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Abstract

Prototypical self-explainable classifiers have emerged to meet
the growing demand for interpretable AI systems. These clas-
sifiers are designed to incorporate high transparency in their
decisions by basing inference on similarity with learned pro-
totypical objects. While these models are designed with di-
versity in mind, the learned prototypes often do not suffi-
ciently represent all aspects of the input distribution, particu-
larly those in low density regions. Such lack of sufficient data
representation, known as representation bias, has been asso-
ciated with various detrimental properties related to machine
learning diversity and fairness. In light of this, we introduce
pantypes, a new family of prototypical objects designed to
capture the full diversity of the input distribution through a
sparse set of objects. We show that pantypes can empower
prototypical self-explainable models by occupying divergent
regions of the latent space and thus fostering high diversity,
interpretability and fairness.

Introduction
Machine learning (ML) systems are increasingly affecting
individuals across various societal domains. This has put
into question the black-box nature of these systems, and fos-
tered the field of explainable AI (XAI), wherein model infer-
ence is corroborated with justifications and explanations in
an effort to increase transparency and trustworthiness. In this
line of research two approaches have arisen; that of ad-hoc
black-box model explanations (Selvaraju et al. 2017; Yosin-
ski et al. 2015), and that of self-explainable models (SEMs)
(Chen et al. 2019a; Alvarez Melis and Jaakkola 2018). A
popular approach for SEMs substitutes traditional black-box
networks with glass-box counterparts, where class represen-
tative prototypes are generated and used in the decision pro-
cess (Chen et al. 2019a) leading to increased trustworthiness
and interpretability.

The various initiatives emerging in the literature share the
same overarching goals, but there is still a lack of consensus
on the exact properties a SEMs should display (Gautam et al.
2023). We adopt three prerequisites of a SEM outlined in
(Gautam et al. 2022), namely transparency, trustworthiness
and diversity.
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Transparency may be defined by two properties; (i) the
learned concepts are used in the decision making process
without the use of a black-box model and (ii) the learned
concepts can be visualized in the input space.

Trustworthiness may be defined by three properties; (i)
the predictive performance of the model matches its closest
black-box counterpart, (ii) explanations are robust and (iii)
the explanations directly represent the contribution of the in-
put features to the model predictions.

Diversity may be defined by one property; (i) the concepts
learned by the SEM are represented by non-overlapping in-
formation in the latent space.

While significant work has been put forth in the litera-
ture to cement the transparency and trustworthiness axis of
SEMs, only limited effort using qualitative measures exists
for the diversity axis. Similarly, the relation between the di-
versity axis and appropriate inference remains largely unex-
plored. Diversity is typically ensured by introducing model
regularization towards learning non-overlapping concepts
(Vilone and Longo 2020). However, this condition may not
be strong enough, as non-overlapping concepts can still be
learned in a small region of the input space, causing a lack of
representativity for the full data distribution, known as rep-
resentation bias (Shahbazi et al. 2022). Representation bias
can cause smaller sub-populations to remain hidden in low-
density regions and ultimately cause biased inference (Jin
et al. 2020). To provide sufficient coverage and to mitigate
the impact of data bias during model inference, it is critical
to capture the full diversity of the data, and to have this diver-
sity be represented in the prototypes learned by the SEM. To
this end, we introduce pantypes, a new family of prototypi-
cal objects designed to empower SEMs by sufficiently cov-
ering the dataspace. Pantype generation is promoted using a
novel volumetric loss inspired by a probability distribution
known as a Determinantal Point Process (DPP) (Kulesza,
Taskar et al. 2012). This loss induces higher prototype di-
versity, enables more fine-grained diversity control, and at
the same time allows prototype pruning wherein the number
of prototypes is determined dynamically dependent on the
diversity expressed within each class. Prototype pruning en-
ables the capacity to learn additional prototypes for complex
classes and to grasp simple classes through a sparser set of
objects, improving the interpretability of the class represen-
tatives.
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Our contributions can be summarized as follows:
• Introduction of a volumetric loss, which promotes the

generation of pantypes, a highly diverse set of proto-
types.

