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Abstract

The Shapley value, which is arguably the most popular ap-
proach for assigning a meaningful contribution value to play-
ers in a cooperative game, has recently been used intensively
in explainable artificial intelligence. Its meaningfulness is due
to axiomatic properties that only the Shapley value satis-
fies, which, however, comes at the expense of an exact com-
putation growing exponentially with the number of agents.
Accordingly, a number of works are devoted to the efficient
approximation of the Shapley value, most of them revolve
around the notion of an agent’s marginal contribution. In this
paper, we propose with SVARM and Stratified SVARM two
parameter-free and domain-independent approximation algo-
rithms based on a representation of the Shapley value de-
tached from the notion of marginal contribution. We prove
unmatched theoretical guarantees regarding their approxima-
tion quality and provide empirical results including synthetic
games as well as common explainability use cases comparing
ourselves with state-of-the-art methods.

Introduction
Whenever agents can federalize in groups (form coalitions)
to accomplish a task and get rewarded with a collective ben-
efit that is to be shared among the group members, the no-
tion of cooperative game stemming from game theory is ar-
guably the most favorable concept to model such situations.
This is due to its simplicity, which nevertheless allows for
covering a whole range of practical applications. The agents
are called players and are contained in a player set N . Each
possible subset of players S ⊆ N is understood as a coali-
tion and the coalition N containing all players is called the
grand coalition. The collective benefit ν(S) that a coalition
S receives upon formation is given by a value function ν
assigning each coalition a real-valued worth.

The connection of cooperative games to (supervised) ma-
chine learning is already well-established. The most promi-
nent example is feature importance scores, both local and
global, for a machine learning model: features of a dataset
can be seen as players, allowing one to interpret a feature
subset as a coalition, while the model’s generalization per-
formance using exactly that feature subset is its worth (Co-
hen, Dror, and Ruppin 2007). Other applications include
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evaluating the importance of parameters in a machine learn-
ing model, e.g. single neurons in a deep neural network
(Ghorbani and Zou 2020) or base learners in an ensem-
ble (Rozemberczki and Sarkar 2021), or assigning relevance
scores to datapoints in a given dataset (Ghorbani and Zou
2019). See Rozemberczki et al. (2022) for a wider overview
of its usage in the field of explainable artificial intelligence.
Outside the realm of machine learning cooperative games
also found applications in operations research (Luo, Zhou,
and Lev 2022), for finding fair compensation mechanisms
in electricity grids (O’Brien, Gamal, and Rajagopal 2015),
or even for the purpose of identifying the most influential
individuals in terrorist networks (van Campen et al. 2018).

In all of these applications, the question naturally arises
of how to appropriately determine the contribution of a sin-
gle player (feature, parameter, etc.) with respect to the grand
collective benefit. In other words, how to allocate the worth
ν(N ) of the full player set N among the players in a fair
manner. The indisputably most popular solution to this prob-
lem is the Shapley value (Shapley 1953), which can be intu-
itively expressed by marginal contributions. We call the in-
crease in worth that comes with the inclusion of player i to
a coalition S, i.e., the difference ν(S ∪ {i}) − ν(S), player
i’s marginal contribution to S. The Shapley value of i is a
weighted average of all its marginal contributions to coali-
tions that do not include i. Its popularity stems from the fact
that it is the only solution to satisfy axiomatic properties that
arguably capture fairness (Shapley 1953).

Despite the appealing theoretical properties of the Shap-
ley value, there is one major drawback with respect to its
practical application, as its computational complexity in-
creases exponentially with the number of players n. As a
consequence, the exact computation of the Shapley value
becomes practically infeasible even for a moderate number
of players. This is especially the case where accesses to ν
are costly, e.g., re-evaluating a (complex) machine learning
model for a specific feature subset, or manipulating train-
ing data each time ν is accessed. Recently, several approx-
imation methods have been proposed in search of a rem-
edy, enabling the utilization of the Shapley value in explain-
able AI (and beyond). However, most works are stiffened
towards the notion of marginal contribution, and, conse-
quently, judge algorithms by their achieved approximation
accuracy depending on the number of evaluated marginal
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contributions. This measure does not do justice to the fact
that approximations can completely dispense with the con-
sideration of marginal contributions and elicit information
from ν in a more efficient way — as we show in this paper.
We claim that the number of single accesses to ν should be
considered instead, since especially in machine learning, as
mentioned above, access to ν is a bottleneck in overall run-
time. In this paper, we make up for this deficit by consider-
ing the problem of approximating the Shapley values under
a fixed budget T of evaluations (accesses) of ν.

Contribution. We present a novel representation of the
Shapley value that does not rely on the notion of marginal
contribution. Our first proposed approximation algorithm
Shapley Value Approximation without Requesting Marginals
(SVARM) exploits this representation and directly samples
values of coalitions, facilitating “a swarm of updates”, i.e.,
multiple Shapley value estimates are updated at once. This is
in stark contrast to the usual way of sampling marginal con-
tributions that only allows the update of a single estimate.
We prove theoretical guarantees regarding SVARM’s preci-
sion including the bound of O( logn

T−n ) on its variance.
Based on a partitioning of the set of all coalitions accord-

ing to their size, we develop with Stratified SVARM a refine-
ment of SVARM. The applied stratification materializes a
twofold improvement: (i) the homogeneous strata (w.r.t. the
coalition worth) significantly accelerate convergence of esti-
mates, (ii) our stratified representation of the Shapley value
with decomposed marginal contributions facilitates a mech-
anism that updates the estimates of all players with each sin-
gle coalition sampled. Among other results, we bound its
variance by O

(
logn

T−n logn

)
.

