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Abstract

Most recent state-of-the-art algorithms for handling noisy la-
bel problems are based on the memorization effect, which is
a phenomenon that deep neural networks (DNNs) memorize
clean data before noisy ones. While the memorization effect
can be a powerful tool, there are several cases where memo-
rization effect does not occur. Examples are imbalanced class
distributions and heavy contamination on labels. To address
this limitation, we introduce a whole new approach called
the interpolation with the over-fitted model (IOFM), which
leverages over-fitted deep neural networks. The IOFM uti-
lizes a new finding of over-fitted DNNs: for a given training
sample, its neighborhoods chosen from the feature space are
distributed differently on the original input space depending on
the cleanness of the target sample. The IOFM has notable fea-
tures in two aspects: 1) it yields superior results even when the
training data are imbalanced or heavily noisy, 2) since we uti-
lize over-fitted deep neural networks, a fine-tuning procedure
to select the optimal training epoch, which is an essential yet
sensitive factor for the success of the memorization effect, is
not required, and thus, the IOFM can be used for non-experts.
Through extensive experiments, we show that our method can
serve as a promising alternative to existing solutions deal-
ing with noisy labels, offering improved performance even in
challenging and realistic situations.

Introduction
Deep neural networks (DNNs) have achieved impressive
successes in many AI tasks but have suffered from collecting
massive clean-annotated samples such as ImageNet (Deng
et al. 2009) and MS-COCO (Lin et al. 2014). Since annotating
procedures are usually done manually by human experts, it is
expensive and time-consuming to get extensive clean labeled
data, which prevents DNNs from being trained successfully.

On the other hand, it is possible to collect large data easily
through internet search engines or hashtags (Fergus et al.
2010; Schroff, Criminisi, and Zisserman 2010; Xiao et al.
2015; Krause et al. 2016). However, the labels are often
inaccurate for such data. This has led to increased interest
in utilizing datasets with corrupted labels for constructing
accurate classifiers, known as the noisy label problem.

*These authors contributed equally to this work.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Histograms of the per-sample cross-entropy loss
distributions over an imbalanced CIFAR10 dataset with noisy
labels at the 1st and 10th epochs. We denote the ground-truth
and observed labels by ygt and y, respectively.

Memorization Effect A well-known approach for identi-
fying clean labeled data in the presence of noisy ones is to
utilize the memorization effect (ME), an interesting charac-
teristic of DNNs. The ME refers to the phenomenon where
DNNs tend to memorize clean labeled samples before noisy
ones during training (Arpit et al. 2017; Jiang et al. 2018).

With the ME, we can distinguish clean data from contami-
nated training data by noisy labels (Han et al. 2018). Its sim-
plicity but good performance has inspired numerous follow-
up studies, which have achieved great success (Huang et al.
2019; Wu et al. 2020; Mirzasoleiman, Cao, and Leskovec
2020; Pleiss et al. 2020; Cheng et al. 2021; Kim et al. 2021).
To the best of our knowledge, there are not many alternatives
that can substitute the ME.

Limitation of the Memorization Effect A problem with
the ME is that there exist several situations where the strength
of the ME diminishes. This occurs, for example, when dealing
with imbalanced or heavily contaminated ground-truth label
distributions. In such cases, we found that the ME may not
appear clearly, leading to suboptimal performance of the
follow-up methods in identifying clean labeled data. This is
because, in these situations, memorizing clean labeled data
first might not be a favorable direction to reducing the overall
loss function at early updates.

We provide a simple scenario where the ME does not occur.
From CIFAR10, we sample two classes, 7 and 9, and regard
the first and second ones as the majority and minority classes,
respectively. We gather all images in the first class and only
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Figure 2: An illustration of the IOFM method. Filled dots
represent target inputs, and dashed lines connect them to their
nearest neighbor inputs, chosen in the feature space, on the
input space. Two graphs present the values of an over-fitted
DNN model along each dashed line.

10% randomly sampled images in the second class to make
the label distribution be imbalanced. Then for each sample,
we flip the class label with probability 0.3 to generate noisy
labels. We train a PreActResNet18 (He et al. 2016) using the
polluted data and observe the per-sample loss values as the
training epoch proceeds, which is depicted in Figure 1.

During the early learning phase, the model consistently
memorizes majority data first rather than clean labeled data,
which indicates that the ME is not effectively taking place.
In this case, considering samples with small losses as clean
labeled ones would lead to misidentifying most minor data
as noisy labeled.

Overview of Our Method Let us consider an over-fitted
DNN and its feature space, i.e., the map of the highest hid-
den layer. For a given training sample (x∗, y∗), x∗ is located
close to other inputs sharing the label y∗ regardless of anoma-
lousness of y∗ on the feature space. On the other hand, when
we consider the original input space, the similarity between
x∗ and its neighbors, chosen from the feature space, would
be quite different on the original input space depending on
whether y∗ is clean or noisy. The similarity becomes smaller
when y∗ is noisy and vice versa.