• Quantitative measures for prototype representativity and
diversity in SEMs.

• Dynamic class-specific prototype selection.

PanVAE
The modeling task at hand involves a classification setting
on visual image data, where the SEM learns to classify
K > 0 classes from a training set X = {(xi,yi)}Ni=1 ,where
xi ∈ RP is the ith image and yi ∈ {0, 1}K is a one-hot la-
bel vector. We implement the pantypes1 on the foundation
of a well-tested variational autoencoder based SEM, known
as ProtoVAE (Gautam et al. 2022). This model uses an en-
coder function f : Rp → Rd × Rd, to transform the input
images into a posterior distribution (µi,σi). A latent repre-
sentation zi of the ith image is then sampled from the dis-
tribution N (µi,σi) and passed as input to a decoder func-
tion g : Rd → Rp to generate the reconstructed image
g(zi) = x̂i. To enable transparent predictions, the model
does not directly use the feature vector zi during inference,
but rather compares this vector to M prototypes per class
Φ = {ϕkj}k=1..K

j=1,,M via a similarity function : Rd → RM .
The resulting similarity vector si ∈ RK×M is then used in a
glass-box linear classifier h : RM → [0, 1]K to generate the
class prediction h(si) = ŷi. The similarity function (Chen
et al. 2019b) is given by:

si(k, j) = sim(zi,ϕkj) = log

(
||zi − ϕkj ||2 + 1

||zi − ϕkj ||2 + ϵ

)
,

(1)
where 0 < ϵ < 1. This construction allows the similarity
vector to not only capture the distances to the prototypes,
but to also reflect the influence of each prototype on the final
prediction.

Loss Terms
To further enforce the properties of a SEM, we adopt the
same prediction and VAE loss term structure as ProtoVAE:

LProtoVAE = Lpred + LVAE + Lorth, (2)

where

Lpred =
1

N

N∑
i=1

CE(h(si);yi) (3)

is a cross-entropy (CE) prediction loss term ensuring inter-
class diversity in the prototypes and

LVAE =
1

N

N∑
i=1

||xi − x̂i||2 +
K∑

k=1

M∑
j=1

yi(k)
si(k, j)∑M
l=1 si(k, j)

DKL(N (µi,σi)||N (ϕkj , Id))

(4)

1Our code and training details are publicly available on GitHub
at https://github.com/RuneDK93/pantypes

is the loss for a mixture of VAEs using the same network
each with a Gaussian prior distribution centered on one of
the prototypes (Gautam et al. 2022). Here Id is a d×d iden-
tity matrix. Finally, an orthonormality loss term is used:

Lorth =
K∑

k=1

||Φ̄T
k Φ̄k − IM ||2F , (5)

where Φ̄k is the mean subtracted prototype vector for all
prototypes of class k and IM is an M ×M identity matrix.

The orthonormality loss is included to foster intra-class
prototype diversity and to uphold the diversity property of
a SEM by inducing the learning of non-overlapping con-
cepts in the latent space and thus avoiding prototype col-
lapse (Wang et al. 2021; Jing et al. 2021). While this loss
causes the prototypes to be orthogonal, it does not explic-
itly prevent the prototypes from occupying and representing
a small region (volume) of the full data-space. Moreover,
prototype orthonormality is typically achieved early during
training, and further scaling of the orthonormality loss does
not significantly alter the diversity of the prototypes (see re-
sults section).