Besides our superior theoretical findings, both algorithms
possess a number of properties in their favor. More specif-
ically, both are unbiased, parameter-free, incremental, i.e.,
the available budget has not to be fixed and can be en-
larged or cut prematurely, facilitating on-the-fly approxima-
tions due to their anytime property, and do not require any
knowledge about the latent value function. Moreover, both
are domain-independent and not limited to some specific
fields, but can be used to approximate the Shapley values
of any possible cooperative game.

Finally, we compare our algorithms empirically against
other popular competitors, demonstrating their practical
usefulness and proving our empirical enhancement Stratified
SVARM+, which samples without replacement to be the first
sample-mean-based approach to achieve rivaling state-of-
the-art approximation quality. All code including documen-
tation and the technical appendix can be found on GitHub1.

Related Work
The recent rise of explainable AI has incentivized the re-
search on approximation methods for the Shapley value
leading to a variety of different algorithms for this purpose.
The first distinction to be made is between those that are
domain-independent, i.e., able to deal with any cooperative

1https://github.com//kolpaczki//Approximating-the-Shapley-
Value-without-Marginal-Contributions

game, and those that are tailored to a specific use case, e.g.
assigning Shapley values to single neurons in neural net-
works, or which impose specific assumptions on the value
function. In this paper, we will consider only the former,
as it is our goal to provide approximations algorithms inde-
pendent of the context in which they are applied. The first
and so far simplest of this kind is ApproShapley (Castro,
Gómez, and Tejada 2009), which samples marginal contri-
butions from each player based on randomly drawn permu-
tations of the player set. The variance of each of its Shapley
value estimates is bounded by O( nT ). Stratified Sampling
(Maleki et al. 2013) and Structured Sampling (van Campen
et al. 2018) both partition the marginal contributions of each
player by coalition size in order to stratify the marginal
contributions of the population from which to draw a sam-
ple, which leads to a variance reduction. While Stratified
Sampling calculates a sophisticated allocation of samples
for each coalition size, Structured Sampling simply samples
with equal frequencies. Multiple follow-up works suggest
specific techniques to improve the sampling allocation over
the different coalition sizes (O’Brien, Gamal, and Rajagopal
2015; Castro et al. 2017; Burgess and Chapman 2021).

In order to reduce the variance of the naive sampling ap-
proach underlying ApproShapley, Illés and Kerényi (2019)
suggest to use ergodic sampling, i.e., generating samples
that are not independent but still satisfy the strong Law of
Large numbers. Quite recently, Mitchell et al. (2022) inves-
tigated two techniques for improving ApproShapley’s sam-
pling approach. One is based on the theory of reproducing
kernel Hilbert spaces, which focuses on minimizing the dis-
crepancies for functions of permutations. The other exploits
a geometrical connection between uniform sampling on the
Euclidean sphere and uniform sampling over permutations.

Adopting a Bayesian perspective, i.e., by viewing the
Shapley values as random variables, Touati, Radjef, and
Sais (2021) consider approximating the Shapley values by
Bayesian estimates (posterior mean, mode, or median),
where each posterior distribution of a player’s Shapley value
depends on the remaining ones. Utilizing a representation of
the Shapley value as an integral (Owen 1972), Owen Sam-
pling (Okhrati and Lipani 2020) approximates this integral
by sampling marginal contributions using antithetic sam-
pling (Rubinstein and Kroese 2016; Lomeli et al. 2019) for
variance reduction.

A fairly new class of approaches that dissociates itself
from the notion of marginal contribution are those that view
the Shapley value as a solution of a quadratic program with
equality constraints (Lundberg and Lee 2017; Simon and
Vincent 2020; Covert and Lee 2021). Another unorthodox
approach is to divide the player set into small enough groups
for which the Shapley values within these groups can be
computed exactly (Soufiani et al. 2014; Corder and Decker
2019). For an overview of approaches related to machine
learning we refer to (Chen et al. 2023).

Problem Statement
The formal notion of a cooperative game is defined by a tu-
ple (N , ν) consisting of a set of playersN = {1, . . . , n} and
a value function ν : P(N ) → R that assigns to each subset
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i with i ∈ A+

A+ = {1, 3, 5} ∈ U+
1 , U+
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5

→ Update ϕ̂+
1 , ϕ̂

+
3 , ϕ̂

+
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• Sample A− ∼ P−

• Update all ϕ̂−
i with i /∈ A−

A− = {1, 3, 5} ∈ U−
2 , U−

4

→ Update ϕ̂−
2 , ϕ̂

−
4

Alternate

N = {1, 2, 3, 4, 5}

1

Figure 1: Illustration of SVARM’s sampling process and update rule: Each player i has two urns U+
i := {S ∪ {i} | S ⊆ Ni}

and U−
i := {S | S ⊆ Ni} containing marbles which represent coalitions, with mean coalition worth ϕ+

i and ϕ−
i . SVARM

alternates between sampling coalitions A+ ∼ P+ and A− ∼ P−. With each drawn coalition all estimates of those urns are
updated which contain the corresponding marble. Since each player’s two urns form a partition of the powerset P(N ), all
players have exactly one urn updated with each sample.

of N a real-valued number. The value function must satisfy
ν(∅) = 0. We call the subsets of N coalitions, N itself the
grand coalition, and the assigned value ν(S) to a coalition
S ⊆ N its worth. Given a cooperative game (N , ν), the
Shapley value assigns each player a share of the grand coali-
tion’s worth. In particular, the Shapley value (Shapley 1953)
of any player i ∈ N is defined as

ϕi =
∑

S⊆Ni

1

n ·
(
n−1
|S|
) [ν(S ∪ {i})− ν(S)] , (1)

whereNi := N \{i} for each player i ∈ N . The term ν(S∪
{i})−ν(S) is also known as player i’s marginal contribution
to S ⊆ Ni and captures the increase in collective benefit
when player i joins the coalition S. Thus, the Shapley value
can be seen as the weighted average of a player’s marginal
contributions.

