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Abstract

In deep learning for drug discovery, molecular represen-
tations are often based on sequences, known as SMILES,
which allow for straightforward implementation of natural
language processing methodologies, one being the sequence-
to-sequence autoencoder. However, we observe that training
an autoencoder solely on SMILES is insufficient to learn
molecular representations that are semantically meaningful,
where semantics are specified by the structural (graph-to-
graph) similarities between molecules. We demonstrate by
example that SMILES-based autoencoders may map struc-
turally similar molecules to distant codes, resulting in an
incoherent latent space that does not necessarily respect
the semantic similarities between molecules. To address
this shortcoming we propose Semantically-Aware Latent
Space Autoencoder (SALSA) for molecular representations:
a SMILES-based transformer autoencoder modified with a
contrastive task aimed at learning graph-to-graph similarities
between molecules. To accomplish this, we develop a novel
dataset comprised of sets of structurally similar molecules
and opt for a supervised contrastive loss that is able to in-
corporate full sets of positive samples. We evaluate seman-
tic awareness of SALSA representations by comparing to
its ablated counterparts, and show empirically that SALSA
learns representations that maintain 1) structural awareness,
2) physicochemical awareness, 3) biological awareness, and
4) semantic continuity.

Introduction
In drug discovery, learning the underlying semantics that
govern molecular data presents an interesting challenge for
deep learning. Effective learning of semantics is necessary
to be successful in key tasks such as property prediction and
de novo generation, and progress has been made in attempt-
ing to solve these tasks (Bilodeau et al. 2022). However, due
to the ambiguous nature of molecular representations, mod-
els often fail to adequately capture the underlying semantics
resulting in a disorganized latent space.

In the case of molecular data, semantics is often task-
dependent but may amount to various emergent properties
(e.g. structural, physicochemical, and biological properties)
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Figure 1: Given molecule (A) we consider three molecules
whose graphs are structurally similar, being a single graph
edit from (A). The naive autoencoder maps these sim-
ilar molecules to latent codes of various proximity: (1)
is mapped close to (A), while (3) is mapped far from
(A). In contrast, our proposed autoencoder, SALSA, learns
a semantically-aware space such that structurally similar
molecules are collectively mapped to nearby codes.

that are intrinsically linked to molecular structure, that is, the
arrangement of constituent atoms and bonds (Honda et al.
2016). Molecular structure can be captured in the form of
a graph, and thus the semantics that govern chemical mani-
folds may therefore be specified by the graph-to-graph sim-
ilarities (i.e. structural similarities) between molecules. In
this way, graph edit distance (GED) defines a semantically
meaningful unit of change between molecular entities.

In molecular representation learning, we can conveniently
express molecular structures as linear sequences, known
as simplified molecular-input line-entry system (SMILES)
strings (Weininger 1988) in order to take advantage of re-
cent progress in sequence-to-sequence modeling. Borrow-
ing from advancements made in natural language process-
ing (NLP), many autoencoder-based methods operating on
SMILES sequences have been proposed as they provide
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a promising framework to solve problems in drug dis-
covery (Alperstein, Cherkasov, and Rolfe 2019; Gómez-
Bombarelli et al. 2018; Bilodeau et al. 2022).

However, these SMILES-based autoencoders are plagued
by some of the same challenges met in the field of NLP,
namely, difficulties in learning latent spaces that capture un-
derlying sentence semantics (Xu et al. 2021; Shen et al.
2020). This arises from the fact that for discrete objects such
as sentences, autoencoders have the capacity to map sim-
ilar data to distance latent representations. We observe an
analogous problem in that SMILES-based autoencoders are
not able to adequately learn the structure-based semantics
that underlie chemical datasets, and as a result, these models
may map semantically similar molecules to distant codes in
the latent space. This phenomenon is more precisely defined
as an instance in which structurally similar molecules (low
GED) are mapped to distant latent representations (high Eu-
clidean distance). We show an example of this in Figure 1.
Collectively, many of these semantically naive events induce
a disorganized latent space which limits success of these
models in downstream tasks.