Based on this observation of the discrepancy between the
similarities on the feature space and the input space, we pro-
pose a new and novel method, called interpolation with the
over-fitted model (IOFM), for identifying clean labeled sam-
ples in a training dataset. Conceptually, The IOFM measures
how similar the neighbors of a given datum chosen from the
feature space are on the input space and decides the datum
as clean when the similarity is large. The visual illustration
of our method is depicted in Figure 2. We will explain later
how to formalize this idea.

The IOFM has two notable advantages over the existing
methods based on the ME. Firstly, our method consistently
achieves superior results even in challenging scenarios where
memorization-effect-based methods struggle, such as imbal-
anced or heavily contaminated label distributions. We vali-
date this claim by providing a range of supportive empirical
results in the experimental section.

Secondly, our method overcomes numerical instability that

other existing ME-based methods often face (Liu et al. 2022a).
In particular, the performance of our method does not depend
much on the number of updates before making the decision.
In contrast, most methods based on the ME require careful
tuning of the number of initial updates since the final results
depend heavily on this choice. Given that the IOFM deliv-
ers robust and excellent performance without requiring the
delicate control of various tuning parameters, it serves as a
reliable and efficient substitute for ME-based approaches.

This paper is organized as follows. First, we provide a brief
review of related studies that address the noisy label problems.
Next, we explain detailed descriptions of the IOFM method.
Following that, we present the extensive experimental results,
including performance tests and ablation studies. Finally, we
conclude with closing remarks.

The key contributions of this work are as follows.
• We make a novel observation regarding over-fitted DNNs,

specifically the discrepancy between the similarities in
the feature space and the original input space for noisy
labeled data. Based on this observation, we propose a new
method called IOFM.

• Through extensive empirical experiments, we demonstrate
that the IOFM method outperforms existing approaches
in accurately identifying clean labeled data.

• Additionally, we illustrate that the IOFM can contribute
to constructing an accurate classifier in the presence of
noisy labeled data.

Related Works
We review related studies that focus on developing efficient
algorithms to identify clean data and achieve accurate classi-
fiers by exploiting the ME.

There have been approaches to learn accurate classifiers
with noisy labeled training data by loss correction or label cor-
rection techniques, pioneered by Patrini et al. (2017); Zhang
and Sabuncu (2018). The noise adaptive layer-based algo-
rithm (Goldberger and Ben-Reuven 2017) added additional
noisy channels that estimate the correct labels. Wang et al.
(2018); Thulasidasan et al. (2019) used the weighted soft-
max loss function, which is updated based on the current
model. There are studies to estimate ground-truth labels di-
rectly (Tanaka et al. 2018; Yi and Wu 2019). There is also
an attempt to propose a new loss function more robust to
noisy labels than standard loss functions (Wang et al. 2018;
Thulasidasan et al. 2019; Lyu and Tsang 2020).

Additionally, there is a line of works that ignore the infor-
mation of noisy labels rather than correcting them. The de-
couple method (Malach and Shalev-Shwartz 2017) proposes
a meta-algorithm called decoupling which decides when to
update. D2L (Ma et al. 2018) distinguishes clean labeled data
from noisy ones by employing a local dimensionality mea-
sure, and ELR (Liu et al. 2020) utilizes the faster gradient
vanishings of clean labeled samples at the early learning stage.
There are several algorithms to train noisy-robust prediction
models by using only a subset of the training data based
on their loss or prediction values (Han et al. 2018; Yu et al.
2019; Shen and Sanghavi 2019; Chen et al. 2019; Song, Kim,
and Lee 2019; Nguyen et al. 2020). Arazo et al. (2019); Li,
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Socher, and Hoi (2020) fit a two-component mixture model
on the per-sample loss distribution. Moreover, a couple of
works have attempted to develop improved measures com-
pared to using only per-loss values, aiming to fully exploit the
ME (Huang et al. 2019; Wu et al. 2020; Mirzasoleiman, Cao,
and Leskovec 2020; Pleiss et al. 2020; Cheng et al. 2021;
Kim et al. 2021).

Proposed Method
Preliminaries
For a given input vector x ∈ X ⊂ Rd, let y, ygt ∈ [K]
be its observed and ground-truth labels, respectively, where
[K] = {1, . . . ,K}. We say that the sample (x, y) is cleanly
labeled if y = ygt and noisily labeled if y ̸= ygt. Let Dtr =
{(xi, yi), i ∈ [n]} be a training data set with n samples, and
let C tr = {(x, y) ∈ Dtr : y = ygt} be the set of clean labeled
samples. Our goal is to identify the clean labeled subset C tr

from Dtr accurately. Throughout this paper, we abuse the
notation Dtr to denote training input data, i.e. Dtr = {xi}ni=1,
if there is no confusion.

