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Abstract

Persistence diagrams (PD)s play a central role in topological
data analysis, and are used in an ever increasing variety of
applications. The comparison of PD data requires computing
comparison metrics among large sets of PDs, with metrics
which are accurate, theoretically sound, and fast to compute.
Especially for denser multi-dimensional PDs, such compari-
son metrics are lacking. While on the one hand, Wasserstein-
type distances have high accuracy and theoretical guarantees,
they incur high computational cost. On the other hand, dis-
tances between vectorizations such as Persistence Statistics
(PS)s have lower computational cost, but lack the accuracy
guarantees and in general they are not guaranteed to dis-
tinguish PDs (i.e. the two PS vectors of different PDs may
be equal). In this work we introduce a class of pseudodis-
tances called Extended Topological Pseudodistances (ETD)s,
which have tunable complexity, and can approximate Sliced
and classical Wasserstein distances at the high-complexity
extreme, while being computationally lighter and close to
Persistence Statistics at the lower complexity extreme, and
thus allow users to interpolate between the two metrics. We
build theoretical comparisons to show how to fit our new dis-
tances at an intermediate level between persistence vector-
izations and Wasserstein distances. We also experimentally
verify that ETDs outperform PSs in terms of accuracy and
outperform Wasserstein and Sliced Wasserstein distances in
terms of computational complexity.

Introduction
The processing and extraction of information from large
datasets has become increasingly challenging due to the high
dimensionality and noisiness of datasets. An important tool-
box for describing the shape of complex data with noise ro-
bustness bounds is offered by the emerging research field
of Topological Data Analysis (TDA) (Carlsson 2009; Edels-
brunner and Harer 2010; Cohen-Steiner, Edelsbrunner, and
Harer 2007; Cohen-Steiner et al. 2010), which focuses on
quantifying topological and geometric shape statistics of
point clouds and other datasets.

An important advantage of TDA compared to other meth-
ods is the improved interpretability, based on insights from
algebraic topology. The principal approach to encoding
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topological information in TDA are Persistence Diagrams
(PDs) (Edelsbrunner and Harer 2010; Zomorodian 2009) or
Persistence Barcodes (Ghrist 2008; Carlsson 2009). TDA
methods are being applied in a growing variety of fields,
including time-series analysis (Seversky, Davis, and Berger
2016; Carr, Garth, and Weinkauf 2017) (Venkataraman, Ra-
mamurthy, and Turaga 2016; Umeda 2017), text data analy-
sis (Wagner and Dłotko 2014; Rawson et al. 2022), molecu-
lar chemistry (Carr, Garth, and Weinkauf 2017), climate un-
derstanding (Carr, Garth, and Weinkauf 2017), atmospheric
data analysis (Kuhn et al. 2017; Carr, Garth, and Weinkauf
2017), scientific visualization (Carr, Garth, and Weinkauf
2017), cosmology (Carr, Garth, and Weinkauf 2017), com-
bustion simulations (Carr, Garth, and Weinkauf 2017), com-
putational fluid dynamics (Carr, Garth, and Weinkauf 2017),
neurosciences (Sizemore et al. 2019), human motion under-
standing (Lamar et al. 2016; Hossny et al. 2016; Venkatara-
man, Ramamurthy, and Turaga 2016), medical applications
(Garside et al. 2019), volcanic eruption analysis (Kuhn et al.
2017; Carr, Garth, and Weinkauf 2017). In the above TDA
applications, TDA has been used as a preprocessing stage for
conventional Machine Learning (ML) algorithms (Ŝkraba
2018), preserving interpretability, or, more rarely, as a tool
to interpret the shape of clouds manipulated via Deep Learn-
ing algorithms. The overall idea is to apply persistent ho-
mology for each sample and obtain its persistence diagram.
Then the space of persistence diagrams, endowed with a
suitable metric or pseudometric is used as a replacement,
or as an enrichment, of the original dataset. A problem with
comparison metrics between PDs is that they are compu-
tationally expensive, especially for PDs coming from Hj-
homology with j > 0, which are a special type of point
clouds in R2. Computing the distance between two such
PDs is treated as a matching problem between points in the
plane, with stability and theoretical bounds based on the link
with optimal transport distances like Wasserstein Distances
(WDs) (Dobrushin 1970; Cohen-Steiner et al. 2010; Panare-
tos and Zemel 2019; Bubenik and Elchesen 2022). Since
WD computation for point clouds in dimension d ≥ 2 have
O(n3)-complexity (Munkres 1957), where n is the number
of points, PD comparison is often a bottleneck in ML data
processing pipelines.
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Related Work and Main Contributions
Several approaches have arisen to make PD comparison
computationally cheaper. A first direction is to optimize
the precise computation of Wasserstein distance between
PD’s via optimization of matching problems (Dey and Wang
2022; Kerber, Morozov, and Nigmetov 2017; Chen and
Wang 2021; Backurs et al. 2020), or by resorting to com-
putationally simpler distances, such as Sliced Wasserstein
Distances (SWDs) (Carrière, Cuturi, and Oudot 2017; Ra-
bin et al. 2012; Bonneel et al. 2015; Paty and Cuturi 2019;
Bayraktar and Guo 2021) which roughly speaking use as
distance an average of distances of 1-dimensional projec-
tions, or to approximations of Wasserstein Distance such as
Sinkhorn Distances (Cuturi 2013; Chakrabarty and Khanna
2021). Some methods use the particular geometry of PDs
specifically for computing Wasserstein distances (Kerber,
Morozov, and Nigmetov 2017; Khrulkov and Oseledets
2018; Dey and Zhang 2022). The work (Carrière, Cuturi,
and Oudot 2017) applies SWD for PD comparison, but with-
out optimizing the method towards optimum computational
gains. A second direction to overcome PD comparison diffi-
culties, is that of introducing simplified statistics via vector-
ization methods, with a variety of so-called Persistent Statis-
tics (PS) (Adams et al. 2017; Ali et al. 2023; Chung and
Lawson 2022). Then distances between PS vectorizations
induce pseudodistances on the originating PDs, which while
computationally faster, are not guaranteed to distinguish be-
tween distinct PD’s (Fasy et al. 2020).

