the arm ranked the firstmin {N + 1,K}-
th among all players, �m = mini,k2[⇢i(mi)] �i,�i,k,�i,k+1

as the minimum preference gap between the arm ranked
the first (⇢i(mi) + 1)-th among all players and �m =
mini,k>⇢i(mi)

�i,mi,⇢i,k as the minimum preference gap be-
tweenmi and any arm that has lower ranking thanmi among
all players.

An Extension of Kong and Li (2023)

Recall that Kong and Li (2023) provide a near-optimal bound
O(K log T/�2

min) for player-optimal stable regret in one-to-
one markets. We first provide an extension of their algorithm,
explore-then-deferred-acceptance (ETDA), for many-to-one
markets with responsiveness and N  K ·minj2[K] Cj .

The deferred acceptance (DA) algorithm is designed to find
a stable matching when both sides of participants have known
preferences. The algorithm proceeds in multiple steps. At the
first step, all players propose to their most preferred arm and
each arm rejects all but their favorite subset of players among
those who propose to it. Such a process continues until no
rejection happens. It has been shown that the final matching
is the player-optimal stable matching under responsiveness
(Gale and Shapley 1962; Kelso Jr and Crawford 1982; Roth
and Sotomayor 1992).
Since players are uncertain about their preferences, the

ETDA algorithm lets players first explore to learn this knowl-
edge and then follow DA to find a stable matching. Specifi-
cally, each player first estimates an index in the firstN rounds
(phase 1); and then explores its unknown preferences in a
round-robin way based on its index (phase 2). After estimat-
ing a good preference ranking, it will follow DA to find the
player-optimal stable matching (phase 3). Compared with
Kong and Li (2023), the difference mainly lies in the first
phase of estimating indices for players where multiple play-
ers can share the same index in many-to-one markets. For
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completeness, we provide the detailed algorithm in Appendix
and the theoretical guarantees below.
Theorem 1. Under the responsiveness condition, whenN 
K · minj2[K] Cj , the player-optimal stable regret of each
player pi by following ETDA satisfies

Ri(T )  O
�
K log T/�2

min

�
. (3)

Due to the space limit, the proof of Theorem 1 is
deferred to Appendix . Under the same decentralized
setting, this player-optimal stable regret bound is even
O(N5

K log T/"N
4

) better than the weaker player-pessimal
stable regret bound in Wang et al. (2022). Such a result also
achieves the same order as the state-of-the-art analysis in the
reduced one-to-one setting (Kong and Li 2023).
Though achieving better regret bound, the ETDA algo-

rithm is not incentive compatible. We can consider the market
where the player-optimal stable arm of a player pi is its least
preferred arm. If pi always reports that it does not estimate
the preference ranking well, then the stopping condition of
phase 2 is never satisfied. In this case, all of the other players
fail to find a stable matching and suffer O(T ) regret, while
this player is always matched with more preferred arms than
that in the stable matching during phase 2, resulting in O(T )
improvement in the cumulative rewards. Thus player pi lacks
the incentive to always act as the algorithm requires. To im-
prove the algorithm in terms of incentive compatibility, we
further propose a novel algorithm in the next section.

Adaptively ETDA (AETDA) Algorithm

In this section, we propose a new algorithm adaptively ETDA
(AETDA) for many-to-one markets with responsive prefer-
ences which is incentive compatible. To ensure each player
has a chance to be matched, we simply assume N  C as
existing works in many-to-one and one-to-one markets (Liu,
Mania, and Jordan 2020; Liu et al. 2021; Zhang, Wang, and
Fang 2022; Kong and Li 2023; Wang et al. 2022), which
relaxes the requirement of ETDA in the previous section.

For simplicity, we present the main algorithm in a central-
ized manner in Algorithm 1, i.e., a central platform coordi-
nates players’ selections in each round. The discussion on
how to extend it to a decentralized setting is provided later.
Intuitively, AETDA integrates the learning process into

each step of DA instead of estimating the full preference rank-
ing well before running DA. More specifically, each player
explores arms in a round-robin manner in each step to learn
its most preferred arm and then focuses on this arm before
being rejected in the corresponding step of DA. For each
player pi, the algorithm maintains Si to represent the avail-
able arm set that has not rejected pi in previous steps and Ei

to represent the exploration status. Specifically, Ei = True
means that pi still needs to explore arms in a round-robin
manner to find its most preferred arm in Si, and Ei = False
means that pi now focuses on its most preferred available
arm. At the beginning of the algorithm, Si is initialized as
the full arm set K and Ei is initialized as True (Line 1).
For players with Ei = True, the central platform

would allocate the arm Ai(t) 2 Si in a round-robin
manner. And for those players with Ei = False, they