To remedy this shortcoming of SMILES-based autoen-
coders, we propose enforcing a sense of semantic aware-
ness on to an autoencoder such that structurally similar
molecules are mapped near one another in the latent space.
Our proposed model, Semantically-Aware Latent Space
Autoencoder (SALSA), is a modified SMILES-based trans-
former autoencoder that, in addition to a canonical recon-
struction loss, learns a contrastive task having the objective
of mapping structurally similar molecules, whose graphs are
separated by a single edit distance, to similar codes in the
effected latent space. In this way, we are able to learn a se-
mantically meaningful latent space. We compare SALSA to
its two ablations (a naive SMILES autoencoder and a con-
trastive encoder) and evaluate their latent spaces in terms of
not only structural awareness, but also physicochemical and
biological awareness as well as semantic continuity. We are
the first, to our knowledge, to enforce structural awareness
onto a SMILES-based model.

Our contributions are as follows:
• We propose a novel modeling framework, SALSA,

that composes a transformer autoencoder with a
contrastive task to achieve semantically-aware molecular
representations.

• We develop a scheme for constructing a chemical dataset
suited to contrastive learning of molecular entities,
specifically aimed at learning structural similarities
between molecules.

• We evaluate the quality of SALSA’s latent space
based on: 1) structural awareness, 2) physicochemical
awareness, 3) biological awareness, and 4) semantic
continuity.

Related Works
Sequence-Based Models. For our sequence-based (i.e.
SMILES-based) representation, we are specifically inter-
ested in methods that allow for global representation of se-
quence inputs. Earlier methods aimed at embedding whole

sequences utilized recurrent neural networks (RNNs), in-
cluding long short-term memory networks (LSTMs), natu-
rally aligned to this objective (Bowman et al. 2016; Shen
et al. 2020). However, most state-of-the-art methods are
based on the original transformer architecture (Vaswani et al.
2017) and do not provide a global representation of the in-
put. Recently, authors have modified the transformer archi-
tecture to include a bottleneck (or pooling) layer allowing
for a single, fixed-size global embedding of the input (Mon-
tero, Pappas, and Smith 2021; Jiang et al. 2020; Li et al.
2020). Examples of autoencoder-based methods include
ChemVAE (Gómez-Bombarelli et al. 2018) and AllSMILES
VAE (Alperstein, Cherkasov, and Rolfe 2019). Transformer-
based models include ChemBERTa (Chithrananda, Grand,
and Ramsundar 2020), SMILESTransformer (Honda, Shi,
and Ueda 2019), and FragNet (Shrivastava and Kell 2021).
Less common, however, is the composed architecture of a
transformer autoencoder.

Contrastive Learning. For molecular data, both SMILES
and graph representations have been explored in the con-
text of contrastive learning. The FragNet model proposed
by Shrivastava and Kell (2021) utilized the normalized
temperature-scaled cross entropy (NT-Xent) (Sohn 2016)
loss to map enumerated SMILES of identical molecules
nearby in the latent space. Insofar as graphs, Wang et al.
(2021) similarly used the NT-Xent loss to maximize the
agreement between pairs of augmented graphs (“views”) de-
scribing the same molecule; here, each view (i.e. positive
sample) is obtained by masking out nodes or edges. The
NT-Xent loss, although widely successful, operates solely
on positive pairs, an issue addressed by Khosla et al. (2020)
in their formulation of the Supervised Contrastive (SupCon)
loss which allows for comparison among an arbitrarily sized
set (rather than a pair) of positive instances.

Methodology
Overview of Approach
Broadly, our goal is to impart semantic awareness onto a
SMILES-based transformer autoencoder such that the ef-
fected latent representations better respect the structural sim-
ilarities, particularly the graph edit distance (GED), between
molecular pairs. We do this by incorporating a contrastive
component into the architecture that differentiates similar
and dissimilar molecular graphs.

Contrastive Objective. Our contrastive task necessitates
known pairs of “similar” and “dissimilar” molecules. We
opt to consider as “similar” any two molecules separated
by a single graph edit. Recall that the graph edit distance
(GED) between two molecules, viewed as labeled graphs, is
the minimum number of single edits required to make one
graph isomorphic to the other. It is computationally infea-
sible to obtain all pairs of single GED molecules system-
atically from an existing dataset. To sidestep this issue, we
generate a bespoke dataset of 1-GED molecular pairs. We
accomplish this by defining a set of node-level transforma-
tions, or mutations, which are applied to “anchor” molecules
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to obtain similar (1-GED) molecules which we will refer to
as “mutants”.