The exact computation of all Shapley values requires the
knowledge of the values of all 2n many coalitions2 and is
shown to be NP-hard (Deng and Papadimitriou 1994). In
light of the exponential computational effort w.r.t. to n, we
consider the goal of approximating the Shapley value of
all players as precisely as possible for a given budget of
T ∈ N many evaluations (accesses) of ν in discrete time
steps 1, . . . , T . Since ν(∅) = 0 holds by definition, the eval-
uation of ν(∅) comes for free without any budget cost. We
judge the quality of the estimates ϕ̂1, . . . , ϕ̂n — which are
possibly of stochastic nature — obtained by an approxima-
tion algorithm after T many evaluations by two criteria that
have to be minimized for all i ∈ N . First, the mean squared
error (MSE) of the estimate ϕ̂i is given by

E
[(
ϕ̂i − ϕi

)2]
. (2)

Utilizing the bias-variance decomposition allows us to re-
duce the squared error to the variance V[ϕ̂i] of the Shapley

2In fact, only 2n − 1 many coalitions, as ν(∅) = 0 is known.

value estimate in case that it is unbiased, i.e. E[ϕ̂i] = ϕi.
The second criterion is the probability of ϕ̂i deviating from
ϕi by more than a fixed ε > 0:

P
(
|ϕ̂i − ϕi| > ε

)
. (3)

Both criteria are well-established for measuring the quality
of an algorithm approximating the Shapley value.

SVARM
Thanks to the distributive law, the formula of the Shapley
value for a player i can be rearranged so that it is not its
weighted average of marginal contributions, but the differ-
ence of the weighted average of coalition values by adding i
and the weighted average of coalition values without i:

ϕi =
∑

S⊆Ni

wS · ν(S ∪ {i})
︸ ︷︷ ︸

=:ϕ+
i

−
∑

S⊆Ni

wS · ν(S)
︸ ︷︷ ︸

=:ϕ−
i

, (4)

with weights wS = 1

n·(n−1
|S| )

for each S ⊆ Ni. We call ϕ+
i

the positive and ϕ−
i the negative Shapley value, while we

refer to the collective of both as the signed Shapley values.
The weighted averages ϕ+

i and ϕ−
i can also be viewed as ex-

pected values, i.e., ϕ+
i = E[ν(S ∪ {i})] and ϕ−

i = E[ν(S)],
where S ∼ Pw and Pw(S) = wS for all S ⊆ Ni. Note
that all weights add up to 1 and thus Pw forms a well-
defined probability distribution. In this way, we can approx-
imate each signed Shapley value separately using estimates
ϕ̂+
i and ϕ̂−

i and combine them into a Shapley value estimate
by means of ϕ̂i = ϕ̂+

i − ϕ̂−
i .

In light of this, a naive approach for approximating each
signed Shapley value of a player is by sampling some num-
ber of M many coalitions S(1), . . . , S(M) with distribu-
tion Pw and using the sample mean as the estimate, i.e.,
ϕ̂+
i = 1

M

∑M
m=1 ν(S

(m) ∪ {i}). However, this would re-
quire all 2n signed Shapley values (two per player) to be
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estimated separately by sampling coalitions in a dedicated
manner, each of which would lead to an update of only one
estimate. This ultimately slows down the convergence of the
estimates, especially for large n.

On the basis of the aforementioned representation of the
Shapley value, we present the Shapley Value Approxima-
tion without Requesting Marginals (SVARM) algorithm, a
novel approach that updates multiple Shapley value esti-
mates at once with a single evaluation of ν. Its novelty con-
sists of sampling coalitions independently from two specifi-
cally chosen distributions P+ and P− in an alternating fash-
ion, which allows for a more powerful update rule: each (in-
dependently) sampled coalition A+ from P+ allows one to
update all positive Shapley value estimates ϕ̂+

i of all pay-
ers i which are contained in A+, i.e., i ∈ A+. Likewise, for
a coalition A− drawn from P−, all negative Shapley value
estimates ϕ̂−

i for i /∈ A− can be updated.
It is worth noting that, for simplicity, we alternate evenly

between the samples from the P+ and P− distributions, al-
though one could also use a ratio other than 1/2. To avoid
a bias, both distributions have to be tailored such that the
following holds for all i ∈ N and S ⊆ Ni:

P(A+ = S∪{i} | i ∈ A+) = (5)

= P(A− = S | i /∈ A−) = wS .

For this reason, we define the probability distributions over
coalitions to sample from as

P+(S) :=
1

|S|
(

n
|S|
)
Hn

∀S ∈ P(N ) \ {∅}, (6)

P−(S) :=
1

(n− |S|)
(

n
|S|
)
Hn

∀S ∈ P(N ) \ {N}, (7)

where Hn =
∑n

k=1 1/k denotes the n-th harmonic number.
Note that both P+ and P− assign equal probabilities to
coalitions of the same size, so that one can first sample the
size and then draw a set uniformly of that size. This pair of
distributions is provably the only one to fulfill the required
property (see Appendix C.1 ).
The approach of dividing the Shapley value into two parts
and approximating both has already been pursued (although
not as formally rigorous) via importance sampling (Covert,
Lundberg, and Lee 2019), allowing to update all n estimates
with each sample. Wang and Jia (2023) adopt the same rep-
resentation for the Banzhaf value, and coined the strategy of
updating all players’ estimates with each sampled coalition
the maximum sample reuse (MSR) principle. Their approxi-
mation algorithm is specifically tailored to the Banzhaf value
as it leverages its uniform weights wS = 1

2n−1 and is thus,
at least not directly, transferable to the Shapley value.