Algorithm 1: centralized adaptively explore-then-deferred-
acceptance (AETDA, from the view of the central platform)
1: Initialize: Si = K, Ei = True for each player pi 2 N
2: for round t = 1, 2, ..., do
3: AllocateAi(t) 2 Si to each player pi withEi = True

in a round-robin manner; Allocate Ai(t) = opti to
each player pi with Ei = False

4: Receive the estimation status opti from each pi

5: for each player pi 2 N with opti 6= �1 do

6: Ei = False
7: end for

8: for each player pi 2 N and aj 2 Si with pi /2
Chj({pi0 : opti0 = aj} [ {pi}) do

9: Si = Si \ {aj}
10: Set Ei = True if Ei = False and aj = opti
11: end for

12: end for

can just focus on the determined optimal arm opti (Line
3). After being matched in each round, each player pi

would update its empirical mean µ̂i,Ai(t) and the num-
ber of observed times Ti,Ai(t) on arm Ai(t) as µ̂i,Ai(t) =
(µ̂i,Ai(t) · Ti,Ai(t) +Xi,Ai(t)(t))/(Ti,Ai(t) + 1) , Ti,Ai(t) =
Ti,Ai(t) + 1. For the preference value µi,j towards each arm
aj , pi also maintains a confidence interval at t with the upper
bound UCBi,j := µ̂i,j +

p
6 log T/Ti,j and lower bound

LCBi,j := µ̂i,j �
p

6 log T/Ti,j . If Ti,j = 0, UCBi,j and
LCBi,j are set as1 and �1, respectively. When the UCB
of aj is even lower than the LCB of other available arms, aj
is considered to be less preferred. Based on the estimations,
pi needs to determine whether an arm can be considered as
optimal in Si and submit this status to the platform (Line
4). Specifically, if there exists an arm aj 2 Si such that
LCBi,j > maxaj02Si\{aj} UCBi,j0 , then aj is regarded as
optimal and player pi would submit opti = aj to the plat-
form. Otherwise, no arm can be regarded as optimal, and
pi would submit opti = �1. For players who have learned
their most preferred arm, the platform would mark their ex-
ploration status as False (Line 6).
To avoid conflict when players with Ei = True explore

arms in a round-robin manner, we introduce a detection pro-
cedure to detect whether an arm in Si is occupied by its more
preferred players (Line 8-11). Specifically, if an arm aj does
not accept player pi when faced with the player set who re-
gards aj as the optimal one (Line 8), then pi can be regarded
to be rejected by aj when exploring this arm. In this case,
no matter whether this arm is the most preferred one, pi has
no chance of being matched with it. So pi directly deletes aj
from its available arm set Si (Line 9). And if this arm is just
the estimated optimal arm of pi, then this case is equivalent
in offline DA to that pi is rejected when proposing to its most
preferred arm. In this case, pi needs to explore to learn its
next preferred arm and update Ei as True (Line 10).
For the arrangement of round-robin exploration, without

loss of generality, we can convert the original set ofK arms
with total capacity C into a set of C new arms, each with a
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capacity 1. When N players explore these C new arms: the
platform let p1 follow the ordering 1, 2, ..., C�1, C, 1, ...; p2
follow 2, 3, ..., C, 1, 2, ...; and so on. If an arm aj is unavail-
able for a player pi, pi simply forgo the opportunity to select
in the corresponding rounds. This pre-arranged ordering en-
sures that, in the worst case, each player can match with each
available new arm, and so as to the available original arm, at
least once in every C rounds.

Extension to the decentralized setting. In the decentral-
ized setting without a central platform, each player maintains
and updates their own Si and Ei. We can define a phase
version of Algorithm 1. Specifically, each phase contains a
number of rounds and the size of phases grows exponentially,
i.e., 2, 22, 23, · · · . Within each phase, each player pi would
explore arms in Si in a round-robin manner if Ei = True as
discussed above and focus on arm opti otherwise. Players
only update the status of opti (Line 4), Ei (Line 6), and Si

(Line 8-11) at the end of the phase based on the communica-
tion with other players and arms. If L observations on arms
are enough to learn the optimal one in the centralized version,
then the stopping condition (Line 4) would be satisfied at the
end of the phase guaranteeing the number of observations in
this decentralized version and the total number of selecting
times would be at most 2L due to the exponentially increas-
ing phase length. So the regret in this decentralized version
is at most two times as that suffered in the centralized ver-
sion. And the number of communications is at mostO(log T )
which is of the same order as the ETDA algorithm and also
Kong and Li (2023) for the one-to-one setting.

Theoretical Analysis

Algorithm 1 presents a new perspective that integrates the
learning process into each step of the DA algorithm to find
a player-optimal stable matching. In the following, we will
show that such a design simultaneously enjoys guarantees of
player-optimal stable regret and incentive compatibility.
Theorem 2. Under the responsiveness condition, when
N  C, the player-optimal stable regret of each player
pi by following Algorithm 1 satisfies

Ri(T )  O
�
N ·min {N,K}C log T/�2

m

�
.

