
MetaMix: Meta-State Precision Searcher for Mixed-Precision Activation
Quantization

Han-Byul Kim1,2∗, Joo Hyung Lee2, Sungjoo Yoo1, Hong-Seok Kim2

1Department of Computer Science and Engineering, Seoul National University, Seoul, Korea
2Google, Mountain View, California, USA

shinestarhb@gmail.com, rinolee@google.com, sungjoo.yoo@gmail.com, hongseok@google.com

Abstract

Mixed-precision quantization of efficient networks often suf-
fer from activation instability encountered in the exploration
of bit selections. To address this problem, we propose a novel
method called MetaMix which consists of bit selection and
weight training phases. The bit selection phase iterates two
steps, (1) the mixed-precision-aware weight update, and (2)
the bit-search training with the fixed mixed-precision-aware
weights, both of which combined reduce activation instabil-
ity in mixed-precision quantization and contribute to fast and
high-quality bit selection. The weight training phase exploits
the weights and step sizes trained in the bit selection phase
and fine-tunes them thereby offering fast training. Our ex-
periments with efficient and hard-to-quantize networks, i.e.,
MobileNet v2 and v3, and ResNet-18 on ImageNet show that
our proposed method pushes the boundary of mixed-precision
quantization, in terms of accuracy vs. operations, by outper-
forming both mixed- and single-precision SOTA methods.

Introduction
The ever increasing demand of efficiency requires the quan-
tization of efficient models, e.g., MobileNet-v1 (Howard
et al. 2017), v2 (Sandler et al. 2018) and v3 (Howard
et al. 2019), in lower precision. Mixed-precision quantiza-
tion looks promising due to the supports available on ex-
isting computing systems, e.g., 8-bit, 4-bit and 1-bit inte-
ger (NVIDIA 2018; Sharma et al. 2018).

In this work, we address per-layer mixed-precision quan-
tization for activation while utilizing a single bit-width of
weight. Mixed-precision quantization of efficient models,
however, is challenging in that the design space of bit-width
selection (in short, bit selection) is prohibitively large. Es-
pecially, each candidate of bit selection needs to be trained,
e.g., on ImageNet dataset, for evaluation, which incurs pro-
hibitively high training cost.

In order to address the training cost problem, we of-
ten explore bit selections while training the network
weights (Habi, Jennings, and Netzer 2020; Uhlich et al.
2020; Wang, Lu, and Blankevoort 2020; Wang et al. 2019;
Yang and Jin 2021; Huang et al. 2022; Shin et al. 2023; Wu
et al. 2018; Cai and Vasconcelos 2020; Yu et al. 2020). In

∗Work done during internship at Google
Copyright c© 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such a combination of bit selection and weight training, the
bit-width of each layer can be changed (due to bit selection)
across training iterations. Such a bit-width change during
model training incurs a new problem called activation in-
stability due to bit selection.

Figure 1 illustrates the input activation distribution be-
fore quantizer in the MobileNet-v2 model across different
bit-widths of weight and activation. The figure shows, for
a given activation bit-width, the activation distribution re-
mains consistent across different weight bit-widths, e.g., the
distribution of 8-bit activation across FP (full-precision), 8-
bit and 4-bit weights in the first columns. However, given a
bit-width (e.g., 8-bit) of weight, the distribution of the ac-
tivation significantly varies across different bit-widths (e.g.,
8-bit, 4-bit and 3-bit) of activations, which demonstrates ac-
tivation instability due to bit selection.

Activation instability, due to weight quantization, has
been reported in previous works (Park and Yoo 2020; Li
et al. 2019). The problem is encountered when single-
precision models are quantized in low bits. In this paper,
we report a new activation instability problem encountered
in the exploration of bit selections under model training. In
order to address these activation instabilities, we propose a
new training method called MetaMix. Our contribution is
summarized as follows.

• We demonstrate a new problem called activation insta-
bility due to bit selection which disrupts exploring bit se-
lection while training the network thereby offering sub-
optimal results.
• Our proposed MetaMix mitigates activation instability

problem. MetaMix consists of two phases: bit selection
and weight training. The bit selection phase offers fast
and high-quality bit selection by both bit-meta training
step and bit-search training step.
• In the bit-meta training step, we train the network

weights at multiple bit-widths to obtain a state called
meta-state which provides consistent activation distribu-
tion across different activation bit-widths. Then, in the
bit-search training step, on the fixed meta-state, we learn
architectural parameters for per-layer bit-width probabil-
ities. We iterate both steps, which proves effective for fast
and high-quality bit selection while mitigating the effect
of activation instability.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13132



8-bit activation 4-bit activation 3-bit activation

4-
bi

t w
ei

gh
t

8-
bi

t w
ei

gh
t

FP
 w

ei
gh

t

(a) 5th convolution inputs

8-bit activation 4-bit activation 3-bit activation

(b) 32nd convolution inputs

4-
bi

t w
ei

gh
t

8-
bi

t w
ei

gh
t

FP
 w

ei
gh

t

Figure 1: Input activation distribution before quantizer with 8-bit, 4-bit, and 3-bit single-precision activation quantization of
MobileNet-v2 (a) in 5th layer (depth-wise convolution in 2nd block) and (b) in 32nd layer (depth-wise convolution in 11th
block). Each row has the same fixed weight bit-width and each column has the same fixed activation bit-width. ‘FP’ represents
full-precision. In all the figures, x-axis is for values and y-axis is for frequency in log scale.

• In the weight training phase, we continue to train, i.e.,
fine-tune network weights and step sizes1 under the fixed
per-layer bit-widths previously determined in the bit se-
lection phase, which offers fast training due to the mixed-
precision-aware initialization of weights and step sizes
done in the previous phase.
• We evaluate our method on highly optimized and hard-

to-quantize networks, i.e., MobileNet-v2 and v3 and
ResNet-18 on ImageNet-1K dataset (Deng et al. 2009)
and show that ours offers state-of-the-art results.