Autoencoder Component. We specify our SMILES-
based autoencoder with a transformer encoder and decoder,
and introduce an intermediate bottleneck in order to obtain
fixed-length vector representations. Combined with the con-
trastive component, the general framework is encapsulated
in Figure 2. We note that an encoder trained solely on the
contrastive objective, that is, without the reconstruction loss
central to an autoencoder, may learn a degenerative mapping
such that our designated “similar” molecules are mapped
to representations that are in fact too similar, being almost
stacked on top of one another. In this way, the reconstruc-
tion loss provided by the autoencoder component acts as a
regularizer (on the contrastive loss) that encourages similar
molecules to be mapped to distinct codes.

Training Dataset
Anchor Compounds. We utilize the dataset developed by
Popova, Isayev, and Tropsha (2018), which contains ap-
proximately 1.5 million SMILES sequences sourced from
the ChEMBL database (version ChEMBL21), a chemical
database comprised of drug-like or otherwise biologically-
relevant molecular compounds (Bento et al. 2014). After
procuring the full dataset, the set of compounds was run
through a standard curation pipeline; for an in-depth de-
scription of the curation process, please refer to Popova,
Isayev, and Tropsha (2018). We further filter the dataset
by SMILES length, allowing only molecules with SMILES
length less than or equal to 110 characters, leaving 1,256,277
compounds. These compounds constitute the full set of “an-
chors” from which we will generate 1-GED “mutant” com-
pounds, further explained in the following section.

Generating Mutant Compounds. We define a molec-
ular graph generally as g = (V, E) where V =
{v0, ..., vA} is the set of nodes, where each va ∈
{C, O, N, S, Br, Cl, I, F, P, B, $} (atom types), and E =
{(va, vb)|va, vb ∈ V} is the set of edges (bonds). Note that
atom type $ is a stand-in for any atom type not in the remain-
ing list, analogous to an unk character in natural language
models.

Here, we will differentiate anchors from mutants with a
tilde, i.e. anchor graphs as g and mutant graphs as g̃. Given
an anchor, we consider its graph, gi ∈ G where G is the an-
chor set (sourced from ChEMBL) and i is the index identify-
ing the anchor in G. We obtain a mutated graph, or mutant,
by randomly sampling a mutation operator t(·) ∼ T and
applying that mutation to the anchor, t(gi) = g̃i(j) where i
again identifies the original anchor, and j is the index of the
mutant graph within the anchors’ positive sample set.

Our set of mutation (graph transformation) operators,
T = {Add ,Replace,Remove}, is rationally defined to
avoid transformations that would drastically alter graph
topology, i.e. separating a molecule into disconnected
graphs or breaking and forming rings. Furthermore, we re-
quire mutants to be chemically valid molecular graphs, and
we normalize all SMILES using the RDKit canonicalization

Figure 2: Overview of SALSA architecture. SALSA oper-
ates on multi-mutant batches, but here, we show a single
(positive) anchor–mutant pair for simplicity. The reconstruc-
tion loss (Lr) is computed on the output sequence probabil-
ities. In the case of a positive pair (similar molecules) as
shown, the contrastive loss (Lc) aims to push their normal-
ized representations close together in the latent space. Note
that weights between the two networks are shared, thus, only
a single model is trained and used for inference.

algorithm (RDKit 2023). Given these specifications, our mu-
tation operators are defined as follows.
• Node addition (Add ): Append a new node, and a corre-

sponding edge, to an existing node in the graph.
• Node substitution (Replace): Change the atom type of an

existing node in the graph.
• Node deletion (Remove): Remove a singly-attached

node and its corresponding edge from the graph.
For both Add and Replace , incoming atom types are drawn
from the observed atom type distribution in the original
ChEMBL dataset. For each anchor, gi, we generate 10 dis-
tinct mutants that constitute the “positive” sample set, P (i),
for that anchor:

P (i) = {g̃i(1), g̃i(2), . . . , g̃i(10)} ∈ G̃ (1)

Our final training set is made up of the entire set of an-
chors and their respective mutants, amounting to 13,819,047
total training compounds. We show an example of a batch
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Figure 3: An example batch from the mutated dataset
composed of three anchors, g1, g2, g3, and their re-
spective sets of mutants (positive samples), P (i) =
{g̃i(1), g̃i(2), g̃i(3), g̃i(4)}. Negative samples are defined be-
tween anchors and all other molecules in the batch not in
that anchor’s set P (i). Colored atoms of mutant compounds
correspond to single graph edits from anchor to mutant: Add
(green), Replace (blue), and Remove (red).

composed of three anchors, with five mutants per anchor in
Figure 3.