In view of the above challenges of Wasserstein distance
and vectorization statistics, we introduce here a class of
Extended Topology pseudodistances (ETDs) between PDs
which are strictly richer than PS comparison, inspired from,
but much faster to compute than SWD, and which also
have significant computational gains with respect to previ-
ous WD-based approximate distances. Our main contribu-
tions are the following:

1. We introduce a new class of “enhanced topology pseu-
dodistances” (ETDs) of increasing complexity (fixable
by the user), which interpolate between simple PS vec-
torizations and the complexity of distances such as SWD
and WD. Furthermore, we verify experimentally that for
real data sets the loss is minimal at low complexity, and
the distinguishing power of such ETDs is comparable to
the one of Wasserstein distance between PD’s in applica-
tions.

2. We build the basis for a rigorous theoretical comparison
of our ETD distances to present methods for computing
SWD and to commonly used PS vectorization. We also
prove theoretical guarantees for stability under perturba-
tions for our distance.

3. We test our ETDs for classification applications and ex-
perimentally compare to classical methods in terms of
accuracy and of computation time.

It is worth emphasizing that, while a theoretical frame-
work on metric comparison for PDs is well established
(Cohen-Steiner, Edelsbrunner, and Harer 2007; Cohen-
Steiner et al. 2010; Bubenik and Elchesen 2022; Ali et al.

2023; Chung and Lawson 2022), the PD construction al-
ready discards a lot of geometric and topological informa-
tion about the datasets. The question of distinguishing what
tasks are suited or not suited to be tackled through PD statis-
tics is complex, and not fully settled. In the current work,
we do some steps in this direction, and we hope that more
research in this direction will come in the near future.

Background on PDs and Their Metrics
A Fast Reminder on Persistence Diagrams
We recall basic facts about PDs, see (Edelsbrunner and
Harer 2010) for details. For a dataset encoding as a topolog-
ical space X , we consider a filtration F = {Xt}t∈[0,T ] in
which X0 = X , Xt ⊆ Xs for all pairs t ≤ s and XT = X .
This filtration encodes a strategy of inspection of X , where
the precise construction algorithms for the Xt depend on the
task at hand and are not relevant for us. As filtration parame-
ter t increases, topological characteristics such as connected
components, loops, voids, etc. appear, disappear, split or co-
alesce, as determined by homology classes of increasing di-
mension j = 0, 1, 2, . . . . For each value of j the increasing
set of j-th homology groups Hj(Xt) associated to F can be
encoded in the so-called persistence module of the filtration,
which in high generality (via ad-hoc structure theorems) is
decomposed in a direct sum of persistence intervals, each
of which allows to determine the values of time parameter
t at which a given homology class appears or disappears,
named birth time b and death time d ≥ b of the correspond-
ing feature. The set of pairs (b, d) ⊆ {(x, y) : x ≤ y}
for j-dimensional homology classes form the j-dimensional
Persistence Diagram (PD) PDj(X) of the space X . For
this work we will consider a fixed dimension bound k, and
we work with the Extended Persistence Diagram (EPD)
PD(X) = {PD0(X), PD1(X), . . . , PDk(X)}, in which
we reiterate that PDj(X) is a collection of points in R2 for
all 0 ≤ j ≤ k.