Related Works
Uniform quantization (Zhou et al. 2016; Choi et al. 2018;
Esser et al. 2020) is hardware friendly since most of com-
pute devices, e.g., GPU, support uniform grids (or levels).
Non-uniform quantization (Zhang et al. 2019; Li, Dong, and
Wang 2020; Yamamoto 2021; Liu et al. 2022) optimizes
quantization grids in order to fit diverse distributions thereby
enabling lower bit-widths while requiring specialized com-
pute devices. In our work, we mainly target uniform method.

Trainable quantization: Training quantization parame-
ters (Choi et al. 2018; Jung et al. 2018; Esser et al. 2020) like
clip range or step size has a potential of lower precision and
thus its possibilities have been actively investigated. Most of
these works show good results in relatively redundant net-
works, e.g. ResNets, but fail to quantize highly optimized
networks, e.g. MobileNet-v2 and v3, in 4-bit without accu-
racy loss. Recently, PROFIT (Park and Yoo 2020) offers 4-
bit quantization in MobileNets with a special training recipe
to address activation instability due to weight quantization.
BASQ (Kim, Park, and Yoo 2022) enables low precision for
MobileNets via quantization hyper-parameter search.

1The size of quantization range is determined by (2b − 1) ∗ s in
case of b-bits and a step size of s.

Mixed-precision quantization: Existing mixed-
precision methods can be classified into four categories.①
Learning-based solutions (Uhlich et al. 2020; Wang, Lu,
and Blankevoort 2020; Yang and Jin 2021; Zhang et al.
2021) optimize bit-widths as learnable parameters trained
with gradient from task loss. SDQ (Huang et al. 2022)
adopts differentiable parameter for bit-width probability.
NIPQ (Shin et al. 2023) extends DiffQ (Défossez, Adi,
and Synnaeve 2022) to mixed precision. ② RL-based
solutions (Wang et al. 2019; Elthakeb et al. 2018) train
an RL agent which learns bit-width assignment policy. ③
NAS-based solutions (Wu et al. 2018; Guo et al. 2020; Yu
et al. 2020; Cai and Vasconcelos 2020) explore the design
space of bit selection and attempt to solve selection prob-
lems via evolutionary search, differentiation, etc. (Real et al.
2019; Liu, Simonyan, and Yang 2019; Cai, Zhu, and Han
2019; Hu et al. 2020).④ Metric-based solutions determine
bit-width based on statistics, i.e., Hessian spectrum (Dong
et al. 2019, 2020; Yao et al. 2021).

In this paper, we present a novel NAS-based mixed-
precision method. Ours tries to overcome the limitations of
existing NAS-based solutions, e.g., high search cost and sub-
optimal results due to activation instability.

Activation Instability on Mixed-Precision
Quantization

As Figure 1 illustrates, different activation bit-widths can
yield different distributions even after normalization. Fig-
ure 2 exemplifies how the activation distributions vary in the
process of bit selection under weight training. We change
the activation bit-width of one layer of MobileNet-v2 every
epoch of training by randomly picking the bit-width within
8-bit, 4-bit, and 3-bit. We experiment two cases of weight
bit-width: full-precision (top of Figure 2) and 4-bit (middle).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13133



0.1

0.2

0.3

0.4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

8-bit 3-bit 4-bit 3-bit 8-bit 4-bit 8-bit 4-bit 3-bit

iterations

4-bit3-bit
FP W

4-bit W

Metamix

Figure 2: Trend of batch norm statistics over iterations when
changing activation bit-width. We plot the running variance
of batch norm which follows 5th (depth-wise) convolution
layer in 2nd block (Top: FP weights, Middle: 4-bit weights,
Bottom: applying MetaMix with FP weights).

The figure shows the running variance of batch normaliza-
tion layer which follows the quantized depth-wise convolu-
tion layer inside of inverted residual block.

Figure 2 shows two trends in terms of activation instabil-
ity. First, activation statistics has strong correlation with bit-
width. Second, the correlation can be amplified when both
activation and weight are trained and quantized in low bits.
As the figure demonstrates, in mixed-precision quantization,
activation instability results from two sources, one from bit
selection and the other from weight quantization.

Activation instability due to weight quantization results
from the fact that the output activations of a layer can be-
come different, even when the same input activations are
used, due to weight update and subsequent weight quanti-
zation (Park and Yoo 2020). Activation instability due to bit
selection results from the fact that the lower precision tends
to incur the more variance in the quantized data. For details
about the instability, refer to the supplementary2.

As will be shown in our experiments, the activation insta-
bility can yield poor quality of mixed-precision network. It is
because, when the statistics of batch norm layer significantly
vary due to activation instability during training, it is chal-
lenging to obtain a representative activation statistics3 on the
candidate bit-widths (during bit selection) as well as the final
bit-widths (selected as a result of bit selection). In (Park and
Yoo 2020; Li et al. 2019), in order to cope with activation

2Refer to our arXiv version for the supplementary materials.
3Note that the activation statistics obtained in training time is

used in the batch norm layer in test time.

instability due to weight quantization, the authors propose
fine-tuning the quantized network (with a single precision)
to stabilize batch norm statistics at the end of training. How-
ever, according to our experiments (also to be mentioned
later), it does not prove effective in mixed-precision quanti-
zation. It is mainly because sensitive layers like depth-wise
convolution tend to be assigned high precision, which makes
activation instability due to weight quantization less signif-
icant on those layers thereby reducing the effects of fine-
tuning. In this paper, we propose MetaMix to tackle the acti-
vation instability in mixed-precision quantization. MetaMix
effectively stabilizes batch norm statistics (bottom of Fig-
ure 2) thereby providing representative activation statistics
(Figure 6) and high-quality bit selection (Figure 7).