Faulty-Positive Filtering. Although our mutation opera-
tors ensure chemical validity, they do not ensure physico-
chemical proximity of mutants to anchors. Due to the com-
plex nature of quantum mechanics underlying molecular in-
teractions, a single graph edit mutation may effect great dif-
ferences in the physicochemical properties between anchor
and mutant. We circumvent such phenomena by filtering out
mutants that are too dissimilar from their respective anchor
based on the Mahalanobis distance between the physico-
chemical properties of an anchor and those of its mutants.
Mahalanobis distance between an anchor gi and mutant g̃i(j)
is defined as:

dM
(
gi, g̃i(j)

)
=

√(
xi − x̃i(j)

)T
Σ−1

(
xi − x̃i(j)

)
(2)

where xi and x̃i(j) are the physicochemical property vectors
for gi and g̃i(j), respectively. The covariance matrix, Σ, cor-
responds to the distribution of physicochemical properties
computed over initial anchor set G. We computed physic-
ochemical properties corresponding to the standard collec-
tion of RDKit descriptors, and then filtered out descriptors
having any invalid property values in order to obtain a real-
valued property vector for each molecule.

Modeling Framework
The core architecture of SALSA is based on the encoder-
decoder transformer paradigm proposed by Vaswani et al.
(2017), with an additional autoencoder specification. The
SALSA transformer takes SMILES sequences as input and
additionally considers the similarity relationships between
those SMILES inputs (denoted either “similar” or “dissimi-
lar”), as determined by the structural similarity of their cor-
responding molecular graphs.

SMILES Input. While the original transformer oper-
ated on natural language sequences, SALSA operates on
SMILES sequences corresponding to molecular graphs. A
SMILES (simplified molecular-input line-entry system) se-
quence is an ordered list of the atom and bond types encoun-
tered during a depth-first traversal of a spanning tree of the
associated molecular graph (e.g. the SMILES sequence of
ibuprofen is “CC(Cc1ccc(cc1)C(C(=O)O)C)C”). We adopt
a simple tokenization strategy yielding a vocabulary of 39
tokens, including the most common atom and bond types
present in drug-like organic molecules in addition to a start
token ,“<”, end token, “>”, pad token, “X”, and an un-
known token, “$”, used in cases where SALSA encounters
an atom type not present in the provided vocabulary.

SALSA Architecture. We modify the original trans-
former architecture into an autoencoder aiming to repro-
duce the original input. This is accomplished by introduc-
ing a pooling layer and a subsequent upsampling layer be-
tween the encoder and decoder, and in this way imposing
an autoencoder “bottleneck” that produces fixed-size latent
representations. Specifically, whereas the intermediate out-
put of the original transformer encoder is a vector of size
RL×H for a sequence of length L and hidden dimension size
H , SALSA’s encoder is designed to output a latent vector
of fixed size RS . This is accomplished by first applying a
component-wise mean pooling from RL×H → RH before
projecting RH → RS .

The SALSA latent vector is constrained to live on the unit
hypersphere embedded in RS , and so we therefore normal-
ize the output of the “Pooling” layer. It is the output of the
Pooling layer, z ∈ RS , that is input into the contrastive loss,
explained in the next section. Then, as the transformer de-
coder is designed to accept an input of size equal to the out-
put of the encoder, i.e. RL×H , we first pass the latent vector
through a linear layer with the appropriate output dimension
and reshape as needed before passing to the decoder. This is
referred to as “Upsample” in Figure 2. Note that this method
of injecting the latent vector into the transformer decoder
resembles the method called “memory” in Li et al. (2020),
where it was demonstrated to yield superior results over an
alternative strategy.