In the following we describe SVARM’s procedure with
the pseudocode of Algorithm 1. The overall idea of the sam-
pling and update process is illustrated in Figure 1. It starts
by initializing the positive and negative Shapley value esti-
mates ϕ̂+

i and ϕ̂−
i , and the number of samples c+i and c−i

collected for each player i. SVARM continues by launching
a warm-up phase (see Algorithm 3 in Appendix B). In the
main loop, the update rule is applied for as many sampled

Algorithm 1: SVARM
Input: N , T ∈ N

1: ϕ̂+
i , ϕ̂

−
i ← 0 for all i ∈ N

2: c+i , c
−
i ← 1 for all i ∈ N

3: WARMUP
4: t← 2n
5: while t+ 2 ≤ T do
6: Draw A+ ∼ P+

7: Draw A− ∼ P−

8: v+ ← ν(A+)
9: v− ← ν(A−)

10: for i ∈ A+ do
11: ϕ̂+

i ←
c+i ϕ̂+

i +v+

c+i +1

12: c+i ← c+i + 1
13: end for
14: for i ∈ N \A− do
15: ϕ̂−

i ←
c−i ϕ̂−

i +v−

c−i +1

16: c−i ← c−i + 1
17: end for
18: t← t+ 2
19: end while
20: ϕ̂i ← ϕ̂+

i − ϕ̂−
i for all i ∈ N

Output: ϕ̂1, . . . , ϕ̂n

pairs of coalitions A+ and A− as possible until SVARM
runs out of budget. In each iteration A+ is sampled from
P+ and A− from P−. The worth of A+ and A− is evalu-
ated and stored in v+ and v−, requiring two accesses to the
value function. The estimate ϕ̂+

i of each player i ∈ A+ is
updated with the worth ν(A+) such that ϕ̂+

i is the mean of
sampled coalition values. Likewise, the estimate ϕ̂−

i of each
player i /∈ A− is updated with the worth ν(A−). At the same
time, the sample numbers of the respective signed Shapley
value estimates are also updated. Finally, SVARM computes
its Shapley value estimate ϕ̂i of ϕi for each i according to
Equation (4). Note that since only the quantities ϕ̂+

i , ϕ̂
−
i , c

+
i ,

and c+i are stored for each player, its space complexity is in
O(n). Moreover, SVARM is incremental and can be stopped
at any time to return its estimates after executing line 20, or
it can be run further with increased budget.

Theoretical Analysis. In the following we present theo-
retical results for SVARM. All proofs are given in Section C
of the technical appendix. For the remainder of this section
we assume that a minimum budget of T ≥ 2n + 2 is given.
This assumption guarantees the completion of the warm-up
phase such that each positive and negative Shapley value es-
timate has at least one sample and an additional pair sampled
in the loop. The lower bound on T is essentially twice the
number of players n, which is a fairly weak assumption. We
denote by T̄ := T − 2n the number of time steps (budget)
left after the warm-up phase. Moreover, we assume T̄ to be
even for sake of simplicity such that a lower bound on the
number of sampled pairs in the main part can be expressed

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13249



U+
1,0 U+

1,n−1

mean: ϕ+
1,0 ϕ+

1,n−1

U−
1,0 U−

1,n−1

mean: ϕ−
1,0 ϕ−

1,n−1

Player 1

ϕ1 =
1
n

n−1∑
ℓ=0

ϕ+
1,ℓ − ϕ−

1,ℓ

U+
2,0 U+

2,n−1

mean: ϕ+
2,0 ϕ+

2,n−1

U−
2,0 U−

2,n−1

mean: ϕ−
2,0 ϕ−

2,n−1

Player 2

ϕ2 =
1
n

n−1∑
ℓ=0

ϕ+
2,ℓ − ϕ−

2,ℓ
· · ·

U+
n,0 U+

n,n−1

mean: ϕ+
n,0 ϕ+

n,n−1

U−
n,0 U−

n,n−1

mean: ϕ−
n,0 ϕ−

n,n−1

Player n

ϕn = 1
n

n−1∑
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ϕ+
n,ℓ − ϕ−
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• Sample A uniformly
with size s

• Update all ϕ̂+
i,s−1

with i ∈ A

• Update all ϕ̂−
i,s

with i /∈ A

N = {1, 2, 3, 4, 5},
s = 3, A = {1, 3, 5} :

→ Update ϕ̂+
1,2, ϕ̂

+
3,2, ϕ̂

+
5,2

→ Update ϕ̂−
2,3, ϕ̂

−
4,3

2

Figure 2: Illustration of Stratified SVARM’s sampling process and update rule: Each player i has urns U+
i,ℓ := {S ∪ {i} | S ⊆

Ni, |S| = ℓ} and U−
i,ℓ := {S | S ⊆ Ni, |S| = ℓ} for all ℓ ∈ {0, . . . , n − 1}, 2n in total, containing marbles which represent

coalitions, with mean coalition worth ϕ+
i,ℓ and ϕ−

i,ℓ. Stratified SVARM samples in each time step t a coalition At ⊆ N and
updates the estimates of all players’ urns that contain the corresponding marble. Since each player’s urns form a partition of the
powerset P(N ), all players have exactly one urn updated with each sample.

by T
2 − n. We begin with the unbiasedness of the estimates

maintained by SVARM allowing us later to reduce the mean
squared error (MSE) of each estimate to its variance.