MetaMix – a Meta-State Precision Searcher
Overall Training Flow
Figure 3 shows the overall training flow. Given a trained net-
work, our proposed MetaMix determines per-layer bit-width
of activations in the bit selection phase and fine-tunes net-
work weights and step sizes in the weight training phase.

Algorithm 1 shows the overall process of bit selection
phase. The bit selection phase iteratively executes two steps:
bit-meta training and bit-search training. The bit-meta train-
ing step trains network weights in a mixed-precision-aware
manner. The bit-search training step learns the architectural
parameters for per-layer bit-width probabilities on the fixed
mixed-precision-aware weights learned in the bit-meta train-
ing step. In the weight training phase, using the per-layer bit-
widths determined in the bit selection phase, we fine-tune
the weights and step sizes for both weights and activations.

Figure 3 also shows that, given a network, we augment
each layer with multiple branches, each for a specific bit-
width, for the purpose of bit selection.4 Figure 4 illustrates
the details of multi-branch block. We augment the quantizer
into B branches where B is the number of available bit-
widths. In the figure, we assume three bit-widths and thus
obtain three branches for 8-bit, 4-bit and 3-bit. Each branch
is also associated with an architectural parameter for the bit-
width probability. Unlike the multi-branch quantizers, we do
not duplicate but share weights across the branches.

Bit-Meta Training
Bit-meta training step learns network weights to be used in
the subsequent bit-search training. In order for bit-search to
be successful, the network weights need to be learned in
a mixed-precision-aware manner in order to facilitate the
training of architectural parameters for per-layer bit-width
probabilities in the bit-search training step. Since our prob-
lem of learning network weights in the bit-meta training
step is similar to that of meta-learning, e.g., MAML (Finn,
Abbeel, and Levine 2017), which tries to facilitate fine-
tuning for the given target task (analogous to the training
of architectural parameters for bit-width probabilities in the

4In the weight training phase, the original network architecture
is utilized since only one of the branches is selected in the bit se-
lection phase.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13134



Figure 3: MetaMix flow diagram and working mechanism.

Figure 4: MetaMix block structure design and operations on
bit selection phase. ‘Act’ represents activation.

bit selection phase in our case), we apply meta-learning to
learn our mixed-precision-aware weights and thus this step
is called bit-meta training.

Equation 1 shows the loss of bit-meta training. We se-
lect a bit-width bi among B candidate bit-widths in end-to-
end network and utilize it to build a single-precision network
during the forward pass of training. After obtaining all the
training losses (B losses from B candidate bit-widths), we
utilize the total average loss in Equation 1 to update the net-
work weight w.

L(w) =
1

B

B∑
i=1

L(w, bi) (1)

We call the mixed-precision-aware weights obtained from
the bit-meta training meta-state and the model with the
meta-state meta-state model as illustrated in Figure 3. Our
key idea behind the bit-meta training is to minimizing the
negative impact of activation bit-width to weight on bit se-
lection phase as much as possible. The mitigation is real-
ized by training the weights in the bit-meta training and fix-
ing them during the bit-search training. Thus, unlike exist-
ing methods (all the methods in Figure 5) which suffer from
activation instabilities by exploring bit selections under the
weights affected by bit-width, our proposed method can mit-
igate activation instabilities, by keeping model to search bit

Algorithm 1: Pseudo code of MetaMix (bit selection phase)
Input: the number of training iterations in 1-epoch T ,
batched input imageX , activation bit-width selection candi-
dates {b1, · · · , bB} and the number of candidates B, per-bit
& per-layer architectural parameter α, per-bit & per-layer
activation quantizer q(), network weight w, number of lay-
ers in model L, L1 regularization term r() and regularization
scale factor λr
Output: trained weights, determined per-layer bit selections
function B-META-FWD(w, input, bi, i)
x0 = input
for l = 1 : L do
xl = Forward(wl, ql,i(xl−1, bi))

return xL
function B-SEARCH-FWD(w, input, {b1, · · · , bB}, α)
x0 = input
for l = 1 : L do
q̄l(xl−1) =

∑B
i=1

exp(αl,bi
)∑B

j=1 exp(αl,bj
)
· ql,i(xl−1, bi)

xl = Forward(wl, q̄l(xl−1))

return xL
1: # Bit selection phase
2: for epoch = 1 : 2 do
3: for iter = 1 : T do
4: # Bit-meta training
5: for i = 1 : B do
6: out = B-META-FWD (w,Xiter, bi, i)
7: L(w, bi) = Loss(out)

8: L(w) = 1
B

∑B
i=1 L(w, bi)

9: w ← Backward(L(w)) # update weight
10: # Bit-search training
11: if epoch > 1 then
12: out = B-SEARCH-FWD(w,Xiter, {b1, ··, bB}, α)
13: L(w,α) = Loss(out)
14: L(α) = L(w,α) + λr · r(α)
15: α← Backward(L(α)) # update arch. param
16: for l = 1 : L do
17: bit sell = argmaxbαl # max α as per-layer bit
18: return W, bit sel # pass to next phase =0

selection on meta-state model, thereby outperforming the
existing methods as will be shown in the experiments.

Note that both the iteration of bit-meta and bit-search
training and the usage of fixed weights in bit-search training
contribute to the reduction of activation instabilities during
bit selection. Specifically, the bit-meta training can reduce
activation instability due to bit selection (Figure 6), which
benefits the subsequent bit-search training. In addition, the
usage of fixed full-precision weights in the bit-search train-
ing allows the bit-search training to avoid activation instabil-
ity due to both bit selection and weight quantization, which
contributes to the quality of selected bit-widths (Figure 7).

Bit-Search Training
Bit-search training learns an architectural parameter for per-
layer bit-width probability on each of the branches in the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13135



Phase Epochs Step / Network Train or Fix?

