
Shuffled Deep Regression

Masahiro Kohjima
NTT Human Informatics Laboratories, NTT Corporation
1-1 Hikarinooka, Yokosuka, Kanagawa 239-0847, Japan

masahiro.kohjima.ev@hco.ntt.co.jp

Abstract

Shuffled regression is the problem of learning regression
models from shuffled data that consists of a set of input fea-
tures and a set of target outputs where the correspondence be-
tween the input and output is unknown. This study proposes
a new deep learning method for shuffled regression called
Shuffled Deep Regression (SDR). We derive the sparse and
stochastic variant of the Expectation-Maximization algorithm
for SDR that iteratively updates discrete latent variables and
the parameters of neural networks. The effectiveness of the
proposal is confirmed by benchmark data experiments.

Introduction
Due to the difficulties of comprehensive data collection
such as privacy-aware or non-centralized data collection, the
data to be analyzed are often given by the form of shuffled
data where the correspondence between input (feature vec-
tor) and output (target value) is unknown (Carpentier and
Schlüter 2016; Hsu, Shi, and Sun 2017; Pananjady, Wain-
wright, and Courtade 2017; Abid and Zou 2018). Since the
true target value for each input is unknown, shuffled data
can be collected even if the outputs represent sensitive in-
formation such as annual income while protecting privacy.
To learn regression models from shuffled data, it is impossi-
ble to apply standard regression methods using paired data
whose correspondence between input and output is known.

Shuffled regression (SR) is the problem of estimating a
model from shuffled data and arises in domains such as data
integration, computer vision, and sensor networks, see e.g.,
(Pananjady, Wainwright, and Courtade 2017). In the litera-
ture of SR, existing studies focus on the learning of linear
models (Carpentier and Schlüter 2016; Hsu, Shi, and Sun
2017; Abid and Zou 2018; Fang and Li 2023), and the learn-
ing of deep models has not been well investigated. Consider-
ing the known benefits of deep learning (Goodfellow, Ben-
gio, and Courville 2016), the use of deep learning must con-
tribute to improving the performance of solving SR.

This study proposes a new deep learning-based method
for shuffled regression called Shuffled Deep Regres-
sion (SDR). We derive a sparse stochastic expectation-
maximization (SSEM) algorithm for parameter estimation

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that iteratively updates latent variables and the parameters
of neural networks, based on the EM algorithm (Dempster,
Laird, and Rubin 1977). SSEM adopts sparse EM (Neal
and Hinton 1998) and online EM (Cappé and Moulines
2009)-like approaches to naturally handle the huge spaces
of discrete latent variables and supports combination with
stochastic gradient algorithms (such as Adam) to update
neural network parameters. We also show that SSEM is re-
lated to the iterative reweighted least squares (IRLS) (Rubin
2004; Bishop 2006). Experiments conducted on benchmark
datasets confirm the effectiveness of the proposals.

The contributions of this paper are summarized below:

• We propose a new deep learning-based method for shuf-
fled regression called shuffled deep regression (SDR).

• We develop the sparse and stochastic variant of EM algo-
rithm (SSEM) that can naturally handle the huge space
of discrete latent variables and can support the use of
stochastic gradient-based algorithms.

• We confirm the effectiveness of the proposed method by
numerical experiments on benchmark data.

Related Work
Shuffled regression (SR) (Pananjady, Wainwright, and Cour-
tade 2017; Abid and Zou 2018) which is also called
“regression without correspondence” (Hsu, Shi, and Sun
2017), “uncoupled regression” (Xu et al. 2019), and “un-
labeled sensing” (Unnikrishnan, Haghighatshoar, and Vet-
terli 2018), arises in e.g., the pose and correspondence es-
timation (David et al. 2004), flow cytometry for measuring
chemical characteristics of cells (Abid and Zou 2018), and
linkage of health records (Shi, Li, and Cai 2021). So SR has
been actively studied both theoretically and for application.

Theoretical studies have clarified various difficulties of
SR. For instance, recovering the correspondence between
input and output is NP-hard in general (Pananjady, Wain-
wright, and Courtade 2017). (Unnikrishnan, Haghighat-
shoar, and Vetterli 2018) also explored the conditions for
obtaining unique solutions. Developing parameter estima-
tion algorithms is a notable topic as well; (Abid and Zou
2018) developed an expectation-maximization (EM) based
algorithm similar to our study, while (Slawski, Rahmani,
and Li 2020) elucidated the connection to robust subspace
recovery problem. However, these existing studies mainly

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13238

Figure 1: (a) Paired Data and (b) Shuffled Data. Shuffled re-
gression (SR) is the problem of estimating a (true) unknown
function from shuffled data.

focus on simple models with some specific structure such as
the monotone model (Carpentier and Schlüter 2016) or the
linear model (Pananjady, Wainwright, and Courtade 2017;
Abid and Zou 2018), and their validity is limited to cases that
suit the simple models. Our motivation was to apply deep
models and develop an applicable estimation algorithm.