Theorem 3. (Incentive Compatibility) When all of the other
players follow Algorithm 1, no single player pi can improve
its final matched arm by misreporting opti in some rounds.
Compared with Wang et al. (2022), our result not only

achieves an O(N4
K log T/(C"

N4

)) improvement over their
weaker player-pessimal stable regret objective but also enjoys
guarantees of incentive compatibility. Compared with the
state-of-the-art result in one-to-one settings, our algorithm
is more robust to players’ deviation only with the cost of
O(NC) worse regret bound (Zhang, Wang, and Fang 2022;
Kong and Li 2023). To the best of our knowledge, it is the
first algorithm that simultaneously achieves guarantees of
polynomial player-optimal stable regret and incentive com-
patibility in both many-to-one markets and previously widely
studied one-to-one markets without knowing the value of�.
Due to the space limit, the proofs of two theorems are

deferred to Appendix .

Online DA Algorithm for Substitutability

In many-to-one markets, arms may have combinatorial pref-
erences over groups of players, which may not be well char-
acterized by responsiveness. In this setting, we consider the
markets with substitutability, which is one of the most com-
mon and general conditions that ensure the existence of a
stable matching and is defined below.
Definition 2. (Substitutability) The preference of arm aj

satisfy substitutability if for any player set P ✓ N that
contains pi and pi0 , pi 2 Chj(P \ {pi0})when pi 2 Chj(P ).
The above property states that arm aj keeps accepting

player pi when other players become unavailable. This is the
sense that aj regards players in a team as substitutes rather
than complementary individuals (in which case the arm may
give up accepting the player when others become unavail-
able). Such a phenomenon appears in many real applications
and covers responsiveness as proved below.
Remark 1. Select a player set P ✓ N which contains pi and
pi0 . Suppose pi 2 Chj(P ), i.e., pi is one of the Cj highest-
ranked players in P . Then when the available set becomes
P \ {pi0}, pi is still one of the Cj highest-ranked players, i.e.,
pi 2 Chj(P \ {pi0}).
The substitutability property is more general than respon-

siveness as arms’ preferences can have combinatorial struc-
tures. The following is an example that satisfies substitutabil-
ity but not responsiveness (Roth and Sotomayor 1992).
Example 1. N = {p1, p2, p3} and K = {a1, a2}. The arms’
preference rankings over subsets of players are
• a1 : {p1, p2} , {p1, p3} , {p2, p3} , {p3} , {p2} , {p1}.
• a2 : {p3} , ;.

That is to say, Chj(P ) is the subset that ranks highest among
all subsets listed above that only contain players in P . Taking
the preferences of a2 as an example, when p3 2 P , then
Chj(P ) = {p3}; otherwise, Chj(P ) = ;.
For many-to-one markets with substitutable preferences,

we propose an online deferred acceptance (ODA) algorithm
(presented in Algorithm 2). ODA is inspired by the idea
of the DA algorithm with the arm side proposing, which
finds a player-pessimal stable matching when players know
their preferences. Specifically, the DA algorithm with the arm
proposing proceeds in several steps. In the first step, each arm
proposes to its most preferred subset among all players. Each
player would reject all but the most preferred arm among
those who propose it. In the following each step, each arm
still proposes to its most preferred subset of players among
those who have not rejected it and each player rejects all
but the most preferred one among those who propose to it.
This process stops when no rejection happens and the final
matching is the player-pessimal stable matching (Kelso Jr
and Crawford 1982; Roth and Sotomayor 1992).
The ODA algorithm is designed with the guidance of this

procedure but players decide which arm to select in each
round. Specifically, each player pi needs to record the avail-
able player set Pi,j for each arm aj , which consists of players
who have not rejected arm aj and is initialized as the full
player set N . Then if a player pi is in the choice set of aj
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Algorithm 2: online deferred acceptance (from view of pi)
1: Input: player set N , arm set K
2: Initialize: Pi,j = N , µ̂i,j = 0, Ti,j = 0 for each j 2