Wasserstein-Type Distances Between PDs
Here we recall the important metrics of interest for compar-
ing PDs, namely geometric distances such as WD and SWD,
and distances between vectorization summaries of PDs, such
as PS. Consider a fixed dimension j ≥ 0 and the PDs for di-
mension j, denoted P1 = PDj(X1),P2 = PDj(X2) ⊆
R2, corresponding to two datasets X1, X2. Standard com-
parison and theoretical guarantees such as stability under
small perturbations between PDs is uses the Bottleneck Dis-
tance (BD) (cf. (Edelsbrunner and Harer 2010) and (Chazal
et al. 2009; Chazal, de Silva, and Oudot 2014)), which is the
p → ∞ limit case of p-Wasserstein distances:

Definition 1 (Wasserstein distances). Let P1,P2 ⊆ R2 as
above, set ∆ := {(x, x) : x ∈ R} and let Γ be the set of
bijections between P1∪∆ and P2∪∆. Then for p ∈ [1,∞),
the p-Wasserstein distance between P1,P2 is given by

Wp(P1,P2) :=

[
inf
γ∈Γ

∑
d∈P1∪∆

∥d− γ(d)∥p∞

] 1
p

, (1)
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and the Bottleneck distance between P1 and P2 is given by

W∞(P1,P2) := inf
γ∈Γ

sup
d∈P1∪∆

∥d− γ(d)∥∞. (2)

The optimal algorithm for computing Wp for point clouds
in dimension d ≥ 2 is the Hungarian algorithm (see (Kuhn
1955) and Ch. 3 of (Peyré, Cuturi et al. 2019)) with com-
plexity O(N3) if N is the number of points in P1 ∪ P2. See
the below discussion on time-complexity comparison for re-
cent approximate algorithms with lower complexity. An im-
portant observation is that things improve consistently for
1-dimensional point clouds:

Proposition 1. For two multisets P1,P2 ⊆ R the distances
Wp(P1,P2) can be computed in O(N logN) time.

Proof sketch:. For distributions over R we have (see
e.g. (Santambrogio 2015, Prop. 2.16)) Wp(P1,P2) =
∥sort(P1)− sort(P2)∥p, where sort(P) is the vector of coor-
dinates of points from P, in non-increasing order. Assuming
that the sorting operation has complexity O(N logN) and
the ℓp-norm is computed with O(N) operations, this gives
the claimed complexity bound.

Note that for 0-dimensional homology, in important cases
such as for filtrations F coming from Čech or Vietoris-
Rips complexes (Dey and Wang 2022, Ch. 6), we have birth
times b = 0 by definition, and thus PD0 is a 1-dimensional
point cloud. In (Horak, Yu, and Salimi-Khorshidi 2021) a
topology distance (TD) was proposed for comparing the 0-
dimensional part of PD’s, and it improves upon earlier statis-
tics such as Geometry Score (Khrulkov and Oseledets 2018)
for GAN comparison. The main difference between Wp and
TD is that the latter is not invariant to relabelings of the
points from the PD, whereas Wp is.

Unlike dimension 0, PD point clouds corresponding to
homology groups of dimension j > 1 are “truly 2-
dimensional”, as birth times and death times both contain
nontrivial informations about the features. As explained in
the below discussion on time complexity, even considering
the recent improvements on approximate Wasserstein dis-
tance computation, the cost for computing geometric dis-
tances between such PDs with good approximation, is larger
than the bound from Prop. 1.

PD Vectorizations and Persistence Statistics
Vectorization is the dimension reduction of PDs from point
clouds in 2 dimensions to vector data1. As the projection
operation loses geometric information, vectorizations inher-
ently face the tradeoff between simplicity and informativity.
For a comprehensive survey of PD vectorizations see (Ali
et al. 2023), in which a series of vectorizations are compared
in benchmark ML tasks. We focus on the best performant
statistic determined in the cited paper, which turns out to be
the Persistence Statistics (PS). For PDj(X) = {(bi, di) :

1Note that the entries of a vector are an equivalent information
to point clouds over the real line, each vector entry being identified
with a coordinate, thus PD vectorizations are conceptually analo-
gous to dimension reduction from 2 to 1 dimensional point clouds.

i ∈ Ij} PS includes quantile, average and variance statistics
about the following collections of nonnegative numbers:

{bi}i∈Ij , {di}i∈Ij , {(bi + di)/2}i∈Ij , {di − bi}i∈Ij , (3)

interpreted as, respectively, the set of birth, death, mid-
points and lifetime lengths of the topological features in-
dexed by Ij . Besides the above, PS includes the total number
of (bi, di) such that di > bi, and the entropy of the multiplic-
ity function, whose interpretation is given in (Chintakunta
et al. 2015).