Research directed towards practical settings have consid-
ered problems where richer data (to the extent practical) are
available (Xu et al. 2019; Kohjima et al. 2022; Yamane et al.
2023). For example, (Xu et al. 2019; Kohjima et al. 2022)
use pairwise ranking data, while (Yamane et al. 2023) as-
sume the availability of some intermediate variables that
weakly connect inputs and outputs. In this context, the use of
more complex models such as Gaussian process model (Ko-
hjima et al. 2022) and deep learning-based method (Yamane
et al. 2023) has been investigated. However, these methods
cannot be applied if ranking data or intermediate variables
are not available. Our study considers the learning of deep
models without using such additional data and variables.

Preliminary: Regression with Paired Data
Let X ⊂ Rd and Y ⊂ R be an input feature space and an
output space, respectively. We call the set of n pairs of in-
put and output, DPD = {(x(i), y(i))}ni=1, paired data, where
x(i) ∈ X is an input feature and y(i) ∈ Y is an target output.
See Fig. 1a.

In the (standard) regression problem, given (i) regression
model hθ : X → Y parametrized by θ, (ii) output prob-
ability distribution f , and (iii) paired data DPD, the model
parameter θ is estimated by maximizing the log-likelihood.

Possible choices for the regression model hθ include the
linear models and the deep neural network models such as
the (one-hidden layer) multi-layer perceptron (MLP) shown
in Table 1. Although the main scope of this study lies in the
variety of deep models including MLP where the parameter
is updated by stochastic algorithms such as SGD or Adam,
our algorithm can handle any type of regression model.

For the output probability distribution f , the most stan-
dard choice for f is the normal distribution defined as

N (y|c) = 1√
2πσ2

exp
{ (y − c)2

2σ2

}
.

It is well-known that the use of the normal distribu-
tion makes the log-likelihood function correspond to the

parameter model form
Linear W, b hθ(x) = Wx+ b
MLP {Wℓ, bℓ}2ℓ=1 hθ(x)=W2act(W1x+b1)+b2

Table 1: Examples of regression model hθ.

η p0(y) T (y) A(η)

Normal c/σ
exp(− y2

2σ2)
√
2πσ

y/σ η2/2

Bernoulli log(r
1−r) 1 y log(1+eη)

Poisson log(λ) 1/y! y exp(η)

Table 2: Examples of exponential family distribution f .

squared-error loss. Since Gaussian may not be appropriate
to handle binary/non-negative/integer target outputs, the fol-
lowing exponential family distribution is the more general
choice since it can express various types of distributions:

f(y|η) = p0(y) exp{η · T (y)−A(η)}, (1)

where η is the natural parameter, T (y) is sufficient statis-
tics and A(η) is the log-normalizer. The exponential family
includes Normal, Bernoulli (Ber), and Poisson (Poi):

Ber(y|r) = ry(1− r)1−y, Poi(y|λ) = λy exp(−λ)/y!.

By assigning specific values to T (y) and A(η), the above
distributions are represented by Eq. (1) (See Table 2). Our
notation of f makes the output distribution transparent to
which distribution is adopted.

Proposed Method: Shuffled Deep Regression
This section describes the method we propose for estimating
deep regression models from shuffled data.

Shuffled Data
Shuffled data are data where the correspondence between
input feature and target output is unknown. Let x1:K and
y1:K be a set of K input features x1:K = {x1, x2, · · · , xK},
and a set of K target outputs y1:K = {y1, y2, · · · , yK},
respectively (xk ∈ X , yk ∈ Y). Shuffled data DSD

are defined as a pair of input-set and output-set, DSD =

{(x(i)
1:K , y

(i)
1:K)}ni=1

1. See Fig. 1b. Unlike paired data, one-
to-one correspondence between input and output is lost in
shuffled data, so the output corresponding to feature x

(i)
k is

one of {y(i)1 , ..., y
(i)
K }, but it is not known which one. Since

shuffled data are reduced to paired data when K=1, it can be
regarded as a more general representation of paired data. We
denote the matrix representation of x1:K by the bold capital
letters, X1:K ∈ RK×d. Table 3 shows our notation.

The shuffled regression (SR) problem tackled by this
study is to estimate the parameters of the regression model
given (i) regression model hθ : X → Y parametrized by θ,
(ii) output probability distribution f , and (iii) shuffled data
DSD. We emphasize that paired data DPD are not given.