Poor or skewed data representation, known as representa-
tion bias, has been associated with various detrimental prop-
erties related to ML fairness, where underrepresented minor-
ity groups are negatively affected during inference (Phillips
et al. 2011). To mitigate these issues it is essential to achieve
sufficient coverage of the full diversity represented in the
data (Suresh and Guttag 2019). We draw on this idea to em-
power the ProtoVAE model by exchanging its class-wise or-
thonormality diversity loss with a volumetric diversity loss,
which causes the model to learn prototypical objects with
various improved qualities, including an improved cover-
age of the embedding space. We call these learned objects
pantypes. The loss term structure of our model is:

LPanVAE = Lpred + LVAE + Lvol, (6)

where Lvol is the volumetric prototype loss, which not only
prevents prevents prototype collapse, but causes higher pro-
totype diversity, enables more fine-grained diversity control,
and at the same time allows prototype pruning wherein the
number of prototypes is determined dynamically dependent
on the diversity expressed within each class.

Pantypes
Pantypes are prototypical objects learned in an end-to-end
manner during model training. They are inspired by a prob-
ability distribution known as a Determinantal Point Process
(DPP) (Kulesza, Taskar et al. 2012), which can be used
to sample from a population while ensuring high diversity.
DPPs have recently garnered attention in the ML commu-
nity, and have been used to draw diverse sets in a range of
ML applications including data from videos, images, docu-
ments, sensors and recommendation systems (Gong et al.
2014; Kulesza, Taskar et al. 2012; Lin and Bilmes 2012;
Zhou et al. 2010; Krause, Singh, and Guestrin 2008). DPPs
describe a distribution over subsets, such that the sampling
probability of a subset is proportional to the determinant
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of an associated sub-matrix (a minor) of a positive semi-
definite kernel matrix. The kernel matrix expresses similar-
ity between feature vectors of observations through a kernel
function Gij = g(vi,vj). This global measure of similar-
ity is then used to sample such that similar items are un-
likely to co-occur. The kernel can be constructed in vari-
ous ways including the radial basis function (RBF) kernel
Gij = e−γ||vi−vj ||2 or the linear kernel, leading to a simi-
larity function of inner products known as the Gram matrix
Gij = ⟨vi,vj⟩. When using the Gram matrix, a DPP is
equivalent to sampling with probability proportional to the
volume of the paralellotope formed by the feature vectors of
the sampled items. We utilize the linear kernel to construct
a volumetric loss on the prototypes in the following way:

Lvol =
1

K

K∑
k=1

1

|Gk|
1
2

, (7)

where Gk ∈ RM×M is the Gram matrix given by Gk =
ΦT

kΦk with Φkj as column vectors in Φk and |Gk| is
the Gramian (Gram determinant). |Gk|

1
2 measures the M -

dimensional volume of the parallelotope formed by the M
columns of Φk embedded in d-dimensional space. In other
words, it expresses the diversity of the M prototypes of class
k through the volume spanned by their feature vectors. This
loss not only prevents prototype collapse by causing the
feature vectors to diverge, but also directly encourages the
pantypes to occupy different sectors of the data domain to
express a large volume.

Prototype elimination Increasing the scaling on the vol-
ume loss punishes pantypes that express a low volume and
thus directly alters the diversity of the learned objects. With
sufficient scaling, the volumetric loss forces pantypes out-
of-distribution (OOD) if they are not necessary to represent
the observed diversity of a class. This allows natural prun-
ing, wherein the number of pantypes can be dynamically
tuned by elimination of OOD pantypes. This is similar to
the discipline of hyperspectral endmember unmixing, where
a number of endmembers (prototypes) are disentangled from
a hyperspectral image and linear combinations of the end-
members are used to reconstruct the input images. Follow-
ing training, the learned endmembers can be associated with
purity scores (Berman et al. 2004), which express the qual-
ity of their explanations. These scores describe the maximal
responsibility proportion of endmembers for reconstructing
the original images. In other words, a high purity score indi-
cates that an endmember shares a high similarity with in-
dividual input images, while a low purity score indicates
that an endmember is capturing noise and should be pruned.
Such purity scores can be constructed from the similarity
scores used in the linear classifier in our SEM. Thus, as pro-
posed by (Berman et al. 2004), we can initiate the model
with a sufficiently large number of pantypes, and use the
similarity scores to prune individual OOD pantypes. We pro-
pose a heuristic for pruning, where a pantype can be pruned
if it does not have the maximal similarity score for any of
the training images (i.e. it does not individually represents
any of the training images more than the other pantypes).