Extended Topology Pseudodistance
Our new Extended Topology Pseudodistances (ETD) are de-
fined by projecting the PDs relative to each separate dimen-
sion j over a finite set of directions, and summing the 1-
dimensional Wp-distances of the projections. We will apply
to elements (bi, di) from point clouds in R2 the projection
onto the θ-direction defined as follows, for θ ∈ [0, 2π):

πθ : R2 → R, πθ(x, y) := x cos θ + y sin θ.

Remark 1. As before, for S ⊂ R2, we treat πθ(S) as a
multiset and retain the multiplicity of repeated projections.
Remark 2. We have πθ+π(x) = −πθ(x) thus the same in-
formation is encoded in the πθ-projections restricted to just
half of the available directions, e.g. restricting to θ ∈ [0, π).

The point cloud obtained by orthogonal projection of a
PD Pj ⊂ R2 onto the diagonal is the following:

P̃ j := {((b+ d)/2, (b+ d)/2) : (b, d) ∈ Pj}. (4)

Definition 2 (Extended Topology Pseudodistances). Let
A ⊂ [0, π) be a finite set of projection angles and p ∈
[0,∞], and consider two PDs P1 = PD(X1),P2 =
PD(X2) with PD(X) defined as in the previous sections.
For 0 ≤ j ≤ k, define the auxiliary distances

DA
j (P1,P2) :=

(∑
θ∈A Wp

(
πθ(P

j
1 ∪ P̃ j

2 ), πθ(P
j
2 ∪ P̃ j

1 )
)p) 1

p

,

where for finite sets S1, S2 ⊂ R of equal cardinality, we set

Wp(S1, S2) := ∥sort(S1)− sort(S2)∥p.

Then the p-Extended Topology Pseudodistance (ETD)
with projection set A is defined as:

ETDA(P1,P2) :=

 k∑
j=0

DA
j (P1,P2)

p

1/p

.

We write ETD := ETDA1
with A1 = {3π/4} and will call

this distance the basic p-ETD.

The reason why we add the sets of the form P̃ j
i in the

definition of DA
j , is for balancing: in general Pj

1,P
j
2 do not

have the same cardinality, and the correct analogue of (1)
requires including diagonal sets

Note that if the filtrations producing the PDs are such that
birth values are equal to zero by construction for P0

i , then
these point clouds are 1-dimensional: we then replace DA

0 by
D0(P1,P2) := #A ·Wp(ππ/2(P1), ππ/2(P2)), i.e. consider
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only the “death” coordinates, with no information loss (fac-
tor #A being introduced for normalization reasons). Also
note that for θ = 3π/4 we have that πθ(P̃

j
i ) = {0}.

We observe that PS-distances give a strictly less informa-
tive distance than ETDA due to the observation contained in
the following result, whose proof is a direct computation:
Lemma 1. Let j ≥ 0 and Pj = {(b1, d1), . . . , (bIj , dIj )}
be the j-dimensional PD of a dataset. Then the sets from (3)
are equal to, respectively:

π0(P
j), ππ/2(P

j),
√
2
2 ππ/4(P

j), 2√
2
π3π/4(P

j).

In particular, the above lemma implies that ETDA4

distance is strictly stronger than PS for A4 :=
{0, π/4, π/2, 3π/4}. Natural choices for A ⊂ [0, π) with
increasing numbers of elements are

An :=

{
3π

4
− i

n
π (modπ) : i ∈ {0, . . . , n− 1}

}
. (5)

In the above the “(modπ)” notation means that if the num-
ber θi := 3π/4 − iπ/n becomes negative, we replace it by
π− θi instead. In Appendix B we mention a more extensive
list of modifications to ETDA which may be useful in appli-
cations. As noted in the proof of Prop. 1, we may explicitly
compute Wp-distances from the above definition by sorting
the corresponding vectors and taking ℓp-norm.
Remark 3 (invariance properties of ETDA). In the above
definition, the input of ETDA are (unordered) collections of
points encoded in Pj

1,P
j
2, j = 0, . . . , k. In practice, we are

necessarily given the point clouds in some order, and ML
tasks are required to be invariant under reordering of the
points of Pj

i , for all (i, j) ∈ {1, 2} × {0, . . . , k}. A wished
for property of distances, adapted to ML tasks, is to actually
implement this invariance, so that successive ML processing
of such distances can be done without further symmetry con-
straints. This invariance is automatical for ETDA(P1,P2)

due to invariance (under relabeling of Pj
1 and of Pj

2) of the
intermediate quantities like Wp(πθ(P

j
1), πθ(P

j
2)).