Loss Function. We define a compound loss function,
composed of: (1) a contrastive objective defined over a batch
of inputs, and (2) an reconstruction task, characteristic of
sequence autoencoders. For our contrastive objective, we
adapt the supervised contrastive (SupCon) loss (Khosla et al.
2020). The SupCon loss allows for multiples positive com-
parisons per anchor, resulting in improved performance rel-
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ative to naive contrastive losses, which operate on the as-
sumption of only a single positive sample per anchor. The
SupCon loss is defined as

Lc =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)
, (3)

where I is the set of anchors in a batch, A(i) is the set of all
samples sharing a batch with anchor i, having latent code zi,
and P (i) are those elements of A(i) that are similar to i, and
I is the set of anchors in the batch, using the terminology of
Section .

The autoencoder, operating on SMILES, is trained with
a reconstruction loss with causal masking. For a single
SMILES sequence si and its associated latent vector zi, the
loss is defined as:

Lr = − 1

T

T∑
t=1

log pθ(s
(t)
i |zi, s(<t)

i ), (4)

where T is the length of the sequence si and
pθ(s

(t)
i |zi, s(<t)

i ) is the output of the decoder at posi-
tion t along the sequence. The full reconstruction loss Lr

is the average of all per-sequence losses. The final loss
computation is a weighted combination of the two terms,

L = λLc + (1− λ)Lr (5)

where 0 ≤ λ ≤ 1 is a hyperparameter that weights the con-
tributions of the contrastive loss and the reconstruction loss,
respectively. We train SALSA with λ = 0.5, and make com-
parisons to either ablation, λ = 1 and λ = 0 described later
in Experiments and Analysis.

Implementation Details. We use l = 8 layers for both the
encoder and the decoder with a hidden dimension of size
h = 512, and m = 8 heads in the multi-head attention
blocks. Our main results are of models trained with S = 32
latent dimensions, although we also investigated reduced la-
tent dimensions, S ∈ {16, 8, 4, 2}. For the contrastive loss,
we set temperature τ = 0.7, following Khosla et al. (2020).

Experiments and Analysis
We are interested in gathering a comprehensive understand-
ing of SALSA’s latent space relative to both a naive autoen-
coder and a contrastive encoder. To this end, we ask four
questions of our SALSA representations:

(1) Structural Awareness: Does SALSA encode informa-
tion about structural (graph-to-graph) relationships?

(2) Physicochemical Awareness: Does SALSA implicitly
encode information about physicochemical properties?

(3) Biological Awareness: Does SALSA inform tasks for bi-
ological prediction?

(4) Semantic Continuity: Does SALSA produce interpola-
tions that are semantically reasonable?

Baselines
• Naive Autoencoder: We are interested in SALSA’s per-

formance relative to a naive autoencoder trained solely
on SMILES reconstruction. To obtain a naive autoen-
coder, we trained SALSA with weighting hyperparam-
eter, λ = 0. We abbreviate this model as “Naive”.

• Contrastive Encoder: We are also interested in how the
reconstruction objective influences the effectiveness of
the contrastive task in achieving structural awareness. To
obtain a contrastive encoder, we trained SALSA with
weighting hyperparameter, λ = 1. We abbreviate this
model as “Contra”.

Structural Awareness
In order to evaluate the degree to which representations cap-
ture structural awareness, we compute metrics of correla-
tion between Euclidean distance (EuD) in the latent space
and graph edit distance (GED) in the data space. Correlation
metrics necessitate a priori knowledge of GEDs between
molecular pairs of interest, not unlike the anchor–mutant
pairs generated for our training set. Thus, we extend our
mutation process to generate sets of mutants having known
GEDs (one to five) from their anchors, which we will refer
as “supermutants”.

Supermutant Evaluation Set. We extend our mutation
process, as defined earlier in the Methodology section, to
iteratively generate sets of n-GED supermutants where n ∈
{1, 2, 3, 4, 5}. For a given anchor, gi, we apply a random
mutation, t(1)(·) ∼ T , to generate a 1-GED (super)mutant,
g̃
(1)
i = t(1)(gi), to which another random mutation oper-

ator is applied to generate a 2-GED supermutant, g̃(2)i =

t(2)(g̃
(1)
i ), and so-on. One step in this iterative process may

be generalized as:

g̃
(n+1)
i = t(n+1)(g̃

(n)
i ) (6)

where g̃(n+1)
i is the supermutant, and n is the depth of the

mutation path, a reliable proxy for the GED between the an-
chor and mutant. For our supermutants, we use an anchor set
independent of the training set drawn from the ChEMBL23
dataset. We draw 5000 random anchors and for each gener-
ate n-GED supermutants where n ∈ {1, 2, 3, 4, 5}, resulting
in 30,000 total compounds. Example of a supermutant set
and associated anchor is shown in Figure 4.