DATASET PROTOPNET PROTOVAE PANVAE

MNIST 98.8 ± 0.1 99.3 ± 0.1 99.4 ± 0.1
FMNIST 89.9 ± 0.5 91.6 ± 0.1 92.2 ± 0.1
QDRAW 58.7 ± 0.0 85.6 ± 0.1 85.5 ± 0.1
CELEBA 98.2 ± 0.1 98.6 ± 0.0 98.6 ± 0.0

Table 1: Predictive performance (accuracy) of PanVAE Pro-
toVAE and ProtoPNet on MNIST, FMNIST, QuickDraw and
CelebA. The values are the mean and standard deviation of
three runs.

Results
We perform experiments across various real-world datasets
to monitor the transparency, diversity and trustworthiness
of PanVAE. These datasets are FashionMNIST (FMNIST)
(Xiao, Rasul, and Vollgraf 2017), MNIST (LeCun et al.
1998), QuickDraw (QDraw) (Ha and Eck 2017) and CelebA
(Liu et al. 2015). We demonstrate the trustworthiness of Pan-
VAE by evaluating the predictive performance of the overall
model and asses the diversity and transparency using quali-
tative assessments from visualizations of the input space, as
well as quantitative measures of prototype quality and cover-
age. We compare PanVAE to the performance of ProtoVAE
and ProtoPNet.

Predictive Performance
The results for the predictive performance are shown in
Tab. 1, which demonstrates that PanVAE, like ProtoVAE,
achieves higher predictive performance than ProtoPNET on
the four datasets. There is no significant predictive perfor-
mance gap between PanVAE and ProtoVAE on the datasets.
This underlines the trustworthiness of PanVAE.

Prototype Representation Quality
Firstly, we asses prototype representation quality using vi-
sual inspection of the learned prototypes and the associated
latent space. This can be seen for the MNIST dataset on
Fig. 1, where the prototypes for ProtoVAE and PanVAE are
shown. The diversity of PanVAE is higher than ProtoVAE.
The prototypes from ProtoVAE are mostly orthogonal in la-
tent space, but only occupy a small region of the space. Con-
trarily, the volume loss in PanVAE has pushed the pantypes
away from each other allowing them to occupy and repre-
sent diverse regions of the dataspace. This is reflected in
the decoded prototypes, which show high diversity by repre-
senting various archetypical ways of drawing digits. For in-
stance, the pantypes capture variations between left-handed
and right-handed digits of ”1” as well as the archetypical ”1”
with a horizontal base. Moreover, PanVAE has found that the
digits of ”9” express less diversity and has thus pushed one
of the pantypes OOD (indicated by a red cross in the figure).
This form of prototype pruning by PanVAE allows the model
to asses and represent the individual diversity expressed by
each class.

Fig. 2 demonstrates the diversity control enabled by Pan-
VAE by illustrating learned prototypes on the FMNIST
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(a) ProtoVAE. (b) PanVAE.

Figure 1: ProtoVAE (a) and PanVAE (b) visualizations of the latent space and decoded prototypes learned on MNIST after
30 epochs of training. Top: UMAP representations of the latent space with learned prototypes overlaid as squares. Bottom:
Decoded prototypes of class ’1’ and ’9’. One of the prototypes from PanVAE does not have the maximal similarity for any
training image, indicated by a red cross. PanVAE has captured variations in the digit ’1’ pertaining to right-handedness (first
’1’ from the left), left-handedness (second ’1’ from the left) and a traditional writing style (third ’1’ from the left).