Theorem 1. The Shapley value estimate ϕ̂i of any i ∈ N
obtained by SVARM is unbiased, i.e.,

E[ϕ̂i] = ϕi.

Next, we give a bound on the variance of each Shapley value
estimate. For this purpose, we introduce notation for the
variances of coalition values contained in ϕ+

i and ϕ−
i . For

a random set Ai ⊆ Ni distributed according to Pw let

σ+
i

2
:= V [ν(Ai ∪ {i})] and σ−

i

2
:= V [ν(Ai)] . (8)

Theorem 2. The variance of any player’s Shapley value es-
timate ϕ̂i obtained by SVARM is bounded by

V[ϕ̂i] ≤
2Hn

T̄
(σ+

i

2
+ σ−

i

2
).

Combining the unbiasedness in Theorem 1 with the latter
variance bound implies the following result on the MSE.
Corollary 1. The MSE of any player’s Shapley value esti-
mate ϕ̂i obtained by SVARM is bounded by

E
[(
ϕ̂i − ϕi

)2] ≤ 2Hn

T̄
(σ+

i

2
+ σ−

i

2
).

Assuming that each variance term σ+
i

2
and σ−

i

2
is bounded

by some constant independent of n (and T ), the MSE bound
in Corollary 1 is in O( logn

T−n ) and so is the variance bound
in Theorem 2. Note that this assumption is rather mild and
satisfied if the underlying value function is bounded by con-
stants independent of n, which again is the case for a wide
range of games and in particular in explainable AI for global
and local feature importance based on classification proba-
bilities lying between 0 and 1. Further, as T is growing lin-
early with n by assumption, the denominator is essentially

driven by the asymptotics of T. Thus, the dependency on
n is logarithmic, which is a significant improvement over
existing theoretical results having a linear dependency on
n like O( nT ) for ApproShapley (Castro, Gómez, and Tejada
2009) or possibly worse (Simon and Vincent 2020). Finally,
we present two probabilistic bounds on the approximated
Shapley value. The first utilizes the variance bound shown
in Theorem 2 by applying Chebyshev’s inequality.
Theorem 3. The probability that the Shapley value estimate
ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2Hn

ε2T̄
(σ−

i

2
+ σ+

i

2
).

The presented bound is in O( logn
T−n ) and improves upon the

bound derived by Chebyshev’s inequality of O( nT ) for Ap-
proShapley (Maleki et al. 2013). Our second bound derived
by Hoeffding’s inequality is tighter, but requires the intro-
duction of notation for the ranges of ν(Ai) and ν(Ai ∪{i}):

r+i := max
S⊆Ni

ν(S ∪ {i})− min
S⊆Ni

ν(S ∪ {i}) , (9)

r−i := max
S⊆Ni

ν(S)− min
S⊆Ni

ν(S) . (10)

Theorem 4. The probability that the Shapley value estimate
ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2e
− T̄

4Hn2 + 4
e−Ψ⌊ T̄

4Hn
⌋

eΨ − 1
,

where Ψ = 2ε2/(r+i +r−i )2.

Note that this bound is exponentially decreasing with T

and can be expressed asymptotically as O(e−
T−n

(log n)2 ). In
comparison, the bounds of O(e−T

n ) for ApproShapley,
O(ne− T

n3 ) for Stratified Sampling (Maleki et al. 2013), and
the projected SGD variant (Simon and Vincent 2020) show
worse asymptotic dependencies on n in comparison.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13250



Stratified SVARM
On the basis of the representation of the Shapley value in
Equation (4), we develop another approximation algorithm
named Stratified SVARM to further pursue and reach the
maximum sample reuse principle. Its crux is a refinement of
SVARM obtained by stratifying the positive and the negative
Shapley value ϕ+

i and ϕ−
i . We exploit the latter to develop an

even more powerful update rule that allows for updating all
players simultaneously with each single coalition sampled.
Both, ϕ+

i and ϕ−
i can be rewritten using stratification such

that each becomes an average of strata, whereas the strata
themselves are averages of the coalitions’ worth:

ϕ+
i =

1

n

n−1∑

ℓ=0

1(
n−1
ℓ

)
∑

S⊆Ni

|S|=ℓ

ν(S ∪ {i}) =:
1

n

n−1∑

ℓ=0

ϕ+
i,ℓ, (11)

ϕ−
i =

1

n

n−1∑

ℓ=0

1(
n−1
ℓ

)
∑

S⊆Ni

|S|=ℓ

ν(S) =:
1

n

n−1∑

ℓ=0

ϕ−
i,ℓ. (12)

We call ϕ+
i,ℓ the ℓ-th positive Shapley subvalue and ϕ−

i,ℓ the ℓ-
th negative Shapley subvalue for all ℓ ∈ L := {0, . . . , n−1}.
Now, we can write ϕi as

ϕi =
1

n

n−1∑

ℓ=0

ϕ+
i,ℓ − ϕ−

i,ℓ. (13)

Note that this representation of ϕi coincides with Equation 6
in (Ancona, Öztireli, and Gross 2019). Intuitively speaking
at the example of ϕ+

i (and analogously for ϕ−
i ), we partition

the population of coalitions contained in ϕ+
i into n strata.