GED-EuD Correlation. With our set of independent an-
chors and associated supermutants, we can evaluate the cor-
relation between GED, dGE, between molecular graphs and
Euclidean distance, dEu or EuD, in the latent space. For a
given anchor, gi, and one of its supermutants g̃(n)i :

dEu(gi, g̃
(n)
i ) = ∥zi − z̃

(n)
i ∥2 (7)

dGE(gi, g̃
(n)
i ) = n (8)

where zi and z̃
(n)
i are the latent representations of the an-

chor and the supermutant, respectively. Eq. (7) gives us 5000
EuDs at each n-GED depth n ∈ {1, 2, 3, 4, 5}, and we
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Figure 4: (a) Example of supermutants, S(i), generated from
an anchor, gi. (b) Anchor–supermutant Euclidean distances,
by n-GED, in Naive and SALSA latent spaces. For both sub-
figures, supermutants are color-coded according to n-GED
(1-GED: purple, 2-GED: blue, 3-GED: green, etc).

show the resulting distributions in Figure 4(b) for Naive and
SALSA. We note that the Contra distribution is practically
indistinguishable from SALSA so, for brevity, it is not in-
cluded in Figure 4(b).

We then calculate two measures of rank correlation,
Spearman correlation coefficient (ρ) and Kendall correla-
tion coefficient (τ ), between GED and EuD for each anchor-
supermutant set, i ∈ [1, 5000]. Then we compute the average
Spearman ρ and Kendall τ across all 5000 correlations. We
perform this analysis on SALSA, Naive, and Contra space
at 32 dimensions, and we further investigated SALSA per-
formance at lower dimensions, d ∈ {16, 8, 4, 2}. Results for
this evaluation are shown in Table 1.

For this analysis, SALSA and Contra are on par having
the highest correlations (among the 32-d spaces), compared
to Naive. Although, SALSA does perform slightly worse
than Contra, presumably due to the regularizing nature of
the reconstruction task. We note that Naive has a wide stan-
dard error that is revealed in further detail in Figure 4(b). The
bimodal distribution of Naive at n-GED may be interpreted
as single graph edits inducing changes to SMILES strings
that are either mild (the left mode) or vast (the right mode).
SALSA comparatively produces distributions that are con-
sistently unimodal, although the distribution flattens with
increasing n-GED indicating that the correlation may not
hold between anchors and mutants that are substantially dif-
ferent. Lastly, we find that with decreasing dimensionality,
SALSA’s performance does not significantly degrade until
d = 4, suggesting avenues for potential exploration into ap-
plications that necessitate operation in exceptionally small
dimensional spaces.

Method Spearman’s ρ Kendall’s τ
Naive-32 0.514 ± 0.53 0.467 ± 0.48
Contra-32 0.888 ± 0.20 0.841 ± 0.23
SALSA-32 0.878 ± 0.20 0.824 ± 0.23
SALSA-16 0.849 ± 0.24 0.789 ± 0.26
SALSA-8 0.807 ± 0.28 0.741 ± 0.30
SALSA-4 0.587 ± 0.46 0.518 ± 0.42
SALSA-2 0.351 ± 0.57 0.300 ± 0.50

Table 1: Spearman’s ρ and Kendall’s τ for GED-EuD cor-
relation. We compare SALSA, Contra, and Naive trained at
d = 32. We further compare SALSA models trained at re-
duced dimensions. The highest performing methods are in
boldface.

Physicochemical Awareness
Although we train SALSA to explicitly learn structural
awareness, we would expect to also learn (implicitly) some
degree of higher order semantic awareness, such as property
or activity awareness. Therefore, we investigated the extent
to which latent representations capture information about
physicochemical properties. To accomplish this we compute
the correlation between property difference (Prop∆) and la-
tent space Euclidean distance (EuD). This evaluation task
is inspired from analogous tasks in NLP that correlate em-
bedding similarity and human labels (Luong, Socher, and
Manning 2013).