(a) ProtoVAE Lorth 1. (b) PanVAE Lvol 1.

(c) ProtoVAE Lorth 100. (d) PanVAE Lvol 100.

Figure 2: Diversity control enabled by ProtoVAE and PanVAE. The figure shows the change in decoded prototype appearance
as the respective diversity inducing losses are increased. The prototypes are shown from top to bottom for the FMNIST data of
classes ”sneaker”, ”bag” and ”ankle boot” after 10 epochs of training. Figs. 2a and 2c show the difference between ProtoVAE
prototypes with scale factor of 1 and 100 on the diversity loss Lorth. Figs. 2b and 2d show the difference between PanVAE
pantypes with scale factor of 1 and 100 on the diversity loss Lvol.

datasets with different diversity loss scalings. The objective
of the orthonormalization loss in ProtoVAE is to enforce
intra-class diversity, and hence that the prototypes capture
different concepts. While the loss ensures this, it only does
so after sufficient training time. Fig. 2 shows that scaling the
orthonormalization loss in ProtoVAE does not significantly
alter the diversity of the representation. On the other hand,
the volumetric loss in PanVAE allows direct control over the
diversity of the representation.

Previous work in the literature on prototype based self-
explainable classifiers often only qualitative asses the proto-
type diversity axis (Gautam et al. 2022) (i.e. visual inspec-
tion of the diversity prerequisite of non-overlapping proto-
types). We propose that self-explainable classifiers should
not only be assessed with quantitative measures on the trust-
worthiness axis, but should also be evaluated by quantitative
measures on the diversity axis. This includes thorough eval-
uations of how well the prototypes represent the dataspace.
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(c) QuickDraw.

Figure 3: Evolution of prototype DB scores for PanVAE and ProtoVAE on MNIST, FMNIST and QuickDraw. Data points
indicate mean values and associated standard deviations over three runs.

In order to do this we make use of measures of prototype
quality and representativity by firstly measuring the proto-
type quality using the Davies-Bouldin (DB) index (Davies
and Bouldin 1979) and secondly evaluating the diversity of
the class representatives by assessing their data coverage.

Davies-Bouldin Index The DB index is a measure of clus-
ter quality defined by the average similarity between cluster
Ci for i = 1, ..., k and its most similar cluster Cj . The sim-
ilarity measure Rij quantifies a balance between inter- and
intra-cluster distances. We adopt this measure and consider
the prototypes in a SEM as cluster representatives and assign
observations to their closest prototype in latent space accord-
ing to maximal similarity scores. The intra-cluster size si is
then measured as the average distance between prototype i
and each data point belonging to the prototype, while the
the inter-cluster distance dij is measured by the distance be-
tween prototypes i and j. From this the cluster similarity
measure Rij can be constructed such that it is non-negative
and symmetric by:

Rij =
si + sj
dij

. (8)

With these definitions in place the DB index may be defined
by:

DB =
1

k

k∑
i=1

max
i=j

Rij , (9)

where a lower DB scores equates to a better representation of
the underlying data. The DB scores for the different models
can be seen in Tab. 2. PanVAE achieves the best DB scores
in all cases, demonstrating the ability of the pantypes to rep-
resent the underlying dataspaces.

In addition to achieving higher final DB scores, PanVAE
also does so using less training time. This is illustrated in
Fig. 3, where the DB score evolution is shown for Proto-
VAE and PanVAE over 100 epochs of training. PanVAE con-
verges on a lower DB score much quicker than ProtoVAE.