Each stratum ϕ+
i,ℓ comprises all coalitions which include the

player i and have cardinality ℓ + 1. Instead of sampling di-
rectly for ϕ+

i , the stratification allows one to sample coali-
tions from each stratum, obtain mean estimates ϕ̂+

i,ℓ, and ag-
gregate them to

ϕ̂+
i =

1

n

n−1∑

ℓ=0

ϕ̂+
i,ℓ (14)

in order to obtain an estimate for ϕ+
i . Due to the increase

in homogeneity of the strata in comparison to their origin
population, caused by the shared size and inclusion or ex-
clusion of i for coalitions in the same stratum, one would
expect the strata to have significantly lower variances and
ranges resulting in approximations of better quality com-
pared to SVARM. In combination with our bounds shown
in Theorem 2 and Theorem 4, this should result in approxi-
mations of better quality. In the following we present further
techniques for improvement which we apply for Stratified
SVARM (Algorithm 2).

Exact Calculation. First, we observe that some strata
contain very few coalitions. Thus, we calculate
ϕ+
i,0, ϕ

+
i,n−2, ϕ

+
i,n−1, ϕ

−
i,1, and ϕ−

i,n−1 for all players
exactly by evaluating ν for all coalitions of size 1, n−1, and
n. This requires 2n + 1 many evaluations of ν (see Algo-
rithm 5 in Appendix B). We already obtain ϕ−

i,0 = ν(∅) = 0

Algorithm 2: Stratified SVARM
Input: N , T ∈ N

1: ϕ̂+
i,ℓ, ϕ̂

−
i,ℓ ← 0 for all i ∈ N and ℓ ∈ L

2: c+i,ℓ, c
−
i,ℓ ← 0 for all i ∈ N and ℓ ∈ L

3: EXACTCALCULATION(N )
4: WARMUP+(N )
5: WARMUP−(N )

6: t← 2n+ 1 + 2
n−2∑
s=2
⌈ns ⌉

7: while t < T do
8: Draw st ∼ P̃
9: Draw At from {S ⊆ N | |S| = st} uniformly

10: UPDATE(At)
11: t← t+ 1
12: end while
13: ϕ̂i ← 1

n

n−1∑
ℓ=0

ϕ̂+
i,ℓ − ϕ̂−

i,ℓ for all i ∈ N

Output: ϕ̂1, . . . , ϕ̂n

by definition. As a consequence, we can exclude the sizes
0, 1, n− 1, and n from further consideration. We assume for
the remainder that n ≥ 4, otherwise we would have already
calculated all Shapley values exactly.

Refined Warm-Up. Next, we split the warm-up into two
parts, one for the positive, the other for the negative Shapley
subvalues (see Algorithm 6 and 7 in Appendix B). Each col-
lects for each estimate ϕ̂+

i,ℓ or ϕ̂−
i,ℓ, respectively, one sample

and consumes a budget of
∑n−2

s=2

⌈
n
s

⌉
.

Enhanced Update Rule. Thanks to the stratified repre-
sentation of the Shapley value, we can enhance SVARM’s
update rule and update with each sampled coalition At ⊆ N
the estimates ϕ̂+

i,|At|−1 for all i ∈ At and ϕ̂−
i,|At| for all

i /∈ At. Thus, we can update all estimates ϕ̂i at once with
a single sample. This enhanced update step is given in Al-
gorithm 4 (see Appendix B) and illustrated in Figure 2. In
order to obtain unbiased estimates, it suffices to select an ar-
bitrary size s of the coalition A to be sampled and draw A
uniformly at random from the set of coalitions with size s.
We go one step further and choose not only the coalition A,
but also the size s randomly according to a specifically tai-
lored probability distribution P̃ over {2, . . . , n − 2}, which
leads to simpler bounds in our theoretical analysis in which
each stratum receives the same weight. We define for n even:

P̃ (s) :=





n logn−1

2sn logn
(
Hn

2
−1−1

) if s ≤ n−2
2

1
n logn if s = n

2
n logn−1

2(n−s)n logn
(
Hn

2
−1−1

) otherwise
,

and for n odd: P̃ (s) :=





1

2s

(
Hn−1

2
−1

) if s ≤ n−1
2

1

2(n−s)

(
Hn−1

2
−1

) otherwise
.
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Note that Stratified SVARM is incremental just as SVARM,
but in contrast, requires quadratic space O(n2) as it stores
estimates and counters for each player and stratum.

Theoretical Analysis. Similar to SVARM, we present in
the following our theoretical results for Stratified SVARM.
All proofs are given in Appendix D. Again, we assume a
minimum budget of T ≥ 2n + 1 + 2

∑n−2
s=2

⌈
n
s

⌉
=: W ∈

O(n log n), guaranteeing the completion of the warm-up
phase, and denote by T̄ = T −W the budget left after the
warm-up phase. We start by showing that Stratified SVARM
is not afflicted with any bias.

Theorem 5. The Shapley value estimate ϕ̂i of any i ∈ N
obtained by Stratified SVARM is unbiased, i.e.,

E[ϕ̂i] = ϕi.

Next, we consider the variance of the Shapley value es-
timates and quickly introduce some notation. Let Ai,ℓ ⊆
Ni be a random coalition of size ℓ distributed with
P(Ai,ℓ = S) =

(
n−1
ℓ

)−1
. Define the strata variances

σ+
i,ℓ

2
:= V [ν(Ai,ℓ ∪ {i})] and σ−

i,ℓ

2
:= V [ν(Ai,ℓ)] . (15)

Theorem 6. The variance of any player’s Shapley value es-
timate ϕ̂i obtained by Stratified SVARM is bounded by

V[ϕ̂i] ≤
2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Together with the unbiasedness shown in Theorem 5, the
variance bound implies the following MSE bound.
Corollary 2. The MSE of any player’s Shapley value esti-
mate ϕ̂i obtained by Stratified SVARM is bounded by