We encode a sample of 2000 molecules into SALSA,
Naive, and Contra space, and from those latent represen-
tations, compute the EuD between each pair for all three
models. Following, we calculate 10 physicochemical prop-
erties (chosen for their relevance to drug discovery) for
each molecule using RDKit (Fujimoto and Gotoh 2023; Wei
et al. 2020). As an illustrative example, Figure 5(a) shows
Uniform Manifold Approximation and Projection (UMAP)
(McInnes, Healy, and Melville 2018) reductions of a large
set of 10,000 compounds in Naive, Contra, and SALSA
space, color-coded by “Number of Aromatic Rings”.

For each property, we compute the property difference
(Prop∆) between each molecular pair. Then, for each of the
10 properties across we compute the Spearman’s rank corre-
lation coefficient (ρ) between Prop∆ and EuD (for all three
models). We perform this analysis on 10 random draws of
2000 molecules to obtain standard error; results are shown
in Figure 5(b). We find that SALSA achieves the highest cor-
relation among models for nine out of 10 properties. This is
an intriguing finding as it is not obvious as to how SALSA’s
framework enables better performance over either Naive or
Contra. One explanation could be that the contrastive loss
works to sharply bring similar molecules close together, cre-
ating pockets of local organization, while the reconstruction
loss enforces regularization such that the clusters disperse
achieving more global organization.

Biological Awareness
We next investigate biological awareness, evaluated through
performance on a virtual screening benchmark task. Vir-
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Figure 5: (a) UMAP reduction of 10,000 compounds, color-
coded by Number of Aromatic Rings for Naive, Contra, and
SALSA spaces. (b) Box plots of Prop∆-EuD Spearman’s ρ
correlations across 10 physicochemical properties for Naive,
Contra, and SALSA spaces.

tual screening is a drug discovery task that involves select-
ing compounds from a candidate pool most likely to be ac-
tive against a given biological target, given some prescribed
notion of molecular similarity. This task essentially as-
sesses the biological property awareness for a given molec-
ular representation, as sufficiently semantically-aware rep-
resentations should result more accurate retrieval of active
compounds. We also used this benchmark task to compare
against other state-of-the-art methods in addition to our ab-
lation baselines.

RDKit Virtual Screening Benchmark. We utilize the
RDKit benchmarking platform (Riniker and Landrum
2013), which evaluates a model’s virtual screening capabili-
ties against verified protein targets. The benchmark includes
69 protein targets and for each protein target, a dataset com-
posed of a small number of “actives” against the protein
and a large number of decoy (inactive) compounds. Given a
protein target, the objective is to retrieve active compounds
from the collective decoy–actives pool given a fixed number
(n = 20) of query molecules. We compare SALSA not only
to Naive and Contra, but also to a variety of other molecu-
lar representations, including handcrafted: ECFP4 (Rogers
and Hahn 2010) and RDKit descriptors (RDKit 2023)),
SMILES-based: ChemBERTa (Chithrananda, Grand, and
Ramsundar 2020), and graph-based: Hu et al. (Hu et al.
2019), and iMolCLR (Wang et al. 2022). We show the
resulting overall area under the receiver operating curve
(AUROC) for each method in Table 2. SALSA demonstrates
superior performance relative to ECFP4 and the Naive au-
toencoder, and is further competitive against the additionally
included deep learning-based methods. The results on this

Method Modality AUROC
ECFP4 Handcrafted 0.62± 0.10
RDKit descriptors Handcrafted 0.63± 0.03
Hu et al. Graph 0.67± 0.10
iMolCLR Graph 0.57± 0.09
ChemBERTA SMILES 0.68± 0.12
Naive SMILES 0.57± 0.07
Contra SMILES 0.70± 0.09
SALSA SMILES 0.73 ± 0.10

Table 2: Performance on RDKit VS benchmark. We com-
pare SALSA against its ablations, Naive and Contra. In ad-
dition, we compare against ECFP4, RDKit descriptors, and a
variety of deep learning-based methods: Hu et al., iMolCLR,
and ChemBERTa.

biologically-relevant task further indicate SALSA’s compre-
hensive semantic awareness relative to its ablated counter-
parts, Naive and Contra.