Data Coverage The DB index provides a measure of pro-
totype quality in terms of prototype representation quality,
but does not sufficiently asses how well the prototypes cover

DATASET PROTOPNET PROTOVAE PANVAE

MNIST 2.2 ± 0.2 1.2 ± 0.0 1.1 ± 0.0
FMNIST 3.4 ± 1.2 1.4 ± 0.0 1.1 ± 0.0
QDRAW 2.5 ± 0.6 2.6 ± 0.1 1.8 ± 0.1
CELEBA 27.1 ± 27.2 1.6 ± 0.2 1.4 ± 0.0

Table 2: Davies-Bouldin scores of prototypes from the dif-
ferent models on the datasets used for our experiments. The
values are the mean and standard deviation over three runs.

the diversity in the dataspace. Sufficient coverage of various
aspects in the dataspace has been found critical in obtaining
unbiased ML algorithms (Jin et al. 2020).

In order to asses prototype data coverage, we compare the
volume spanned by observations represented by the proto-
types to the volume of the full data distribution. Ideally, the
prototypes are diverse enough, that they sufficiently cover
a large volume of data they seek to represent. The cover-
age may be assessed through the volume of the convex hull
of the data. We evaluate our pantypes on this premise by
sampling the 100 nearest observations to each pantype. The
proximity is measured in the full latent space in terms of
the similarity score (Eq. 1). We then compute the volume
spanned by the represented observations from their convex
hull, and compare this to the volume of the original data. We
illustrate the results of this procedure in Fig. 4 using a 2D
UMAP projection of the 256 dimensional latent space for
the ”Bag” class in FMNIST. The increased diversity of the
pantypes allow them to occupy and represent a larger region
of the dataspace.

Demographic Diversity Sufficient representation of de-
mographic groups has been found critical in ensuring ML
fairness (Jin et al. 2020). Image data used to train facial
recognition algorithms have historically been biased towards
White individuals, which are overrepresented in the training
data, resulting in biased inference (Buolamwini and Gebru
2018). The largest disparity is found between white skinned
and dark skinned individuals.

Demographic diversity may be quantified using a mea-
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(a) Bag prototypes from ProtoVAE. (b) Bag pantypes from PanVAE.

Figure 4: Prototype coverage in UMAP space from 20 epochs of training on FMNIST with 5 prototypes for the ”bag” class for
ProtoVAE (a) and PanVAE (b). Top: UMAP representations of the latent space with learned prototypes overlaid as red squares.
The prototype convex hull in UMAP space is shown as a red outline around the prototypes and the full class dataspace convex
hull is shown as a blue outline around the data. A sample of the 100 closest observations to each prototype is shown as black
datapoints. The convex hull of the sampled observations is shown as a black outline. The PanVAE sample convex hull covers
77% of the volume of the full class convex hull, whereas the ProtoVAE sample convex hull covers 33%. Bottom: Decoded
prototypes.

(a) ProtoVAE.

(b) PanVAE.

Figure 5: Face prototypes learned on the UTK Face dataset. The learned prototypes are shown for ProtoVAE in (a) and for
PanVAE in (b). PanVAE has captured variations in race as well as other unseen features such as facial hair in males. The
ProtoVAE males all have somewhat neutral expressions with closed mouths while most of the females have slight smiles. The
PanVAE males and females all exhibit large variations in expression from full smiles with visible teeth to neutral expressions
without visible teeth.

sure of combinatorial diversity, also known as diversity in-
dex (Simpson 1949). The combinatorial diversity is defined
as the information entropy of the distribution (Celis et al.
2016):

H = −
k∑

i=1

pi log pi, (10)

where the combinatorial diversity measure H is the entropy,
pi is the probability of event i and

∑
is the sum over the pos-

sible outcomes k. This measure quantifies the information
entropy of the demographic distribution over k demographic
groups. A high entropy equates to a more diverse (fair) rep-
resentation, which is not particularly biased towards any de-
mographic group.
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METRIC PROTOVAE PANVAE

AC ALL 95.08 ± 0.11 95.42 ± 0.37
AC WHITE MALE 96.35 ± 0.31 95.21 ± 0.33
AC BLACK FEMALE 91.67 ± 0.53 94.90 ± 0.39
AC GAP 4.69 ± 0.24 0.32 ± 0.15
DIVERSITY 1.26 ± 0.06 1.43 ± 0.07

Table 3: UTK results. The values are the mean and stan-
dard deviation of three runs. The overall accuracy is reported
along with the individual accuracy and accuracy gap be-
tween White males and Black females. A positive gap value
indicates that the mean accuracy is higher on White males
compared to Black females. Diversity is the information en-
tropy (demographic diversity) of the distribution of races
represented by the prototypes. The represented races are de-
termined by the nearest test image to each prototype.