1This setup could easily be extended to an adaptive K setup (K
is different for each sample i), but that is is omitted for simplicity.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13239

Symbol Description
n size of shuffled data
d size of dimensions of input features
K size of a set of input features/target outputs
DSD shuffled data DSD = {(x(i)

1:K , y
(i)
1:K)}ni=1

x
(i)
1:K i-th set of input features {x(i)

1 , · · · , x(i)
K }

y
(i)
1:K i-th set of target outputs {y(i)1 , · · · , y(i)K }
X

(i)
1:K (K × d) matrix representation of x(i)

1:K
θ parameter of regression model (See Table 1)
hθ regression model (See Table 1)
f output probability distribution (See Table 2)
g link function (See Table 4)
Π set of all K×K permutation matrices
P(i) (latent) permutation matrix for i-th data
η
(i)
1:K set of parameter of f , η(i)1:K = (η

(i)
1 , · · · , η(i)K)

η
(i)
k output of link func. η(i)k =g(hθ([P

(i)X
(i)
1:K]k))

Π̃(i) set of M permutation matrices {P̃(i,m)}Mm=1

γ(i,m) responsibility of m-th perm. matrix (Eq. (11))

x̃
(i,m)
k shuffled input x̃(i,m)

k =[P̃
(i,m)

X
(i)
1:K]k

η̃
(i,m)
k output of link func. η̃(i,m)

k = g(hθ(x̃
(i,m)
k))

ž(t) latent variable sampled from categorical dist.

x̌
(t)
k shuffled input x̌(t)

k =[P̃
(t,ž(t))

X
(t)
1:K]k

η̌
(t)
k output of link func. η̌(t)k = g(hθ(x̌

(t)
k))

Table 3: Notation summary for the paper

Note that in early works on SR such as (Hsu, Shi, and Sun
2017; Pananjady, Wainwright, and Courtade 2017; Abid and
Zou 2018) consider the setting where data size n=1. In prac-
tical data collection scenarios such as survey data collection,
data are often collected multiple times from different ques-
tionnaire respondents; even if the correspondence between
the input and output is obscured to protect privacy, we can
know which data collection event the data was gathered in
and the data are represented by shuffled data with n>1.

Generative Process
The generative process of shuffled data DSD is described
by the following three steps. For each i = 1, · · · , n, (Step-
1) a set of input features x(i)

1:K is determined subject to some
probability distribution p(x1:K). (Step-2) a latent (unknown)
K ×K permutation matrix P(i) used for shuffling the order
of inputs (row of X1:K) is generated by uniform distribution
u(P) 2. Then, in (Step-3) , a set of outputs y

(i)
1:K is deter-

mined subject to

p(y1:K |P, x1:K , θ) =
∏K

k=1
f
(
yk|ηk

)
,

ηk = g(hθ([PX1:K]k)),
(2)

2Permutation matrix P is the doubly stochastic matrix whose
elements are 0 or 1, i.e.,

∑K
k=1 [P]kℓ = 1 (∀ℓ),

∑K
ℓ=1 [P]kℓ =

1 (∀k), [P]kℓ ∈ {0, 1} (∀k, ℓ). Since the size of the set of all
K ×K permutation matrices is K!, u(P) = 1/K! for all P ∈ Π.

typical use dist. f link func. g(ŷ)
Linear Regression Normal ŷ
Logistic Regression Bernoulli 1/{1+ exp(−ŷ)}
Poisson Regression Poisson exp(ŷ)

Table 4: Typical use of distributions and (inverse of) link
functions based on the generalized linear model.

Figure 2: Graphical model representation of shuffled data.
Shaded nodes represent observed variables.

where [PX1:K]k denotes the k-th row vector of PX1:K , and
g is the link function that connects the output of the regres-
sion model and the (natural) parameter of the output distri-
bution f , similar to the generalized linear model (Nelder and
Wedderburn 1972; Fang and Li 2023) (See Table 4 for typ-
ical choise). The use of link function also can be found in
deep models (Ranganath et al. 2015).

Summarizing the above, the joint probability of the shuf-
fled data DSD and a set of permutation matrix P={P(i)}ni=1
given parameters θ is given by

p(DSD,P|θ) =
n∏

i=1

p(y
(i)
1:K |P(i), x

(i)
1:K , θ)p(x

(i)
1:K)u(P(i)).

Figure 2 shows the graphical model representation. Note
that we denote the set of natural parameters as η

(i)
1:K =

(η
(i)
1 , · · · , η(i)K) and η

(i)
k = g(hθ([P

(i)X
(i)
1:K]k)). Marginal-

izing out P , we get the following likelihood of the shuffled
data DSD:

p(DSD|θ) =
∑

P(1)∈Π
· · ·

∑
P(n)∈Π

p(DSD,P|θ), (3)

where Π is the set of all K ×K permutation matrices. The
size of set |Π| is K!, and later we show how to deal with the
huge size of set Π. Parameter θ is estimated by maximizing
the following log-likelihood function.