The following computational cost bounds for ETD are
proved in Appendix A:
Theorem 1 (Computational cost of ETDA). Let P1,P2 be
two PDs corresponding to homology dimensions 0, . . . , k,
and let A ⊂ [0, 2π) be a set of cardinality a. Then the cost
of calculating ETDA(P1,P2) is

a(T1 + (k + 1)M(3 + T2 + logM)) = O(akM logM),

assuming unit cost for sum or product of real numbers, and
where T1 is the cost to evaluate sin, cos, T2 is the cost to
take p-th powers, and M := max0≤j≤k(#Pj

1 +#Pj
2).

The M logM factor in the above estimates the complex-
ity of sorting algorithms for M real numbers. Note that im-
plementing the sorting stage with the Trimsort algorithm al-
lows lower complexity of O(M). Trimsort is a hybrid algo-
rithm that seamlessly blends merge sort with insertion sort.
It takes advantage of the inherent structure within the data
to be merged, identifying sequences of pre-sorted data and

integrating them into the final list, minimizing redundant
comparisons. While on the one hand ETDs can be consid-
ered as enrichments of PS-based distances (see Prop. 1), the
distances ETDA are theoretically connected to the Sliced
Wasserstein Distance (SWD). The following is a reformu-
lation of (Bonnotte 2013, Def. 5.1.1) in our setting (see also
(Carrière, Cuturi, and Oudot 2017, Def. 3.1) which is spe-
cific for PD applications and (Nadjahi 2021) for more recent
advances on SWD in general):
Definition 3 (Sliced Wasserstein Distance). Let S1, S2 ⊆
R2 be two finite point clouds, and let S̃i be the projections
as in (4). Then for p ∈ [1,∞] the Sliced p-Wasserstein Dis-
tance (SWD) between them is defined as

SWp(S1, S2)

:=

(
1

π

∫ π

0

Wp

(
πθ(S1 ∪ S̃2), πθ(S2 ∪ S̃1)

)p
dθ

)1/p

.

We see that for large n, the set of angles An from (5)
define discretizations of [0, π) and thus we have

lim
n→∞

1

n1/p
DAn

j (P1,P2) = SWp(P
j
1,P

j
2). (6)

By (Bonnotte 2013, Thm. 5.1.5), for each p ∈ [1,∞) there
exist cp, Cp > 0 such that restricted to pairs 2-dimensional
point clouds S1, S2 included in a ball of radius

√
2T (which

is true for S1 = Pj
1 ∪ P̃ j

2 and S2 = Pj
2 ∪ P̃ j

1 if we trun-
cate persistence filtrations at parameter value T as in the in-
troduction) we get the following distance comparison with
Wasserstein distance:

cpSWp ≤ Wp ≤ CpT
(p−1)/3p (SWp)

1/3p
. (7)

In particular, stability properties for PDs such as those
proved in (Atienza, González-Dı́az, and Soriano-Trigueros
2020) for Wp distances, extend via (7) for SWp as well,
and via (6) we get stability bounds in the large-n limit for
ETDAn . See the discussion in Appendix A. More precise
quantification of these bounds at both steps (Wp bounds and
control for finite n in (6)) are interesting theory questions
outside the scope of this paper.

Theoretical Time-Complexity Comparison
In Table 1, we present the theoretical time complexity of
ETD, compared to the state-of-art computation methods in-
cluding Wasserstein (WD), and Sliced-Wasserstein (SWD).
The WD computes Wasserstein distance using the Scikit-tda
library(Saul and Tralie 2019) which uses a variant of Hun-
garian Algorithm (Kuhn 1955), Python Optimal Transport
(Pot WD) (Flamary et al. 2021) Wasserstein is based on (La-
combe, Cuturi, and Oudot 2018), Hera WD (Kerber, Moro-
zov, and Nigmetov 2017), and SWD (Carrière, Cuturi, and
Oudot 2017). The Pot WD, Hera WD and SWD are imple-
mented in the Gudhi Library (Maria et al. 2014), which is
one of the most popular TDA frameworks. The recent paper
(Dey and Wang 2022) also compares computational cost of
many recent Wasserstein approximate algorithms. PS com-
putation requires to compute the four vectorizations (3) for
each Pj