E[(ϕ̂i − ϕi)
2] ≤ 2 log n

nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

With our choice of the sampling distribution P̃ we achieved
an easily interpretable bound on the MSE in which each stra-
tum variance is equally weighted. Assuming that each stra-
tum variance is bounded by some constant independent of
n, the MSE bound in Corollary 2 is in O( logn

T−n logn ). Note
that, by assumption, T is growing log-linearly with n so that
the denominator is essentially driven by the asymptotics of
T . Again, compared to existing theoretical results, with lin-
ear dependence on n, the logarithmic dependence on n is a
significant improvement. Still, it is worth emphasizing that
the more homogeneous strata with lower variances consti-
tute the core improvement of Stratified SVARM, which are
not reflected within the O-notation. Our first probabilistic
bound is obtained by Chebyshev’s inequality and the bound
from Theorem 6.
Theorem 7. The probability that the Shapley value estimate
ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin
of any fixed ε > 0 or greater is bounded by

P(|ϕ̂i − ϕi| ≥ ε) ≤ 2 log n

ε2nT̄

n−3∑

ℓ=1

σ+
i,ℓ

2
+ σ−

i,ℓ+1

2
.

Lastly, our second probabilistic bound derived via Hoeffd-
ing’s inequality is tighter, but less trivial. It requires some
further notation, namely the ranges of the strata values:

r+i,ℓ := max
S⊆Ni:|S|=ℓ

ν(S ∪ {i})− min
S⊆Ni:|S|=ℓ

ν(S ∪ {i}),
(16)

r−i,ℓ := max
S⊆Ni:|S|=ℓ

ν(S)− min
S⊆Ni:|S|=ℓ

ν(S). (17)

Theorem 8. The probability that the Shapley value estimate
ϕ̂i of any fixed player i ∈ N deviates from ϕi by a margin of
any fixed ε > 0 or greater is bounded by P(|ϕ̂i − ϕi| ≥ ε)

≤ 2(n− 3)

(
e
− T̄

8n2(log n)2 + 2
e−Ψ⌊ T̄

4n log n⌋
eΨ − 1

)
,

where Ψ = 2ε2n2
/
(

n−3∑
ℓ=1

r+i,ℓ+r−i,ℓ+1

)2

.

This bound is of order O(ne−
T−n log n

n2(log n)2 ) showing a slightly
worse dependency on n compared to Theorem 4 due to the
introduction of strata.

Empirical Results
To complement our theoretical findings, we evaluate our al-
gorithms and its competitors on commonly considered syn-
thetic cooperative games and explainable AI scenarios in
which Shapley values need to be approximated. In partic-
ular, we select parameterless algorithms that do not rely on
provided knowledge about the value function of the prob-
lem instance at hand, since ours do not either. Besides the
sampling distribution P̃ over coalition sizes proposed for
Stratified SVARM (S-SVARM), we also consider sampling
with the simpler uniform distribution over all sizes from 2 to
n− 2 (S-SVARM uniform). In order to allow for a fair com-
parison with KernelSHAP, which samples coalitions without
replacement, we include with S-SVARM+ (uniform) an em-
pirical version of S-SVARM without the warm-up that also
samples without replacement to compensate for this under-
lying advantage (see Algorithm 8 in Appendix B), which ob-
viously comes at the price of space complexity linear in T .

We run the algorithms multiple times on the selected
game types and measure their performances by the mean
squared error (MSE) averaged over all players and runs de-
pending on a range of fixed budget values T . Measuring the
approximation quality by the MSE requires the true Shapley
values of the considered games to be available. These are
either given by a polynomial closed-form solution for the
synthetic games (see Section 6.1) or we compute them ex-
haustively for our explanation tasks (see Section 6.2). The
results of our evaluation are shown in Figure 3 and are pre-
sented in more detail in Appendix F.

As already said, we judge the algorithms’ approximation
qualities in dependence on the spent budget (model eval-
uations) T instead of the consumed runtime. In fact, the
algorithms differ in actual runtime. For example SVARM
performs less arithmetic operations than Stratified SVARM
since it does not update all players’ estimates ϕ̂+

i or ϕ̂−
i
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Figure 3: Averaged MSE and standard errors over 100 repetitions in dependence of fixed budget T : (1) Airport game, (2) Shoe
game, (3) SOUG game, (4) NLP sentiment analysis, (5) Image classifier, (6) Adult classification.

with each sample. Some algorithms, e.g. KernelSHAP, vary
strongly in their time consumption per sample since a costly
quadratic optimization problem needs to be solved after
observing all samples. We intentionally avoid the runtime
comparison for three reasons: (i) the observed runtimes
may differ depending on the actual implementation, (ii) the
fixed-budget setting facilitates a coherent theoretical analy-
sis where the observed information is restricted, (iii) evaluat-
ing the worth of a coalition poses the bottleneck in explana-
tion tasks, rendering the difference in performed arithmetic
operations negligible.

Synthetic Games
Cooperative games with polynomial closed-form solutions
of their Shapley values are well suited for tracking the ap-
proximation error for large player numbers. We exploit this
fact and investigate a broad range of player numbers n which
are significantly higher than those for the explanation tasks.
We conduct experiments on the predefined Shoe and Air-
port game as done in (Castro, Gómez, and Tejada 2009;
Castro et al. 2017). Their degree of non-additivity poses a
difficult challenge to all approximation algorithms. Further,
we consider randomly generated Sum of Unanimity Games
(SOUG) games (van Campen et al. 2018) which are capable
of representing any cooperative game. The value function
and Shapley values of each game are given in Appendix E.