θ̂MLE = arg max
θ

log p(DSD|θ). (4)

Note that the order of applying regression model hθ (with
link function g) and permutation by P can be ex-
changeable; the identical likelihood function is de-
rived regardless of the order since g(hθ([PX1:K]k)) =

[P
(
g(hθ(x1)), · · · , g(hθ(xK))

)⊤
]k holds.

Lower Bound of Objective Function
For maximizing the objective function of Eq. (4), we use
the expectation maximization (EM) algorithm (Dempster,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13240

Laird, and Rubin 1977). EM indirectly maximizes the ob-
jective by using the following lower-bound function, L:

L(q, θ) = Eq(P)

[
log p(DSD,P|θ)− log q(P)

]
, (5)

where Eq(P) is the expectation w.r.t. q(P). By Jensen’s
inequality, L is shown to be a lower bound of the log-
likelihood:

log p(DSD|θ) = logEq(P)

[p(DSD,P|θ)
q(P)

]
≥ Eq(P)

[
log

p(DSD,P|θ)
q(P)

]
= L.

Lower bound L can be expanded to yield the following form:

L(q, θ) = log p(DSD|θ)−KL
(
q(P)||p(P|DSD, θ)

)
, (6)

where KL(Q||P) is the KL-divergence between Q and P .

Difficulties Posed by EM Algorithm in Handling
Shuffled Data
EM algorithm is the following two-step procedure that max-
imizes the log-likelihood log p(DSD|θ): (E-step) Maximize
L w.r.t. q(P) and (M-step) Maximize L w.r.t. θ.

For E-step, from Eq. (6), L is maximized when q is equiv-
alent to the posterior probability of P:

(Exact E-Step) : q̂Ex(P) = p(P|DSD, θ), (7)

where the above posterior is decomposed as p(P|DSD, θ) =∏n
i=1 p(P

(i)|DSD, θ) and

p(P(i)|DSD, θ)=

∏K
k=1 f

(
y
(i)
k |η(i)k

)∑
P∈Π

∏K
k=1 f

(
y
(i)
k |g(hθ([PX

(i)
1:K]k))

) .
(8)

However, the above exact E-Step is infeasible for general K
since q̂Ex is the probability distribution on a |Π|(= K!)-
dimensional probabilistic vector. To avoid this difficulty,
(Abid and Zou 2018) adopts the following Winner-Takes-
All (WTA) variant of E-step (for linear model and normal
distribution):

(WTA E-Step) : q̂WTA(P) = I(P = P̂), (9)

P̂ = arg max
P

p(P|DSD, θ).

This WTA variant has some computational advantage in
general but local convergence (monotonic decrease in ob-
jective function) is not assured (Neal and Hinton 1998).
Accordingly, we adopt the approach of the sparse EM al-
gorithm (Neal and Hinton 1998). Sparse-EM falls between
the exact-EM and WTA-EM, and well balances computation
cost against convergence performance.

Sparse EM Algorithm for Shuffled Regression

Let Π̃(i) = {P̃(i,1) · · · , P̃(i,m)
, · · · , P̃(i,M)} be a set of

M (≪ K!) candidates of the permutation matrix. Details
on how to construct Π̃(i) are given at the end of the section.
Sparse-EM (Neal and Hinton 1998) considers the following

E-step with the restriction that the probability of a permuta-
tion matrix being other than the matrices contained in Π̃(i)

is zero:

(Sparse E-Step) : q̂Sp(P
(i))=

{
γ(i,m) (if P(i)=P̃

(i,m)
)

0 (otherwise)

(10)

where γ(i,m), defined below, can be seen as the responsibil-
ity of the m-th permutation matrix for i-th data:

γ(i,m) =

∏K
k=1 f

(
y
(i)
k |η̃(i,m)

k

)∑M
m′=1

∏K
k=1 f

(
y
(i)
k |η̃(i,m

′)
k

) ,
η̃
(i,m)
k = g(hθ(x̃

(i,m)
k)), x̃

(i,m)
k = [P̃

(i,m)
X

(i)
1:K]k.

(11)

Thus this E-step avoids to need to compute the summation
over Π.

For M-step, from Eq. (5), parameter θ that maximizes L
is given by

(Exact M-Step) : θ̂ = arg max
θ

Eq(P)

[
log p(DSD,P|θ)

]
.

When the sparse E-step is utilized, q takes the form of sparse
distribution q̂Sp with many zeros (Eq. (10)). Thus the sparse
variant of M-step given below also can avoid the summation
over Π:

(Sparse M-Step) : θ̂=arg max
θ

Eq̂Sp(P)

[
log p(DSD,P|θ)

]
,

where the objective of sparse M-step can be expanded as

Eq̂Sp

[
log p(DSD,P|θ)

]
(12)

=
∑n

i=1

∑K

k=1

∑M

m=1
γ(i,m) log f

(
y
(i)
k |η̃(i,m)

k

)
+Const.