Let p(x; θ) : Rd → RK be a discriminative DNN
parametrized by θ which maps an input x to a K-
dimensional conditional probability vector. We denote the
k-th component of p(x; θ) as pk(x; θ), that is, p(x; θ) =
(p1(x; θ), . . . , pK(x; θ))⊤. Also, let h(x; θ) be the feature
vector of p(x; θ), the output of the DNN’s highest hidden
layer. Furthermore, let p(x; θ̂) (abbreviated as p̂(x)) be a
DNN that perfectly memorizes Dtr and h(x; θ̂) (abbreviated
as ĥ(x)) be its feature vector.

For a given training sample (x∗, y∗) ∈ Dtr, we denote
(xnbd, ynbd) ∈ Dtr as another training sample that is the near-
est to (x∗, y∗) on the feature space, i.e., ĥ(X ), using the
Euclidean distance, that is,

xnbd = argminx∈Dtr\{x∗}

∥∥∥ĥ(x)− ĥ(x∗)
∥∥∥
2
.

Motivation: Neighborhood Analysis With an
Over-Fitted DNN
We analyze the two-moon dataset, a commonly used syn-
thetic dataset with two classes, depicted in Figure 3-Left. For
each data point, we randomly flip its label with probability
0.3 to create the noisy training dataset Dtr. We empirically
investigate the different behavior of p̂y∗(x) depending on the
cleanness of a given label y∗.

In Figure 3, we visualize the results. When the training
sample (x∗, y∗) is cleanly labeled, we observe that the nearest
neighbor input xnbd on the feature space is also located very
close to x∗ in the original input space, i.e.,X (depicted by the
dot symbols in Figure 3-Left). Thus, p̂y∗(x) remains large in
between x∗ and xnbd on the original input space (the upper
panel of Figure 3-Right).

Conversely, when y∗ is corrupted, the nearest neighbor on
the feature space is relatively distant from x∗ in the original
input space (indicated by the cross symbols in Figure 3-Left).
Hence, it is highly likely that some of clean labeled samples
are located between x∗ and xnbd in the input space. As a
result, there should exist a region between x∗ and xnbd in

Figure 3: Neighborhood analysis on noisy two-moon. (Left)
Scatter plot of the two-moon input data in the input space.
Clean and noisy inputs are marked with the dot and cross
symbols, respectively. Two target inputs are highlighted in
red, and their nearest neighbor inputs chosen in the feature
space are in black. (Right) Shapes of p̂y∗(·) between the two
target inputs and their nearest neighbors.

the input space where the value of p̂y∗(x) is small (the lower
panel of Figure 3-Right). We exploit this finding to develop a
new score to identify clean labeled data.

Proposed Algorithm
IOFM Score We propose a new score, the interpolation
with the over-fitted model (IOFM), which measures how dis-
tant the nearest neighbor of a given datum in the feature
space is in the original input space. From the analysis of two-
moon, we have noticed a distinct difference in the behavior
of p̂y∗(x) depending on its cleanness, which we will utilize
for developing the new score. That is, the area under p̂y∗(x)
over the intervals between x∗ and xnbd, defined as∫ 1

0

p̂y∗ (αx∗ + (1− α)xnbd) dα

is large when y∗ is clean while it is relatively small when y∗
is corrupted. Our proposed score is based on this quantity.

Instead of using the nearest neighbor, it would be, in gen-
eral, beneficial to use multiple neighbors. Let {xnbd,l}Ll=1 ⊂
{xi : yi = y∗, i ∈ [n]} \ {x∗} be L neighborhood training
inputs of x∗ in the feature space. Then, we can consider the
following averaged score

1

L

L∑
l=1

∫ 1

0

p̂y∗ (αx∗ + (1− α)xnbd,l)) dα. (1)

Finally, we approximate the integration in (1) by the trape-
zoidal rule as follows:

sIOFM(x∗, y∗) =
1

L

L∑
l=1

H∑
h=1

1

2H
(p̂y(xl,h−1) + p̂y(xl,h)) ,

(2)

where xl,h = H−h
H x∗ + h

Hxnbd,l and H is the number
of trapezoids, to have the IOFM score. A larger value of
the IOFM score sIOFM(x∗, y∗) indicates more strongly that
(x∗, y∗) is cleanly labeled. In our numerical studies, we set
(L,H) = (10, 3) by default, unless otherwise specified.
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Theoretical Analysis
For the success of the IOFM, there should exist a DNN having
the following three properties: 1) it can memorize the training
data well, 2) the model is as smooth as possible between two
correctly labeled data in the same ground truth labels and 3)
the model changes much between two data whose observed
labels are the same but at least one of them is mislabeled.
In this section, we show that there does exist a DNN with
a reasonable size satisfying these three desirable properties
under regularity conditions.