Semantic Continuity (Interpolations)
We investigate SALSA’s ability to generate reason-
able molecular interpolations between pairs of endpoint
molecules, as higher quality interpolations suggest bet-
ter semantic continuity in the latent space (Shen et al.
2020). To get interpolations, we choose pairs of “endpoint”
molecules, calculate the spherical linear interpolation (slerp)
midpoint (White 2016) between them, and then decode out
interpolant molecules from the midpoint code. We do not
perform this evaluation on Contra as it lacks a decoder for
generating. Figure 6(a) shows a case study of the three most
common interpolants for a pair of molecules, for both the
SALSA decoder and the Naive decoder. Qualitatively, we
can discern that SALSA generates interpolants that are more
structurally similar to the endpoints.

We then quantify SALSA’s interpolation capability more
comprehensively. To this end, we consider five classes of
compounds, and for each class, choose a representative set
of five molecules. We take all pairwise combinations within
each class and determine the most common midpoint inter-
polants for each pair. Then, to determine “reasonableness”
of interpolants, we calculate the Tanimoto distance—a com-
mon measure of chemical similarity—between each inter-
polant and either of their endpoint molecules. Tanimoto dis-
tance, dT , is defined as

dT (bm, be) =
|bm ∪ be| − |bm ∩ be|

|bm ∪ be|
∈ [0, 1] (9)

where bm is the ECFP4 representation for the midpoint in-
terpolant, and be is the ECFP4 representation for either end-
point molecule. Resulting endpoint–midpoint Tanimoto dis-
tances are shown in Figure 6(b). SALSA generates inter-
polants that, on average, have a lower Tanimoto distance
(therefore, are more similar) to their endpoints. These re-
sults are indicative of improved semantic continuity in the
SALSA space relative to the Naive space.
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Figure 6: (a) Three most common midpoint interpolants between cathinone (top) and bupropion (bottom), generated from either
SALSA space or Naive space. (b) Box plots showing the distribution of endpoint-interpolant Tanimoto distances per compound
class for both Naive and SALSA. Legend shows overall mean and standard error (lower is better).

Discussion
Beyond the scope of molecular modeling, we look to provide
insight as to how SALSA’s methodological basis relates to a
larger body of deep learning research. The SALSA paradigm
may be viewed as a cousin to denoising adversarial autoen-
coders (DAAEs) (Makhzani et al. 2015), particularly as ap-
plied to text or sequence data (Shen et al. 2020). The goal of
the latter work, much like ours, is to coerce a sequence au-
toencoder to embed related sequences near one another. We
opt for an objective function that, although distinct from that
of Shen et al. (2020), we argue conceptually accomplishes
a similar goal, nonetheless, to that of the DAAE objective.

Our dual objective function for SALSA combines a re-
construction loss and a contrastive loss, which we claim
acts similarly to the dual objective of the DAAE, combin-
ing a denoising technique and an adversarial loss. To sup-
port this claim, we refer to the work of (Wang and Isola
2020), wherein it was demonstrated that the contrastive loss,
when restricted to latent vectors on the unit sphere and given
the limit of infinite negative samples, simplifies into two
components: an alignment loss and a uniformity loss. The
alignment loss acts to align the latent representation of posi-
tive pairs, while the uniformity loss encourages the distribu-
tion of all latent vectors to be uniformly distributed on the
unit sphere. Each of these losses has a conceptual counter-
part in the DAAE, where the alignment loss acts similarly
to the denoising objective and the uniformity loss acts like
the adversarial component. In presenting this methodologi-
cal comparison, we hope to provide a more general context
for the techniques explored in SALSA, outside applications
to molecular modeling.

Conclusion
In this work, we proposed SALSA, a framework for learn-
ing semantically meaningful latent representations. Specifi-
cally, we sought to learn molecular representations informed
by the structural similarities between molecules. We trained
a model with this intention and defined a direct evalu-
ation metric, GED-EuD correlation, to show local struc-
tural awareness in latent space. Furthermore, we showed

that SALSA produces more semantically reasonable inter-
polants, and that SALSA implicitly uncovers physicochem-
ical and biological properties, revealing a wider context of
latent organization. Although we defined our primary se-
mantic objective to be the structural similarities between
molecules, the SALSA paradigm could be applied to any
user-defined semantics based on x similarity between y data.
In this way, the SALSA paradigm could be potentially ap-
plied across a number of data types in various domains.
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