1,P
j
2 (with same notation as in Def. 2), and then to
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Distance Time Complexity
WD O(kM3)
HeraWD O(kM1.5logM)
SWD O(k a M logM)
PS O(kM)
ETD O(kM logM)
ETDA O(#A k M logM)

Table 1: Time complexities, where k is the number of com-
puted homology groups, M = maxj(#Pj

1 + #Pj
2) and for

SWD the quantity a is the number of slices used (a = 50 in
the original implementation). Note that even for a = #A,
our ETDA implementation is faster than the one of SWD
with a slices, because performing projections to the diago-
nal via our eq.(4) and Def.2 is more efficient than via the
method of (Carrière, Cuturi, and Oudot 2017).

take average, variance and quantiles. The vectorization cal-
culations have a bound of O(M) for each value of j, and the
computation of statistical quantifiers requires further O(M)
operations for each j, for a total of O(kM). The actual dis-
tance calculation is of lower order, and can be included in
this latter bound up to increasing the implicit constant.

Experiments With PD-Based Machine
Learning Tasks

While shedding light on the underlying scalability guaran-
tees, it is important to note that the theoretical comparison
in the previous section is not the final word for practical pur-
poses. This is due to two issues:

1. Unlike for ETD, several of the most performant other
methods extra data structures such as kd-trees and graphs
have to be produced before the distance is computed,
and these computational overheads are not explicitly dis-
cussed.

2. It is important to consider practical accuracy compar-
isons between metrics, especially for PS and ETD type
metrics which may have lower distinguishing power than
WD and SWD distances on some tasks.

We thus perform a few experiments, for comparing ETD ver-
sus state-of-art metrics based on PS, WD and SWD, to find
evidence for the above two points in typical ML tasks that
use PD information as an input.

We summarize in Table 3 a wall-clock comparison be-
tween the same metrics as in Table 1, in two applications to
PDs coming from the ML pipelines, and we compare accu-
racy for the tasks in Table 2, and Figure 2 below.

Note that indeed as expected from above point 1., there
are substantial differences between Table 1 and Table 3. See
the next sections for precise descriptions of the considered
experiments in more detail.

Experiment 1: Supervised Learning
In this experiment, we perform a common TDA+ML
classification using ETD, WD-based distances, and PS, via
an adaptation of the experiments from (Ali et al. 2023) to

our setting.Recall that in (Ali et al. 2023) they conduct
supervised learning experiments on image classification
datasets: the Outex texture database (Ojala et al. 2002),
the SHREC14 shape retrieval dataset (Pickup et al. 2016),
and the Fashion-MNIST database (Xiao, Rasul, and
Vollgraf 2017). The cited paper follows the conventional
TDA+ML hybrid classification approach, where the dataset
is transformed by computing PD associated to each sample,
which are then vectorized via PS or other vectorizations,
followed by a classification by a conventional classifier
such as Support Vector Machines. In an adaptation of the
above experiments to our framework, we use the k-Nearest
Neighbor (kNN) classifier instead of Support Vector Ma-
chines, and we use as distances the ETD, WD, SWD and
HeraWD distances besides PS-based distances (with the
choice of exponent p = 2 in all cases). The classifier choice
was motivated mainly by the necessity of provide ad-hoc
topological kernels. In (Ali et al. 2023) they produce
a new feature set after providing different vectorization
methods, then applied directly on the conventional SVM
kernels (RBF, linear). When dealing with distance matrices,
defining a theoretically sound kernel is a challenging task,
outside the scope of the present work. To simplify our task,
we use k-Nearest Neighbor classifier which only relies on
the considered distances. We compute the corresponding
distances from Table 1, and we build the kernels without the
need of passing through the vectorization stage for distances
other than PS. We then compute the same metrics as (Ali
et al. 2023) and compare the accuracy of all methods.
Focussing on the simpler case, i.e. on the Outex pattern
dataset, we reduced the number of classes to classify to
10, and we chose 20 samples per class. We computed a
Cubical Complex on each class using the Gudhi library
(Maria et al. 2014). For further details and theory of cubical
complexes, please consult (Kaczynski, Mischaikow, and
Mrozek 2004) as well as the following paper (Wagner,
Chen, and Vuçini 2011). We compute a distance matrix
using each of the distances Basic ETD,ETDA with A ∈
{A2, A4, A8, A16},WD,HeraWD,PotWD,SWD,PS.
We conduct a Repeated Randomized Search (Bergstra
and Bengio 2012) to determine the best k and weight
hyperparameters for a k-Nearest Neighbors classifier on
each distance matrices. The experimental results are shown
in Table 2 where the weights were omitted since using the
distance weight leads to optimal accuracy. As usual, the
function h(xq) which k-NN uses to assign a label to a query
point xq , simply assigns the most voted label among its k
nearest neighbors (James et al. 2023):