This objective function can be interpreted as the objective of
the weighted regression problem using paired data with in-
put x̃(i,m)

k , output y(i)k , and sample weight γ(i,m). Therefore,
if distribution f is Gaussian and linear models are adopted,
the sparse EM algorithm that iteratively apply the sparse E-
step and M-step can be seen as the iterative reweighted least
squares (IRLS) (Rubin 2004; Bishop 2006).

The use of numerical optimization techniques is allowed
for M-step since if the objective value (Eq. (12)) is im-
proved (even if the maximum point is not strictly obtained),
monotone increase of the likelihood function can be as-
sured (while Π̃(i) is fixed), similar to the generalized EM
algorithm (Dempster, Laird, and Rubin 1977; Neal and Hin-
ton 1998). At infrequent intervals, Π̃(i) should be updated
due to the change in the other parameters.

Sparse Stochastic EM for Shuffled Deep Regression
Here we develop the proposed sparse and stochastic vari-
ant of EM algorithm (SSEM). Combined with the stochastic
gradient algorithm such as SGD or Adam (Kingma and Ba
2014) and the sparse EM algorithm presented in previous
subsection, we can build an algorithm suitable for estimat-
ing deep learning models 3.

3SGD or Adam itself cannot be directly applied due to the ex-
istence of the (latent) permutation matrix.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13241

Algorithm 1: SSEM algorithm for Shuffled Deep Regression

Input: model hθ, output distribution f , shuffled data DSD,
hyperparameters (e.g., # of steps Tmax, interval C).

Output: model parameter θ
1: Randomly initialize {Π̃(i)}i and θ.
2: (Optional) Initialize {Π̃(i)}i by solving SLR.
3: for t = 1 to Tmax do
4: Randomly sample (x

(t)
1:K , y

(t)
1:K) ∼ DSD.

5: //E-Step
6: Compute γ(t,m) following Eq. (11).
7: Randomly sample ž(t) ∼ Cat(z(t)|{γ(t,m)}m).
8: //M-Step
9: Compute η̌

(t)
k following following Eq. (13)

10: Compute loss F (Eq. (14)) and update θ by Adam.
11: //Infrequent updates
12: Every C steps/epochs, update {Π̃(i)}i.
13: end for

The proposed SSEM updates parameters using a part of
stochastically selected (mini-batch) data and permutation
matrix. The pseudo code of the SSEM algorithm is written in
Alg. 1. At each (algorithmic) time step t, the algorithm ran-
domly samples (x(t)

1:K , y
(t)
1:K) from given shuffled data DSD.

As the E-step (line 5-7), the parameters of q̂Sp, γ(t,m), are
computed and randomly samples ž(t) following categorical
distribution (Cat) with parameter {γ(t,m)}m. Next, as M-
step (line 8-10), using the ž(t)-th permutation matrix, we
compute

η̌
(t)
k = g(hθ(x̌

(t)
k)), x̌

(t)
k = [P̃

(t,ž(t))
X

(t)
1:K]k. (13)

Then, compute loss F , see below, which is the stochastic
approximation of the M-step objective (Eq. (12)) ignoring
constant terms and inverting signs:

F(θ; {x(t)
1:K , y

(t)
1:K}) =

∑K

k=1
− log f(y

(t)
k |η̌(t)k) (14)

and update parameters by any of several optimizers such as
Adam (Kingma and Ba 2014). Note that If (mini-)batch data
{(x(t)

1:K , y
(t)
1:K)}St=1 are available, we can update the parame-

ters by minimizing the objective function with (mini-)batch
data 1

S

∑S
t=1 F(θ; {x(t)

1:K , y
(t)
1:K}).

Updating Candidates of Permutation Matrix
At the end of this section, we detail the construction of Π̃(i).
The key is the following Proposition, which states that best
permutation matrix can be found by a sort operation.

Proposition 1 The permutation matrix P̂
(i)

that maximizes
posterior probability (Eq. (8)) is the one that rearranges
the elements of {x(i)

k }Kk=1 such that the order of mag-
nitude of values {g(hθ(x

(i)
k))}Kk=1 matches the order of

{T (y(i)k)}Kk=1.