[K]; Si(1) = {aj 2 K : pi 2 Chj(Pi,j)}
3: for each round t = 1, 2, · · · do
4: Select Ai(t) 2 Si(t) in a round-robin way
5: Update µ̂i,Āi(t) and Ti,Āi(t) if Āi(t) = Ai(t) 6= ;
6: Si(t+ 1) = Si(t)
7: for aj 2 Si(t) and UCBi,j(t) <

maxaj02Si(t) LCBi,j0(t) do
8: Si(t+ 1) = Si(t+ 1) \ {aj}
9: end for

10: if t � 2 and 8pi0 2 N : Āi0(t) = Āi0(t� 1) then
11: 8j 2 [K], Pi,j = Pi,j \�

pi0 : Āi0(t) 6= j, 9t0 < t� 1 s.t. Āi0(t0) = j
 

12: Si(t+ 1) = {aj : pi 2 Chj(Pi,j)}
13: end if

14: end for

when the set Pi,j of players is available, i.e., pi 2 Chj(Pi,j),
pi would be accepted if it proposes to aj together with other
players in Pi,j . The main purpose of the algorithm is to let
players wait for this opportunity to choose arms that will
successfully accept them.
Each player pi can further construct the plausible set Si

to contain those arms that may successfully accept it, i.e.,
Si = {aj : pi 2 Chj(Pi,j)}. Here for simplicity, we addi-
tionally assume each player pi knows whether pi 2 Chj(P )
for each possible P ✓ N . This assumption is only used for
clean analysis and the algorithm can also be generalized to
the case where this information is unavailable by letting play-
ers in Pi,j pull aj and observe whether it is accepted. Since
arms know their own preferences and conflicts are determin-
istically resolved, at most 2N rounds are needed to obtain
this information. Apart from Pi,j and Si, each player pi also
maintains µ̂i,j and Ti,j to record the estimated value for µi,j

and the number of its observations. At the beginning, both
values are initialized to 0.

In each round t, each player pi proposes to the arm aj

in the plausible set Si(t) in a round-robin way (Line 4). If
they are successfully matched with each other (Line 5), pi
would update the corresponding µ̂i,j , Ti,j as Section . When
the UCB of aj is even lower than the LCB of other plausible
arms, aj is considered to be less preferred. In this case, the
final stable arm of player pi must be more preferred than aj

and thus there is no need to select aj anymore (Line 8).
Recall that the plausible sets of players are constructed

based on the available sets for arms. To ensure each player
successfully be accepted by arms in their own plausible set,
all players need to keep the available sets for arms updated in
sync. With the awareness that players always select plausible
arms in a round-robin way, once pi observes that all players
focus on the same arm in the recent two rounds, it believes
all players have determined the most preferred one. In this
way, pi updates the available set Pi,j for each arm aj by
deleting players who do not consider aj as stable arms (Line
11). Since all players have the same observations, the update

times of Pi,j would be the same. Such a stage in which all
players determine the most preferred arm in the plausible set
can just be regarded as a step of the offline DA algorithm
(with the arm side proposing) where each player rejects all
but the most preferred one among those who propose to it.
Thus the update times of Pi,j just divide the total horizon
into several stages with each corresponding to a step of DA.

Theoretical Analysis

We first provide the regret guarantee for Algorithm 2.
Theorem 4. Under the substitutability condition, when play-
ers know arms’ exact preferences, the player-pessimal stable
regret of each player pi by following Algorithm 2 satisfies

Ri(T )  O(NK log T/�2
m) . (4)

Apart from the regret guarantee, we also discuss the incen-
tive compatibility of the algorithm.
Theorem 5. (Incentive Compatibility) Suppose that all of
the other players follow the ODA algorithm, then a single
player pi has no incentive to select arms beyond Si. And if
pi misreports its estimated optimal arm in Si towards the
optimal manipulation for itself, i.e., a manipulation under
which the DA algorithm would match pi with an arm has a
higher ranking than that under other manipulations, all of
the other players would also benefit from this behavior.

How to define arms’ preferences over subsets of players is
an interesting question. Our method provides the first attempt.
When players do not know arms’ preferences, a dependence
on 2N would be involved as the cost of learning arms’ com-
binatorial preferences. Removing such dependence would be
more preferred. But as a preliminary step for combinatorial
preferences, understanding algorithmic performance under
more comprehensive information conditions is also impor-
tant as it lays the groundwork for further exploration in more
generalized settings. Due to the space limit, the proofs of two
theorems are provided in Appendix .

Conclusion

In this paper, we study the bandit learning problem in many-
to-one markets. We first extend the result of Kong and Li
(2023) to the many-to-one markets with responsive prefer-
ences and provide a player-optimal regret bound. Since such
an algorithm lacks incentive compatibility, we further pro-
pose the AETDA algorithm which enjoys a guarantee of
player-optimal regret and is simultaneously incentive com-
patible. We also consider a more general setting with substi-
tutable preferences and provide an upper bound for player-
pessimal stable regret. Compared with existing works for
many-to-one markets (Wang et al. 2022), our algorithms
achieve a significant improvement in terms of not only regret
bound but also guarantees of incentive compatibility.
An interesting future direction is to optimize the player-

optimal stable regret in the general many-to-one markets with
substitutable preferences. All of the previous algorithms for
the reduced settings go through based on the uniform explo-
ration strategy. However, under substitutability, an arm may
accept none of the candidates which makes it challenging for
players to perform such a strategy.
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