h(xq) = argy∈Y max
k∑

i=1

w(xq, xi)1(c(xi), y), (8)

where c(xi) is the true class of xi, w(xq, xi) is a weight
and 1(c(xi), y) is the indicator function that equals 1 when
the xi class is equal to y and 0 otherwise. We optimize over
choices of k ≤ 9, and optimal values of k are shown in
the second column of Table 2. For w we tried two possible
choices: w(xq, xi) = 1 (uniform) or w(xq, xi) = 1

d(xq,xi)

(distance), and as shown in the last column in Table 2, in all

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13206



Distance Accuracy k
weight

(u: uniform
d: distance)

WD 0.98 6,9 d,d
SWD 0.96 3,6 d,d

Hera WD 0.99 3,4,9 d,d,d
ETDA1

0.89 3,4 d,d,d
ETDA2

0.83 3,4 d,d
ETDA4

0.99 3,6 d,d
ETDA8

0.99 3,4 d,d
ETDA16

0.99 3,4 d,d
PS 0.99 3,4 d,d

Table 2: kNN accuracy with some of the optimal k and w
choices for each such k (see description of (8) for detailed
description).

cases, for optimum k the optimum choice of w was the latter.
We rely on Scikit-learn (Pedregosa et al. 2012) k-NN imple-
mentation. The computation of k nearest neighbors is highly
sensitive to the chosen metric, a property which allows to
compare metrics on this task.

We see that all methods reach high accuracy, and thus this
is an example of framework in which time-effectiveness of
the methods would be the relevant criterion for the choice
of metric. For this experiment, the third column of Table 3
shows average time in seconds for computing the distance
between two PDs in this experiment, showing that ETDA1

would be the optimal choice.

Experiment 2: Autoencoder Weight Topology
According to (Naitzat, Zhitnikov, and Lim 2020), ReLU ac-
tivations have a more significant impact on the topology
compared to homeomorphic activations like Tanh or Leaky
ReLU. ReLU activations seem to collapse the topology in
earlier layers more rapidly.

On the one hand, autoencoders are neural networks that
aim to minimize the distance between the original data and
its reconstruction, creating both an ‘encoder’ and ‘decoder’
(Bengio, Goodfellow, and Courville 2017). On the other
hand, the stability theorem of persistent homology (Cohen-
Steiner, Edelsbrunner, and Harer 2007), implies that train-
ing an autoencoder to reconstruct data within a narrow mar-
gin ϵ > 0 leads to the persistence diagrams, representing
topology, that remain in close proximity within the same ϵ
value. This implies that the topology cannot be altered sig-
nificantly, even when using ReLU activations and a deep au-
toencoder.

We conduct an experiment to quantify and allow inter-
pretation to the extent to which the quantification of these
properties depend on the chosen PD metrics. As a toy ex-
ample we consider data sampled from two concentric balls
of radiuses 1 and 2 in R100 as a high-dimensional dataset
with 2000 sampled points each, then train a simple autoen-
coder with 7 layers (of dimensions 100-20-10-3-10-20-100
respectively). After training the autoencoder, we compute
persistence diagrams (corresponding to homology dimen-
sions 0 and 1, i.e. for j = 0 and j = 1, in our notation) on

Figure 1: Example of data from Experiment 2: for each
autoencoder layer, we plot the corresponding PD for
H0, H1, H2, in order from the input layer (left, first line)
to the output/reconstruction layer (right, second line), for a
total of 7 layers. We plot the distance of each persistence di-
agram to the first one with respect to different metrics in Fig.
2.