Dataset MPG Abalone Boston Conc.
data size nB 398 3341 506 1030
dimension d 7 10 13 8

Table 5: Dataset statistics

Proof Without loss of generality, we assume that y1:K
are sorted in ascending order of {T (yk)}Kk=1, i.e.,
T (yk) ≤ T (yℓ) if k < ℓ. Let us denote g(hθ(xk))
as gk and define g = (g1, · · · , gK) for simplic-
ity. The proof is done by contradiction. Let us assume
the posterior probability (or equivalently, logarithm of
its numerator

∑
k log f(yk|g′k)) is maximized at g′ =

(g′1, · · · , g′K) where the entries are not in ascending or-
der, i.e., there exists k, ℓ such that k < ℓ and g′k ≥
g′ℓ. But this explicitly implies log f(yk|g′k)+ log f(yℓ|g′ℓ)≤
log f(yk|g′ℓ)+ log f(yℓ|g′k) since

log f(yk|g′k)+ log f(yℓ|g′ℓ)−{log f(yk|g′ℓ)+ log f(yℓ|g′k)}
= g′k · T (yk) + g′ℓ · T (yℓ)− g′ℓ · T (yk)− g′k · T (yℓ)
= −(g′k − g′ℓ) · {T (yℓ)− T (yk)} ≤ 0.

Therefore, we get∑K

k′=1
log f(yk′ |g′k′)

= log f(yk|g′k) + log f(yℓ|g′ℓ) +
∑K

k′ ̸=k,ℓ
log f(yk′ |g′k′)

≤ log f(yk|g′ℓ) + log f(yℓ|g′k) +
∑K

k′ ̸=k,ℓ
log f(yk′ |g′k′).

This result contradicts the assumption that g′ is maximal. □

Note that this proposition is an extension of the result
in (Abid and Zou 2018) where a Gaussian distribution is
used as f to (any) exponential family distribution.

In constructing Π̃(i), it is promising to use the neighbor-

hood of P̂
(i)

obtained by the sort stating in Prop. 1. After

rearranging the order of the K elements by P̂
(i)

, and by fur-
ther re-ordering the ℓ-th and (ℓ+ 1)-th smallest adjacent el-
ements, we can obtain the neighborhood of the permutation

matrix P̂
(i)

. Repeating this for all ℓ = 1, · · · ,K − 1, we get

K− 1 neighbors; adding P̂
(i)

to it, we can construct K can-
didate permutation matrices that can be used as Π̃(i). In later
experiments, we use this way of construction when updating
Π̃(i) (line 12 in Alg.1). Since this construction depends on
the current parameter θ, this update should be done at some
(infrequent) intervals.

The above construction can also be used to get a “good”
initial setting to learn deep models (line 2 in Alg.1). For
example, after estimating the parameters by solving shuf-
fled regression using an easy-to-learn model such as a linear
model, the estimated linear model can be used to get an ini-
tial setting of Π̃(i) in the same way as above.

Experiment
This section confirms the effectiveness of the proposed SDR
against linear model-based methods for shuffled regression.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13242

Dataset (Oracle) Supervised Regression Shuffled Regression
Source K LR DR SLR SDR (ours)

MPG-1D

2 23.97± 2.51 17.57± 2.40 24.79± 2.76 17.34 ± 2.07
4 23.98± 2.48 17.67± 2.44 23.89± 2.64 17.96 ± 1.94
8 23.98± 2.48 17.92± 2.78 24.36± 2.37 17.82 ± 1.94
16 23.95± 2.47 17.64± 2.43 24.81± 2.22 17.99 ± 1.65

MPG

2 11.92± 1.10 7.69± 1.00 12.31± 1.30 9.53 ± 1.74
4 11.93± 1.09 7.74± 1.00 13.24± 1.59 10.44 ± 2.09
8 11.93± 1.09 7.65± 1.11 14.78± 3.31 11.51 ± 3.65
16 11.87± 0.91 8.12± 1.23 24.60± 8.51 21.40 ± 7.87

Abalone

2 4.99± 0.47 4.81± 0.73 4.98± 0.45 4.92 ± 0.95
4 4.99± 0.47 4.81± 0.73 5.03± 0.39 4.79 ± 0.65
8 4.99± 0.47 4.81± 0.65 5.26± 0.43 4.98 ± 0.51
16 4.99± 0.47 4.79± 0.66 5.84± 0.73 5.35 ± 0.52

Boston

2 23.86± 5.69 11.01± 3.38 33.68± 6.10 11.68 ± 4.05
4 23.88± 5.70 11.17± 3.69 24.60± 4.95 12.36 ± 4.88
8 23.80± 5.79 10.93± 3.43 26.65± 5.75 18.71 ± 5.91
16 24.14± 6.19 10.89± 3.90 50.86± 10.38 48.57 ± 10.46

Concrete

2 119.06± 7.00 82.61± 37.10 139.79± 4.13 107.20 ± 17.76
4 119.06± 7.00 82.40± 37.08 120.10± 5.58 111.24 ± 16.56
8 119.06± 7.00 82.24± 36.93 129.14± 4.69 126.46 ± 12.06
16 119.06± 6.96 94.69± 28.62 150.94 ± 20.14 156.73± 21.73

Table 6: Result on benchmark datasets. Average and standard deviation are shown. Bold face means the best (lowest) MSE
performance among methods for shuffled regression. Note that LR and DR use paired data and do not solve shuffled regression.