Bit
selection

epoch #1 Bit-meta training Train FP weight and sa with fixed α

epoch #2 Bit-meta training� Bit-search training
(two steps alternate for 1 iteration each)

Bit-meta: Train FP weight and sa with fixed α
Bit-search: Train α with fixed FP weight and sa

Weight
training

epoch #3 - #140 MobileNet-v2 and v3 Fine-tuning 4-bit weight, sa and sw
epoch #3 - #90 ResNet-18 Fixed per-layer activation bit-width (max α)

Table 1: Detailed training process (α: architectural parameters, sa: step sizes of per-layer activations, sw: step sizes of weights)

block structure of Figure 4. Given an activation x, its quan-
tized activation q̄(x) is calculated as follows.

q̄(x) =
B∑
i=1

exp(αbi)∑B
j=1 exp(αbj )

· qi(x, bi) (2)

Each branch with bi-bits is assigned an architectural pa-
rameter αbi . We first obtain the branch-specific quantized
activation, qi(x, bi) and then calculate q̄(x) by weighting the
branch activation with its softmax as shown in Equation 2.

Note that the branches are differently utilized on bit-meta
and bit-search training. As Figures 3 and 4 (left) show, in
bit-meta training, for a bit-width, only the associated branch
is utilized without architectural parameter αbi to build a
single-precision network where all the layers have the same
bit-width. However, in bit-search training, as Equation 2
and Figures 3 and 4 (right) show, each branch obtains its
own quantized result qi(x, bi) on the given input x. All the
branches are utilized by weighting softmax of assigned αbi .

Note also that, in this step, we utilize the model with fixed
full-precision weights, i.e., the fixed meta-state model. Thus,
during back-propagation, we update only the architectural
parameters to minimize the training loss without updating
the network weights. Equation 3 shows the training loss.

L(α) = L(w,α) + λr · r(α) (3)

where L(w,α) is the task loss and r(α) is an L1 regu-
larization term used to restrict the total number of bits or
computation cost within a given budget. λr is a scale factor.
Equation 4 shows r(α) when a computation cost constraint,
i.e., a target number of bit operations t bops is given.

r(α) =

∣∣∣∣∣∣
N∑
i=1

opi · bw ·
B∑
j=1

hs(αi)j · bj − t bops

∣∣∣∣∣∣ (4)

where opi is the number of operations on layer i and bw
is the weight bit-width.5 Since the per-layer bit-width of ac-
tivation is finally determined by the bit-width of the branch
having the top softmax score in Equation 2, it is required to
obtain the bit-width of the top performer branch while mak-
ing gradients flow through all the branches (Jang, Gu, and
Poole 2017) in order to learn architectural parameters α. To

5Note that we utilize a single bit-width of weight in the entire
network. Refer to supplementary for weight mixed-precision.

do this, we use straight-through-softmax trick on hs in Equa-
tion 4. As Equation 5 shows, hs outputs one-hot vector of ar-
chitectural parameter vector α (i.e., the element having the
largest softmax function is assigned to one while the others
to zero) in forward pass of training. However, in backward
pass, we approximate the onehot to softmax results thereby
allowing gradients to propagate through all the branches.

hs(αi) = onehot(αi)
∇αj hs(αi) ≈ ∇αj softmax(αi)

(5)

The mixed-precision quantization of MetaMix looks sim-
ilar to that of DNAS (Wu et al. 2018). Our key difference is
the different utilization of branches to mitigate negative ef-
fect of bit-width on activation instability. MetaMix forms a
combination of single bit-width end-to-end networks (Fig-
ure 3 left) to train the shared weights in bit-meta train-
ing. Then the trained model, i.e., the meta-state model is
fixed and only the architectural parameters of all bit-widths
are trained in bit-search training (Figure 3 right). However,
DNAS forms per-branch weights with assigned bit-width
and architectural parameters which can maximize the activa-
tion instability on training weights. After bit search, DNAS
samples diverse architectures and exhaustively trains many
model candidates, while MetaMix directly selects one final
architecture for fine-tuning (in the weight training phase),
which offers faster bit search. As a result, MetaMix enables
better mixed-precision model (71.94% in 32.86GBOPs vs.
70.6% in 35.17GBOPs on ResNet-18) and faster bit-width
searching (GPU hours of 13.4h vs. 40h on ResNet-18) and
re-training (fine-tuning in our case) compared to DNAS.

Experiments
Training Details
Table 1 shows the details of training in our proposed method.
As the table shows, in the first epoch, we perform bit-meta
training which learns full-precision weights and the step
sizes of activations. Specifically, on each branch of bit-width
(in Figure 4), the activation is quantized to its associated bit-
width while its associated step size is being trained. In the
second epoch, we iterate bit-meta and bit-search training. In
bit-search training, we fix the full-precision weights and step
sizes obtained in the bit-meta training and learn only the ar-
chitectural parameters for per-layer bit-width probabilities.
After the per-layer bit-width is obtained, in the weight train-
ing phase, we fine-tune both network weights and the step
sizes of weights and activations.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13136



Method Bits
(A/W)

1st 8-bit last 8-bit Top-1
(%)A W A W

Baseline FP 71.9
PACT 4/4 61.40
DSQ 4/4 64.80

LLSQ 4/4 67.37
LSQ 4/4 69.5

LSQ+BR 4/4 70.4
OOQ 4/4 X X X X 70.6
LCQ 4/4 X X 70.8
SAT 4/4 X X X 70.8

APoT 4/4 X X 71.0
PROFIT 4/4 X X X 71.56
PROFIT† 4/4 X X X X 70.93

N2UQ 4/4 72.1
N2UQ† 4/4 X X X 62.83
N2UQ† 4/4 X X X X 52.12

MetaMix 3.98/4 X X X X 72.60

Table 2: ImageNet comparison with single-precision quanti-
zation results on MobileNet-v2 (PACT (Choi et al. 2018),
DSQ (Gong et al. 2018), LLSQ (Zhao et al. 2020),
LSQ (Esser et al. 2020), LSQ+BR (Han et al. 2021),
OOQ (Nagel et al. 2022), LCQ (Yamamoto 2021), SAT (Jin,
Yang, and Liao 2019), APoT (Li, Dong, and Wang 2020),
PROFIT (Park and Yoo 2020), N2UQ (Liu et al. 2022)). In
column ‘Bits’, ‘A’ is for activation bit-width and ‘W’ is for
weight bit-width. ‘1st 8-bit’ and ‘last 8-bit’ columns show
whether the activation (A) or weight (W) of the 1st or last
layer is quantized to 8-bit or not. PROFIT† and N2UQ† are
re-implemented version.