We observe that S-SVARM itself already shows reli-
ably good approximation performance across all consid-
ered games and budget ranges. It is significantly superior to
its competitors ApproShapley and KernelSHAP and as ex-
pected, S-SVARM+ extends the lead in approximation qual-
ity even more. In contrast, SVARM can rarely keep up with
its refined counterpart S-SVARM. However, in light of the
bounds on the MSEs in Corollary 1 and 2 this is not surpris-

ing: SVARM’s MSE bound scales linearly with the variances
σ+
i

2
and σ−

i

2
of all coalition values containing respectively

not containing i, while the relevant variance terms σ+
i,ℓ

2
and

σ−
i,ℓ

2
for S-SVARM are restricted to coalitions of fixed size.

In most games, the latter terms are significantly lower since
coalitions of the same size are plausibly closer in worth. Fi-
nally, S-SVARM is quite robust regarding the magnitude of
the standard errors.

Explainabality Games
We further conduct experiments on cooperative games stem-
ming from real-world explainability scenarios, in particu-
lar, use cases in which local feature importance of machine
learning models are to be quantified via Shapley values.
The NLP sentiment analysis game is based on the Distil-
BERT (Sanh et al. 2019) model architecture and consists of
randomly selected movie reviews from the IMDB dataset
(Maas et al. 2011) containing 14 words. Missing features
are masked in the tokenized representation and the value of
a set is its sentiment score. In the image classifier game, we
explain the output of a ResNet18 (He et al. 2016) trained on
ImageNet (Deng et al. 2009). The images’ pixels are sum-
marized into n = 14 super-pixels and absent features are
masked with mean imputation. The worth of a coalition is
the returned class probability of the model (using only the
present super-pixels) for the class of the original prediction
which was made with all pixels being present. For the adult
classification game, we train a gradient-boosted tree model
on the adult dataset (Becker and Kohavi 1996). A coalition’s
worth is the predicted class probability of the true income
class (income above or below 50 000) of the given datapoint
with the absent features being removed via mean imputa-
tion. Since no polynomial closed-form solution exists for
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the Shapley values in these games, we compute them ex-
haustively, limiting us to a feasible number of players for
which we can track the MSE. While this restricts us to a
player number (tokens, superpixels, features) of n = 14 due
to limited computational resources, this is arguably still an
appropriate and commonly appearing number of entities in-
volved in an explanation task. We refer to Appendix E for a
more detailed explanation of the chosen games.

A first observation is the close head-to-head race be-
tween S-SVARM+ and KernelSHAP across the considered
games leaving all other methods behind. Thus, S-SVARM+

is the first sample-mean-based approach achieving rivaling
state-of-the-art approximation quality. KernelSHAP’s coun-
terpart Unbiased KernelSHAP, designed to facilitate approx-
imation guarantees similar to our theoretical results which
KernelSHAP lacks, is clearly outperformed by S-SVARM.
Given the consistency demonstrated by S-SVARM and S-
SVARM+, we claim that both constitute a reliable choice
under absence of domain knowledge. We conjecture that the
reason for the slight performance decrease of S-SVARM
from synthetic to explainability games lies not only within
the latent structure of ν, but is also caused by the lower
player numbers. As our theoretical results indicate, its sam-
ple efficiency grows with n due to its enhanced update rule.
However, conducting experiments with larger n becomes
computationally prohibitive for explainability games, since
the Shapley values have to be calculated exhaustively in or-
der to track the approximation error. Further, our results in-
dicate the robustness of S-SVARM(+) w.r.t. the utilized dis-
tribution P̃ , which allows us to use the uniform distribution
without performance loss, and secondly shows that our de-
rived distribution is not just a theoretical artifact, but a valid
contribution to express simpler bounds which are easier to
grasp and interpret.

Conclusion
We considered the problem of precisely approximating the
Shapley value of all players in a cooperative game under the
restriction that the value function can be evaluated only a
given number of times. We presented a reformulation of
the Shapley value, detached from the ubiquitous notion of
marginal contribution, facilitating the approximation by esti-
mates of which a multitude can be updated with each access
to the value function. On this basis, we proposed two ap-
proximation algorithms, SVARM and Stratified SVARM,
which have a number of desirable properties. Both are
parameter-free, incremental, domain-independent, unbiased,
and do not require any prior knowledge of the value func-
tion. Further, Stratified SVARM shows a satisfying compro-
mise between peak approximation quality and consistency
across all considered games, paired with unmatched theo-
retical guarantees regarding its approximation quality. While
fulfilling more desirable properties and not having to solve
a quadratic optimization problem of size T in comparison
to the state-of-the-art method KernelSHAP, effectively dis-
abling on-the-fly approximations, our simpler sample-mean-
based method Stratified SVARM+ can fully keep up in com-
mon explainable AI scenarios, and even shows empirical su-

periority on synthetic games.

Limitations and Future Work. The quadratically grow-
ing number of strata w.r.t. n might pose a challenge for
higher player numbers, which future work could remedy by
applying a coarser stratification that assigns multiple coali-
tion sizes to a single stratum. One could investigate the em-
pirical behavior in further popular explanation domains such
as data valuation, federated learning, or neuron importance
and extend our evaluation to scenarios with higher player
numbers. Since the true Shapley values are not accessible for
larger n, a different measure of approximation quality than
the MSE needs to be taken for reference. The convergence
speed of the estimates is a naturally arising alternative. Our
empirical results give further evidence for the non-existence
of a universally best approximation algorithm and encourage
future research into the cause of the observed differences in
performance w.r.t. the game type. Further, it would be inter-
esting to analyze whether structural properties of the value
function, such as monotonicity or submodularity, have an
impact on the approximation quality of both algorithms.
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