Setting

Data. As the regression problem instances we used four
publicly available data sets provided in the UCI ma-
chine learning repository4: auto-MPG data (MPG), abalone
data (Abalone), Boston housing data (Boston), and con-
crete compressive strength data (Concrete). Their sample
size, nB , and input dimension, d, are summarized in Table 5.
We excluded samples with missing values and converted the
categorical feature into a one-hot vector in MPG. Input fea-
tures are standardized for all data sets. We also made MPG-
1D whose input feature dimension is d=1 by extracting the
horse power feature. We prepared 5 data sets by randomly
dividing the data and using 60% for training, 20% for vali-
dation, and 20% for testing. We made the shuffled data used
for training/validation by randomly dividing the training/-
validation data into n sets whose number of elements is K 5

and shuffling the indices in each set. The test data are paired
data for evaluation. We ran 5 trials using 5 sets of training,
validation and test data.

Evaluation Metric. We use test mean squared error (test
MSE) as the performance metric. Test MSE is defined as

1
|Dtest|

∑
(x(m),y(m))∈Dtest

{y(m) − hθ(x
(m))}2, where Dtest

is the (paired) test data and | · | indicates the number of ele-
ments in the set. A lower test MSE indicates the true regres-
sion function is precisely estimated.

4https://archive.ics.uci.edu/ml/index.php
5Training data size n is about the 60% of the source data size

divided by K. Data remaining after dividing by K were excluded.

Baselines. As one baseline, we used linear models for
shuffled regression (SLR), which can be seen as an extension
of (Abid and Zou 2018) for n>1, trained by IRLS scheme as
explained in the proposed method section. As oracle base-
lines, we also examined (standard) linear-regression (LR)
and deep-regression (DR) using paired data with data size
of K×n. We used normal distribution as output distribution
f and the identity function as link function g in all methods.

Hyperparameters. Both DR and SDR used a one-hidden-
layer feedforward neural network with the ReLU activation
function. The number of units was set to 20 for all problems.
The parameters were optimized using Adam (Kingma and
Ba 2014) with learning rate of 0.001. The mini-batch size
of SDR and that of DR were 32/K and 32, respectively.
The maximum number of epochs was 2000, and we used
early-stopping with validation data (which were also shuf-
fled data) (Goodfellow, Bengio, and Courville 2016). The
above was implemented using PyTorch (Paszke et al. 2019).
Experiments were run on a computer with an Intel Xeon
CPU, and a GeForce GTX TITAN GPU.

Results
Overall Results. Table 6 shows the results of the exper-
iments. These results indicate that our SDR outperforms
SLR in almost all settings. In addition, the performance of
SDR exceeds LR and is comparable to DR which use paired
data under some setting such as MPG-1D (K=2∼16),
Abalone (K=2∼4), and Boston (K=2∼4). From Fig. 3a,
we can also see that our method captures the non-linear
structure behind the data, and this contributes to its improved

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13243

(a) Learned model in MPG-1D (b) MPG-1D (c) Abalone

Figure 3: Detailed comparison of SLR and SDR (ours): (a) Estimated regression lines for MPG-1D when K = 16, and
(b)(c) MSE performance varying the size of shuffled data (n) in MPG-1D/Abalone when K = 4 (fixed). Average and standard
deviation are shown. Lower values are better.

(a) convergence speed (b) hidden units (c) learning rate

Figure 4: Effect of hyperparameters on SDR for Abalone (K=8): (a) convergence behavior of random initialization (red) and
initialization using SLR (blue) for Π̃(i) with 5 different runs. Dashed vertical lines indicate the epochs when the candidate of
permutation matrices Π̃(i) is updated. (b)(c) MSE performance while varying the number of hidden units/learning rate.

performance. These results confirm the effectiveness of our
method using deep models.

Effect of Data Size n. SDR and SLR have comparable
performance for same dataset with small data size n, see
e.g., Boston (K = 16) and Concrete (K = 16) in Ta-
ble 6 6. So we investigated their performance while varying
n (and fixing K) as shown in Fig. 3bc. These results confirm
that, although SLR works well when data size n is small, the
performance of SDR improves as n increases, and eventu-
ally outperforms SLR. This result is convincing since deep
learning-based methods require a large amount of data to
perform well in general. Therefore, it is confirmed that the
proposed deep learning-based method (SDR) outperforms
the linear model-based method (SLR) in solving the shuf-
fled regression problem when sufficient number of data is
available, similar to the standard regression problem.