We evaluate how the volumetric loss may aid in mitigating
demographic data bias and enhance group level diversity. To
do this we train PanVAE on the UTK Face dataset (Zhang,
Song, and Qi 2017), which contain images of about 20,000
individuals with associated sex and race labels. The decoded
facial prototypes from training on the UTK Face dataset can
be seen in Fig. 5. To evaluate the demographic diversity, we
asses the race of the nearest test image to each prototype and
use this to compute the combinatorial diversity of the race
distribution. The overall accuracy and diversity results are
reported in Tab. 3. We also report the accuracy gap between
White males and Black females. This accuracy gap has been
identified as a ubiquitous problem in facial recognition algo-
rithms. White males account for 23 percent of the individu-
als in the UTK Face data, while Black females account for
9 percent. PanVAE achieves a lower accuracy gap between
these demographics due to a better accuracy on Black fe-
males. However, this comes at the expense of a lower accu-
racy on the majority sub-population of White males as com-
pared to ProtoVAE.

Discussion
The volumetric loss in PanVAE promotes the generation of
diverse prototypes, which capture the underlying dataspace
and represent distinct archetypical patterns in the data. This
leads to increased representation quality and data coverage
and can mitigate data bias. However, pantypes are most use-
ful when the diversity expressed by the input data aligns
with the diversity a study aims to enforce. This is closely
related to the concepts of geometric and combinatorial diver-
sity (Celis et al. 2016), where geometric diversity expresses
the volume spanned by a number of high-dimensional fea-
ture vectors and combinatorial diversity is related to infor-
mation entropy of discrete variables. This means that ge-
ometric diversity is useful for ensuring what humans per-
ceive as high visual diversity, while combinatorial diversity
is useful for ensuring high demographic diversity (or fair-
ness) of human understandable sensitive variables that take
on a small number of discrete values (such as race). The

volumetric loss in PanVAE exclusively ensures a large ge-
ometric diversity of the learned pantypes and as such only
enforces visually diversity. This may not necessarily align
with the diversity in unseen protected attributes such as race
in facial image data. This misalignment can occur if fea-
tures like background color and pose in the facial images
exhibit larger visual variation than features related to demo-
graphic diversity such as skin tone. To enforce high demo-
graphic diversity, the images would either have to be pose
aligned and background removed (or at at least background
noise reduced) or the sensitive features would have to be
incorporated directly into the model, if possible. We have
trained PanVAE on the cropped and aligned version of the
UTK Face dataset to demonstrate that geometric and com-
binatorial diversity can be obtained simultaneously in noise
reduced data with the volumetric loss. More balanced demo-
graphic representation can lead to better predictive perfor-
mance for minority sub-populations in the data and conse-
quently less disparate predictive performance between sub-
populations. However, this usually comes at the expense of
a reduction in performance for the majority group. Thus, the
choice of representation should be carefully considered in
coherence with the aim and target population of the trained
model.

Conclusion
We have introduced pantypes, a new family of prototypi-
cal objects used in a SEM to capture the full diversity of
the dataspace. Pantypes emerge by virtue of a volumet-
ric loss and are easily integrated into existing prototypical
self-explainable classifier frameworks. The volumetric loss
causes the pantypes to diverge early in the training process
and to capture various archetypical patterns through a sparse
set of objects leading to increased interpretability and repre-
sentation quality without sacrificing accuracy.
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