We evaluate the proposed method on ImageNet-1K (Deng
et al. 2009). In MobileNet-v2 and v3, we use 8-bit, 4-bit,
and 3-bit as candidate bit-widths of activations. In ResNet-
18, we use 8-bit, 4-bit, and 2-bit as candidates. All weights
are quantized to 4-bit. We also quantize 1st and last layers
to 8-bit for both weights and activations, which offers fully
quantized networks. Further details are in supplementary.

Comparison on Single-Precision Quantization
In this section, we compare single-precision quantiza-
tion methods (PACT (Choi et al. 2018), LQ-Net (Zhang
et al. 2019), DSQ (Gong et al. 2018), LLSQ (Zhao et al.
2020), QIL (Jung et al. 2018), LSQ (Esser et al. 2020),
LSQ+BR (Han et al. 2021), OOQ (Nagel et al. 2022),
LCQ (Yamamoto 2021), SAT (Jin, Yang, and Liao 2019),
APoT (Li, Dong, and Wang 2020), PROFIT & DUQ (Park
and Yoo 2020), N2UQ (Liu et al. 2022)) and ours using
mixed-precision obtained with the target bit-width of 4-bit.6

Table 2 compares the accuracy of 4-bit level MobileNet-
v2. MetaMix (72.60%) gives better accuracy than PROFIT
(71.56%) and N2UQ (72.1%). When the 1st layer input is
quantized in PROFIT†, MetaMix outperforms it by a larger

6We use two decimal digits except some values having a single
decimal digit in the original papers.

Method Bits
(A/W)

1st 8-bit last 8-bit Top-1
(%)A W A W

Baseline FP 75.3
PACT 4/4 70.16
DUQ 4/4 X X X 71.01

PROFIT 4/4 X X X 73.81
PROFIT† 4/4 X X X X 71.57
MetaMix 3.83/4 X X X X 74.24

Table 3: ImageNet comparison with single-precision quan-
tization results on MobileNet-v3 (large) (PACT (Choi et al.
2018), DUQ & PROFIT (Park and Yoo 2020)).

Method Bits
(A/W)

1st 8-bit last 8-bit Top-1
(%)A W A W

Baseline FP 70.5
PACT 4/4 69.2

LQ-Net 4/4 69.3
DSQ 4/4 69.56

LLSQ 4/4 69.84
QIL 4/4 70.1

APoT 4/4 X X 70.7
LSQ 4/4 71.1
LCQ 4/4 X X 71.5

N2UQ† 4/4 71.91
N2UQ† 4/4 X X X 70.60
N2UQ† 4/4 X X X X NC

MetaMix 3.85/4 X X X X 71.94
MetaMix 3.85/3 X X X X 70.69
MetaMix 3.85/2 X X X X 69.45

Table 4: ImageNet comparison with single-precision quan-
tization results on ResNet-18 (PACT (Choi et al. 2018),
LQ-Net (Zhang et al. 2019), DSQ (Gong et al. 2018),
LLSQ (Zhao et al. 2020), QIL (Jung et al. 2018), APoT (Li,
Dong, and Wang 2020), LSQ (Esser et al. 2020), LCQ (Ya-
mamoto 2021), N2UQ (Liu et al. 2022)). ‘NC’ means not
converged.

margin (72.60% vs. 70.93%). N2UQ† shows large accuracy
drop with quantized inputs and weights of 1st and last layers.

Table 3 compares the accuracy of 4-bit level MobileNet-
v3. MetaMix outperforms PROFIT (74.24% vs. 73.81%)
and, especially, PROFIT† with 8-bit input by a large mar-
gin (74.24% vs. 71.57%).

Table 4 gives a comparison of 4-bit level ResNet-18.
The state-of-the-art method, N2UQ†, did not converged with
quantized inputs and weights of 1st and last layers. MetaMix
(71.94%) offers better accuracy than N2UQ† (70.60%) de-
spite the fact that N2UQ† adopts non-uniform quantization
while not quantizing the input activation of 1st layer.

Comparison on Mixed-Precision Quantization
Figure 5 shows the accuracy of mixed-precision quantization
methods in diverse BOPs (bit operations) budget. Note that
MetaMix uses only a restricted set of bit-widths (8-bit, 4-bit,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13137



(a) MobileNet-v2 (b) MobileNet-v3 (c) ResNet-18

Figure 5: ImageNet top-1 accuracy vs. BOPs on (a) MobileNet-v2, (b) MobileNet-v3 (large), (c) ResNet-18 (HMQ (Habi,
Jennings, and Netzer 2020), DQ (Uhlich et al. 2020), DJPQ (Wang, Lu, and Blankevoort 2020), HAQ (Wang et al. 2019),
NIPQ (Shin et al. 2023), Fracbits (Yang and Jin 2021), DDQ (Zhang et al. 2021), SDQ (Huang et al. 2022), DNAS (Wu et al.
2018), HAWQ-v3 (Yao et al. 2021), EdMIPS (Cai and Vasconcelos 2020) and state-of-the-art single-precision quantization
PROFIT (Park and Yoo 2020)). PROFIT† quantizes, in 8-bits, the input activation of 1st layer.

3-bit in MobileNet-v2 and v3, 8-bit, 4-bit, 2-bit in ResNet-
18) in search space while others use all the integer bits from
2-bit to 8-bit (HMQ, HAQ, Fracbits, DDQ, SDQ) or 2-bit to
10-bit (DQ, DJPQ, NIPQ). The figure shows that MetaMix
offers new state-of-the-art results while pushing the bound-
ary of mixed-precision quantization.