Effect of Hyperparameters. We also investigated the im-
pact of hyperparameters on SDR as shown in Fig. 4. Fig-
ure 4a shows the convergence property of SDR with random
initialization and with initialization using SLR for the can-

6n=18 for Boston (K=16) and n=38 for Concrete (K=16)

didate of permutation matrices Π̃(i). We can see that SDR
with the random initialization shows slow convergence, but
that with SLR initialization shows faster convergence for all
five runs. That implies that the initial values should be set
carefully, and appropriate choice can significantly acceler-
ate convergence speed. Figure 4b shows that, although the
MSE performance is degraded when the number of units is
smaller than 10, the performance is stable when the number
of units is larger than 10. Similarly, the stable performance
is confirmed when the learning rate is set to values between
10−3 and 10−2 from Fig. 4c. So we can say that SDR works
well without the need for sensitive tuning of these two hy-
perparameters. This supports the usefulness of our method.

Conclusion
In this study, we proposed SDR for learning deep regression
models from shuffled data. We derived the SSEM algorithm
for parameter estimation and confirmed the effectiveness of
the proposals by experiments on benchmark datasets. The
remaining work of this study is to theoretically analyze how
data size n, set size K, and input dimension d affect the
performance.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13244

References
Abid, A.; and Zou, J. 2018. A stochastic expectation-
maximization approach to shuffled linear regression. In An-
nual Allerton Conference on Communication, Control, and
Computing, 470–477.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. Springer.
Cappé, O.; and Moulines, E. 2009. On-line expectation–
maximization algorithm for latent data models. Journal of
the Royal Statistical Society Series B: Statistical Methodol-
ogy, 71(3): 593–613.
Carpentier, A.; and Schlüter, T. 2016. Learning relationships
between data obtained independently. In Artificial Intelli-
gence and Statistics, 658–666.
David, P.; Dementhon, D.; Duraiswami, R.; and Samet, H.
2004. SoftPOSIT: Simultaneous pose and correspondence
determination. International Journal of Computer Vision,
59: 259–284.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1): 1–22.
Fang, G.; and Li, P. 2023. Regression with label permutation
in generalized linear model. In International Conference on
Machine Learning, 9716–9760.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
learning. MIT press Cambridge.
Hsu, D. J.; Shi, K.; and Sun, X. 2017. Linear regression
without correspondence. In Advances in Neural Information
Processing Systems.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv:1412.6980.
Kohjima, M.; Nambu, Y.; Kurauchi, Y.; and Yamamoto, R.
2022. General Algorithm for Learning from Grouped Un-
coupled Data and Pairwise Comparison Data. In Interna-
tional Conference on Neural Information Processing, 153–
164.
Neal, R. M.; and Hinton, G. E. 1998. A view of the EM al-
gorithm that justifies incremental, sparse, and other variants.
Learning in graphical models, 355–368.
Nelder, J. A.; and Wedderburn, R. W. 1972. Generalized
linear models. Journal of the Royal Statistical Society Series
A: Statistics in Society, 135(3): 370–384.
Pananjady, A.; Wainwright, M. J.; and Courtade, T. A. 2017.
Linear regression with shuffled data: Statistical and compu-
tational limits of permutation recovery. IEEE Transactions
on Information Theory, 64(5): 3286–3300.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems, 8024–8035.

Ranganath, R.; Tang, L.; Charlin, L.; and Blei, D. 2015.
Deep exponential families. In Artificial Intelligence and
Statistics, 762–771.
Rubin, D. B. 2004. Iteratively reweighted least squares. En-
cyclopedia of statistical sciences, 6.
Shi, X.; Li, X.; and Cai, T. 2021. Spherical regression under
mismatch corruption with application to automated knowl-
edge translation. Journal of the American Statistical Asso-
ciation, 116(536): 1953–1964.
Slawski, M.; Rahmani, M.; and Li, P. 2020. A Sparse
Representation-Based Approach to Linear Regression with
Partially Shuffled Labels. In Uncertainty in Artificial Intel-
ligence, 38–48.
Unnikrishnan, J.; Haghighatshoar, S.; and Vetterli, M. 2018.
Unlabeled sensing with random linear measurements. IEEE
Transactions on Information Theory, 64(5): 3237–3253.
Xu, L.; Niu, G.; Honda, J.; and Sugiyama, M. 2019. Uncou-
pled regression from pairwise comparison data. In Advances
in Neural Information Processing Systems, 3992–4002.
Yamane, I.; Chevaleyre, Y.; Ishida, T.; and Yger, F. 2023.
Mediated Uncoupled Learning and Validation with Bregman
Divergences: Loss Family with Maximal Generality. In Ar-
tificial Intelligence and Statistics, 4768–4801.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13245