the resulting point cloud given by activation vectors of each
layer. Then we create so-called topological curves by com-
paring the PD of the input dataset (1st layer) with PDs cor-
responding to sets of output values of successive deeper lay-
ers. The comparison is done with the different metrics con-
sidered above: WD2, HeraWD2, SWD2, PS-based met-
ric and our new distances ETDAi

for i = 1, 2, 4, 8, 16. The
topology curves are meant to assess how much each layer
changes the topology. The results depend on the chosen met-
ric for PD comparison. Results are summarized in Figures 1
and 2. Interpretation of the results. Qualitative observa-
tion of topological curves as in Figure 2 across several ex-
periments indicates that PS eliminates all variations at the
level of 0th homology group H0, and introduces large vari-
ations for successive homology groups, whereas the other
more precise metrics indicate lower variations. This indi-
cates high unreliability for PS metrics on qualitative tasks.
We see agreement in the overall diagram shapes between W2

curves, SW2 curves, and ETDAi
curves for varying values

of i, which may be due to relative normalization factors be-
tween the metrics. Recall that as i increases, in theory, due
to (6), we expect that ETDAi become more accurate because
it approximates SW distance more closely. We observe that
the ETDAi

curves generally diminish their oscillations as i
increases, with topological curve shapes similar to the one
for Wasserstein distance (see Figure 2). Table 3 shows time
in seconds for computing such curves.

We also tested the case of SWD metric with a number of
slices of a = 1, 2, 4, 8, 16 versus the corresponding ETDA

distances with #A = a, and obtained that the best com-
putational time improvement of ETDA versus SWD is for
low values of a = #A: we obtain respectively an improve-
ment by a factor of 19.4, 1.29, 1.21, 1.1, 1.1 for the values
of a = 1, 2, 4, 8, 16 for trials of our autoencoder tasks from
Experiment 2. This means that our implementation is more
time-efficient than SWD by these factors even when apply-
ing an equal number of slices, provided this value is rela-
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Figure 2: Example data from Experiment 2: we plot, for each homology dimension 0, 1, 2, the values of
log(dist(Pi, P0)/WD(Pi, P0)), 0 ≤ i ≤ 6 where Pi is the PD of the i-th layer, and dist is amongst our allowed metrics.
For completeness, we also include the Fisher Kernel distance comparison, which is much less discriminative than other metrics.

Distance Time in milliseconds
Autoencoder

Weight Topology
Supervised
Learning

RELU LRELU Outex
WD 12544.96 13626.25 459.24

SWD 1588.80 1551.46 404.09
Hera WD 5816.86 6574.51 864.83
ETDA1 3.69 3.77 4.19
ETDA2 88.24 72.17 8.55
ETDA4 118.87 135.30 17.11
ETDA8 236.52 271.12 34.43
ETDA16 469.74 545.9890 69.11

PS 18.61 17.53 7.51

Table 3: Average time of each distance in milliseconds
spanned by activation function and by datasets on the au-
toencoder and supervised learning experiments respectively.

tively low.

Conclusion
We have introduced a new class of distances ETDA on
PDs for varying small parameter set A. These distances on
the one hand may extend the distance between vectoriza-
tions used as the basis of Persistence Statistics, and on the
other hand can in theory be enriched (at the cost of increas-
ing A) to approximate Sliced Wasserstein Distance between
PDs. In the low-#A range considered here, ETDA pseu-
dodistance computation has theoretical complexity bounds
lower than previous distances, with no additional overhead
time cost (contrary to most performant WD approximations
which require to construct extra data structures with an over-
head to the theoretical computational cost). The cost of
ETDA for low number of angles #A turns out to be only
marginally higher than the simpler PS-based metrics, and for
A1 (“basic ETD” case) it is actually substantially lower than
for PS due to optimizations specific to this case (see discus-

sion after Def. 2). In practice, computational time for ETDs
is considerably lower than state-of-art versions of WD or
SWD distances. At the same time, in terms of accuracy loss,
when tested on several common ML pipelines based on PDs,
we see that ETD has higher performance than PS, and com-
petitive accuracy performance compared to WD and SWD
on ML tasks, since with ETD we reach similar qualitative
description as with WD/SWD in Experiment 2, while PS-
metrics seem to have unreliable qualitative behavior. Thus
while having no strong theoretical guarantees of accuracy,
the loss of accuracy of ETDA, even for for low values of
#A, seems to be minimal compared to finer distances such
as WD or SWD distances.

In the comparison of our new implementation to SWD
with equal numbers of slices, we find that having been care-
ful with diagonal projections of the PD’s allows notable
gains for very low values of these numbers of slices (espe-
cially a = 1, 2, 4) compared to SWD. These are values of
major interest in our experiments, for which we find a qual-
itative gain of accuracy in our tasks.

In summary we find that ETDA-distances allow a com-
promise between low computational time and low accu-
racy losses, allowing to interpolate between accurate WD
or SWD metrics and simple PS-based metrics, by changing
an in-built complexity parameter #A. Furthermore, several
possibly task-specific modifications presented in Appendix
B can allow further adaptation of these distances to specific
tasks. We expect that the theoretical control as well as ex-
perimentation with a wider variety of tasks will be a fruitful
future avenue of research.
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