In MobileNet-v2, MetaMix (72.14% in 5.12GBOPs)
shows comparable result to the state-of-the-art SDQ
(72.0% in 5.15GBOPs) and NIPQ (71.58% in 5.34GBOPs)
which uses more choices of integer bit. The figure also
shows a comparison with the single-precision state-of-
the-art PROFIT. MetaMix shows larger gain, i.e., 72.39%
in 5.28GBOPs (MetaMix) vs. 70.93% in 5.39GBOPs
(PROFIT†), with the quantized 1st layer input.

As reported in PROFIT (Park and Yoo 2020), the depth-
wise layers, near the input and output of the network, exhibit
large activation instability due to weight quantization when
they are quantized to 4-bit. PROFIT shows early stopping of
those layers’ training at the end of training improves final
batch norm parameters. We also tried to apply PROFIT to
MetaMix and could not obtain improvements. It is because
those sensitive layers tend to be assigned high precision in
mixed-precision quantization (as in Figure 7 (b)) thereby re-
ducing their negative effect on activation instability.

In MobileNet-v3, MetaMix shows better accuracy
(73.09% in 3.29GBOPs) than mixed-precision NIPQ
(72.41% in 3.29GBOPs). Compared to PROFIT (73.81%
in 4.83GBOPs) and PROFIT† (71.57% in 3.79GBOPs),
MetaMix shows superior results (74.14% in 4.44GBOPs and
73.09% in 3.29GBOPs, respectively).

In ResNet-18, MetaMix pushes the boundary of mixed-
precision quantization towards smaller BOPs. Overall,
MetaMix offers by more than 0.5% better accuracy than
other methods including SDQ (71.7% in 35.87GBOPs) and
NIPQ (71.24% in 34.2GBOPs).

Comparison with SOTA mixed-precision quantization
SDQ applies strong regularization technique (i.e., 1.5% im-
provement on ResNet-18). In order to compare the sole ef-

Method Searching Re-training
GPU hours Epochs Epochs

DNAS 40 60 120
SPOS 312 120 240

EdMIPS 36 25 95
MetaMix 13.4 2 88

Table 5: Training cost comparison with NAS-based meth-
ods (DNAS (Wu et al. 2018), SPOS (Guo et al. 2020), Ed-
MIPS (Cai and Vasconcelos 2020)) on ResNet-18 (Note that
DNAS uses a small subset of ImageNet in searching).

fect of mixed-precision method itself, we compare MetaMix
with SDQ without applying strong regularization. In Fig-
ure 5 (a), on MobileNet-v2, SDQ without strong regular-
ization (71.38% on 5.15G) shows dropped accuracy from
SDQ with strong regularization (72.0% on 5.15G). However,
MetaMix shows better accuracy (72.14% on 5.12G) without
any regularization. Note that we also have far better accu-
racy in ResNet-18 (72.21% in 35.64GBOPs vs. 71.7% in
35.87GBOPs), even compared with strong regularization.

Training Cost

Table 5 compares training cost with NAS based mixed-
precision quantization methods. The table shows MetaMix
offers faster bit search (>3×) and re-training (weight train-
ing in MetaMix) than existing methods. The fast training ad-
vantages of MetaMix mostly come from the usage of meta-
state in the bit selection phase. Mixed-precision-aware ini-
tialization of weights in the weight training phase also con-
tributes to faster training than the re-training of NAS-based
methods which discard the weights obtained in bit search
and re-train from scratch with the selected bit-width.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13138



8-bit activation 4-bit activation 3-bit activation

4-
bi

t w
ei

gh
t

8-
bi

t w
ei

gh
t

FP
w

ei
gh

t

(a) 5th convolution inputs

8-bit activation 4-bit activation 3-bit activation

(b) 32nd convolution inputs

4-
bi

t w
ei

gh
t

8-
bi

t w
ei

gh
t

FP
w

ei
gh

t

Figure 6: Input activation distribution before quantizer with {8, 4, 3}-bit bit-meta training of MobileNet-v2. Formats are the
same as in Figure 1. All distributions show similar variances across different bit-widths of activations and weights in contrast
to Figure 1. This demonstrates that bit-meta training helps mitigate activation instability due to bit selection.

2

4

8

(b) MetaMix (72.39%, 5.28GBOPs)

2

4

8

(a) MetaMix without fixed meta-state (71.93%, 5.33GBOPs) 

Figure 7: Per-layer bit-width (yellow for depth-wise convo-
lution layers and blue for the others) of MetaMix obtained
(a) without and (b) with fixed meta-state on MobileNet-v2.
(b) also shows the sum of hessian trace divided by the num-
ber of per-layer operations (orange line).

Ablation Study
Effects of Meta-State Model
Figure 6 shows the effects of bit-meta training on activations
in MobileNet-v2. The activation distributions exhibit much
better consistency across different bit-widths than those in
Figure 1. The consistency enables stable batch norm statis-
tics when changing bit-width as in Figure 2 (bottom). As
such, the meta-state, which is the outcome of bit-meta train-
ing, offers consistent activation distributions across different
activation bit-widths, which helps the subsequent bit-search
training make high-quality bit selections by reducing the
negative effect of activation instability due to bit selection.

As explained before, we use the fixed full-precision
weights (i.e., meta-state) in bit-search training. Figure 6 also
demonstrates the benefit of full-precision weights since, in
the full-precision weight cases, activation distributions ex-

hibit much stronger consistency across different activation
bit-widths than in the cases of low bit-width weights.

Effects of Fixed Meta-State Model
In the second epoch of bit selection phase (in Table 1),
we iterate bit-meta training and bit-search training. The bit-
search training utilizes the fixed full-precision weights after
the previous bit-meta training. Thus, given the same mini-
batch, there is no activation instability due to both bit se-
lection and weight quantization in the subsequent bit-search
training, which enables the bit-search training to benefit
from the stable distribution of activation (as in the bottom
of Figure 2 and Figure 6) enabled by the bit-meta training.

Figure 7 illustrates the effects of fixed meta-state model
in bit-search training on MobileNet-v2. The figure compares
the per-layer bit-width results of two cases: (a) without and
(b) with the fixed meta-state. We set the same budget of
computation cost (5.3GBOPs) in both cases. When we do
not fix but train the network weights (after initializing them
with the meta-state) during bit-search training, as Figure 7
(a) shows, MetaMix tends to select 4-bit in most of layers.
However, as Figure 7 (b) shows, when the fixed meta-state
is used, MetaMix tends to select higher bit-width for early
and late depth-wise convolution layers which are known to
be difficult to quantize in 4-bit while lowering the bit-widths
of some intermediate layers, in return, finally meeting the
budget. As a result, MetaMix with the fixed meta-state in
bit-search training gives better bit selections (72.39%) than
without the fixed meta-state (71.93%). Figure 7 (b) also
shows the relationship between the selected per-layer bit-
width, Hessian, and OPs. For details, refer to supplementary.

Conclusion
In this paper, we presented a novel training method,
MetaMix, to address activation instability in mixed-
precision quantization. It consists of bit selection and weight

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13139



training phases. In the bit selection phase, we determine the
per-layer bit-width of activation by iterating the bit-meta
training and the bit-search training, which reduce activa-
tion instability due to both bit selection and weight quan-
tization thereby enabling fast and high-quality bit selection.
The subsequent weight training phase offers fast fine-tuning
of network weights and step sizes since they are initial-
ized in a mixed-precision-aware manner in the previous bit
selection phase. Our experiments on ImageNet show that
MetaMix outperforms, in terms of accuracy vs. cost, single-
and mixed-precision SOTA methods on efficient and hard-
to-quantize models, i.e., MobileNet-v2 & v3 and ResNet-18.

Acknowledgments
We appreciate valuable comments from Dr. Jiyang Kang,
Wonpyo Park, and Yicheng Fan at Google. This work was
supported in part by IITP grant funded by the Korean
government (MSIT, 2021-0-00105 Development of Model
Compression Framework for Scalable On-Device AI Com-
puting on Edge Applications).

References
Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Di-
rect Neural Architecture Search on Target Task and Hard-
ware. International Conference on Learning Representa-
tions (ICLR).
Cai, Z.; and Vasconcelos, N. 2020. Rethinking Differen-
tiable Search for Mixed-Precision Neural Networks. Com-
puter Vision and Pattern Recognition (CVPR).
Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P. I.-J.;
Srinivasan, V.; and Gopalakrishnan, K. 2018. PACT: Pa-
rameterized Clipping Activation for Quantized Neural Net-
works. arXiv:1805.06085.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A large-scale hierarchical im-
age database. Computer Vision and Pattern Recognition
(CVPR).
Dong, Z.; Yao, Z.; Cai, Y.; Arfeen, D.; Gholami, A.; Ma-
honey, M. W.; and Keutzer, K. 2020. HAWQ-V2: Hes-
sian Aware trace-Weighted Quantization of Neural Net-
works. Advances in Neural Information Processing Systems
(NeurIPS).
Dong, Z.; Yao, Z.; Gholami, A.; Mahoney, M.; and Keutzer,
K. 2019. HAWQ: Hessian AWare Quantization of Neural
Networks with Mixed-Precision. International Conference
on Computer Vision (ICCV).
Défossez, A.; Adi, Y.; and Synnaeve, G. 2022. Differen-
tiable Model Compression via Pseudo Quantization Noise.
Transactions on Machine Learning Research (TMLR).
Elthakeb, A. T.; Pilligundla, P.; Mireshghallah, F.; Yazdan-
bakhsh, A.; and Esmaeilzadeh, H. 2018. ReLeQ: A Re-
inforcement Learning Approach for Deep Quantization of
Neural Networks. Advances in Neural Information Process-
ing Systems (NeurIPS) Workshop on ML for Systems.
Esser, S. K.; McKinstry, J. L.; Bablani, D.; Appuswamy,
R.; and Modha, D. S. 2020. Learned Step Size Quantiza-

tion. International Conference on Learning Representations
(ICLR).
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In-
ternational Conference on Machine Learning (ICML).
Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.; and
Yan, J. 2018. LQ-Nets: Learned Quantization for Highly Ac-
curate and Compact Deep Neural Networks. International
Conference on Computer Vision (ICCV).
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.;
and Sun, J. 2020. Single Path One-Shot Neural Architecture
Search with Uniform Sampling. European Conference on
Computer Vision (ECCV).
Habi, H. V.; Jennings, R. H.; and Netzer, A. 2020. HMQ:
Hardware Friendly Mixed Precision Quantization Block for
CNNs. European Conference on Computer Vision (ECCV).
Han, T.; Li, D.; Liu, J.; Tian, L.; and Shan, Y. 2021. Im-
proving Low-Precision Network Quantization via Bin Reg-
ularization. International Conference on Computer Vision
(ICCV).
Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.;
Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; Le,
Q. V.; and Adam, H. 2019. Searching for MobileNetV3.
International Conference on Computer Vision (ICCV).
Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks for Mo-
bile Vision Applications. arXiv:1704.04861.
Hu, S.; Xie, S.; Zheng, H.; Liu, C.; Shi, J.; Liu, X.; and
Lin, D. 2020. DSNAS: Direct Neural Architecture Search
without Parameter Retraining. Computer Vision and Pattern
Recognition (CVPR).
Huang, X.; Shen, Z.; Li, S.; Liu, Z.; Hu, X.; Wicaksana, J.;
Xing, E.; and Cheng, K.-T. 2022. SDQ: Stochastic Differ-
entiable Quantization with Mixed Precision. International
Conference on Machine Learning (ICML).
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical Reparame-
terization with Gumbel-Softmax. International Conference
on Learning Representations (ICLR).
Jin, Q.; Yang, L.; and Liao, Z. 2019. Towards
Efficient Training for Neural Network Quantization.
arXiv:1912.10207.
Jung, S.; Son, C.; Lee, S.; Son, J.; Kwak, Y.; Han, J.-J.;
Hwang, S. J.; and Choi, C. 2018. Learning to Quantize Deep
Networks by Optimizing Quantization Intervals with Task
Loss. Computer Vision and Pattern Recognition (CVPR).
Kim, H.-B.; Park, E.; and Yoo, S. 2022. BASQ: Branch-
wise Activation-clipping Search Quantization for Sub-4-bit
Neural Networks. European Conference on Computer Vi-
sion (ECCV).
Li, R.; Wang, Y.; Liang, F.; Qin, H.; Yan, J.; and Fan, R.
2019. Fully Quantized Network for Object Detection. Com-
puter Vision and Pattern Recognition (CVPR).
Li, Y.; Dong, X.; and Wang, W. 2020. Additive Powers-of-
Two Quantization: An Efficient Non-uniform Discretization

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13140



for Neural Networks. International Conference on Learning
Representations (ICLR).

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Differ-
entiable Architecture Search. International Conference on
Learning Representations (ICLR).

Liu, Z.; Cheng, K.-T.; Huang, D.; Xing, E.; and Shen, Z.
2022. Nonuniform-to-Uniform Quantization: Towards Ac-
curate Quantization via Generalized Straight-Through Esti-
mation. Computer Vision and Pattern Recognition (CVPR).

Nagel, M.; Fournarakis, M.; Bondarenko, Y.; and
Blankevoort, T. 2022. Overcoming Oscillations in
Quantization-Aware Training. International Conference on
Machine Learning (ICML).

NVIDIA. 2018. NVIDIA turing architecture white
paper. https://images.nvidia.com/aem-dam/en-
zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.
Accessed: 2023-08-15.

Park, E.; and Yoo, S. 2020. PROFIT: A Novel Training
Method for sub-4-bit MobileNet Models. European Con-
ference on Computer Vision (ECCV).

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized Evolution for Image Classifier Architecture Search.
AAAI Conference on Artificial Intelligence.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. Computer Vision and Pattern Recogni-
tion (CVPR).

Sharma, H.; Park, J.; Suda, N.; Lai, L.; Chau, B.; Kim, J. K.;
Chandra, V.; and Esmaeilzadeh, H. 2018. Bit Fusion: Bit-
Level Dynamically Composable Architecture for Acceler-
ating Deep Neural Networks. International Symposium on
Computer Architecture (ISCA).

Shin, J.; So, J.; Park, S.; Kang, S.; Yoo, S.; and Park, E. 2023.
NIPQ: Noise proxy-based Integrated Pseudo-Quantization.
Computer Vision and Pattern Recognition (CVPR).

Uhlich, S.; Mauch, L.; Cardinaux, F.; Yoshiyama, K.; Gar-
cia, J. A.; Tiedemann, S.; Kemp, T.; and Nakamura, A. 2020.
Mixed Precision DNNs: All you need is a good parametriza-
tion. International Conference on Learning Representations
(ICLR).

Wang, K.; Liu, Z.; Lin, Y.; Lin, J.; and Han, S. 2019. HAQ:
Hardware-Aware Automated Quantization with Mixed Pre-
cision. Computer Vision and Pattern Recognition (CVPR).

Wang, Y.; Lu, Y.; and Blankevoort, T. 2020. Differentiable
Joint Pruning and Quantization for Hardware Efficiency. Eu-
ropean Conference on Computer Vision (ECCV).

Wu, B.; Wang, Y.; Zhang, P.; Tian, Y.; Vajda, P.; and
Keutzer, K. 2018. Mixed Precision Quantization of
ConvNets via Differentiable Neural Architecture Search.
arXiv:1812.00090.

Yamamoto, K. 2021. Learnable Companding Quantization
for Accurate Low-bit Neural Networks. Computer Vision
and Pattern Recognition (CVPR).

Yang, L.; and Jin, Q. 2021. FracBits: Mixed Precision Quan-
tization via Fractional Bit-Widths. AAAI Conference on Ar-
tificial Intelligence.
Yao, Z.; Dong, Z.; Zheng, Z.; Gholami, A.; Yu, J.; Tan,
E.; Wang, L.; Huang, Q.; Wang, Y.; Mahoney, M. W.; and
Keutzer, K. 2021. HAWQV3: Dyadic Neural Network
Quantization. International Conference on Machine Learn-
ing (ICML).
Yu, H.; Han, Q.; Li, J.; Shi, J.; Cheng, G.; and Fan, B. 2020.
Search What You Want: Barrier Panelty NAS for Mixed Pre-
cision Quantization. European Conference on Computer Vi-
sion (ECCV).
Zhang, D.; Yang, J.; Ye, D.; and Hua, G. 2019. Differen-
tiable Soft Quantization: Bridging Full-Precision and Low-
Bit Neural Networks. European Conference on Computer
Vision (ECCV).
Zhang, Z.; Shao, W.; Gu, J.; Wang, X.; and Luo, P. 2021.
Differentiable Dynamic Quantization with Mixed Precision
and Adaptive Resolution. International Conference on Ma-
chine Learning (ICML).
Zhao, X.; Wang, Y.; Cai, X.; Liu, C.; and Zhang, L. 2020.
Linear Symmetric Quantization of Neural Networks for
Low-precision Integer Hardware. International Conference
on Learning Representations (ICLR).
Zhou, S.; Ni, Z.; Zhou, X.; Wen, H.; Wu, Y.; and Zou, Y.
2016. Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv:1606.06160.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

13141