For simplicity, we consider the binary classification prob-
lem, i.e., Y ∈ {−1, 1}. The extension to multiclass problems
can be done without much hamper. Suppose that the training
data with ground-truth labels {(xi, y

gt
i ), i ∈ [n]} are per-

fectly separable by a smooth decision boundary g(x) with
the margin γ > 0, which can be expressed as follows:

{xi ∈ Dtr : ygt
i = 1} ⊂ {x : g(x) > γ} and

{xi ∈ Dtr : ygt
i = −1} ⊂ {x : g(x) < −γ}.

Additionally, let Dtr
s,t = {xi : yi = s, ygt

i = t} for (s, t) =
{−1, 1}2. For any two data points xj and xk, define the line
set L(xj ,xk) = {αxj +(1−α)xk, α ∈ (0, 1)}. We assume
that the line segment between any two correctly labeled data
does not cross the decision boundary in the sense that

L(xj ,xk) ⊂ {x : g(x) > γ} for xj ,xk ∈ Dtr
1,1

L(xj ,xk) ⊂ {x : g(x) < −γ} for xj ,xk ∈ Dtr
−1,−1

Let djk(xi) represent the distance of xi from L(xj ,xk), and
let αn = minj,k mini̸=j,k djk(xi) and βn = minj,k ∥xj −
xk∥. We assume that αn > 0 and βn > 0. It is not difficult to
show that αn = βn = O(n−d) with probability converging
to 1 if xis are independent realization of a random vector X
whose distribution has a density.

Given a function f : X → R, let f1 = f and f−1 = −f.
We define F(L, r, τ) as the class of DNNs with L many
layers, r nodes at each layer, and the sup norm bounded by
τ (i.e., supf∈F(L,r,τ) ∥f∥∞ ≤ τ ). The following theorem
proves the existence of a reasonably sized DNN that satisfies
the three desired properties. The proof is in Appendix A.

Theorem 1. Under the above regularity conditions, there
exists a DNN f ∈ F(L, r, τ) for sufficiently large L and r
depending on αn and βn as well as n such that f is a min-
imizer of the cross-entropy and satisfies the followings: 1)
yif(xi) = τ for all i ∈ [n], 2) fs(x) is constant on L(xj ,xk)
when xj ,xk ∈ Dtr

s,s and 3) minx∈L(xj ,xk) fs(x) = −τ
whenever xj ∈ Dtr

s,−s and xk ∈ Dtr
s,s ∪ Dtr

s,−s.

The success of the IOFM with a DNN in Theorem 1 can
be explained as follows. Note that (x∗,xnbd,l) have the same
observed labels (i.e. ynbd = y∗ = s). In turn, most xnbd,l are
cleanly labeled since it is assumed that the majority of data is
cleanly labeled. Thus, when y∗ is clean (i.e. x∗ ∈ Dtr

s,s), most
of xnbd,l are also included in Dtr

s,s. Thus, the property 2) of
Theorem 1 implies that p̂y∗(x) would remain large between
x∗ and most of xnbd,l, and so the score of the IOFM becomes

Figure 4: Averaged interpolation results of p̂s(·) between two
samples on noisy two-moon dataset. (From left to right) We
consider four settings regarding imbalanced ratio and noise
rate: (0.5, 0.1), (0.5, 0.3), (0.2, 0.1), and (0.2, 0.3).

Algorithm 1: IOFM
In practice, we set (T1, T2, L,H) = (150, 10, 10, 3).

input Training data: Dtr = {(xi, yi)}ni=1, a prediction
model and its feature function: p(·; θ) and h(·; θ), an
optimizer O, four integers: T1, T2, L, and H .

1: Sens ← ∅ // Ensemble IOFM score set
2: for (ep = 1 to T1) do
3: MixUp(f(·; θ),Dtr,O) // train p(·; θ) using MixUp
4: if (ep mod T2 = 0) then
5: S tmp ← ∅
6: for (i = 1 to n) do
7: si ← sIOFM(xi, yi) //IOFM score of (xi, yi)
8: S tmp ← append(S tmp, si) // append si to S tmp

9: end for
10: Sens ← Sens + S tmp

11: end if
12: end for
output Sens

large. Conversely, when x∗ ∈ Dtr
s,−s, the property 3) of

Theorem 1 implies that p̂y∗(x) becomes negative between
x∗ and most of xnbd,l, and so the score of the IOFM becomes
smaller relatively to those of clean labeled data.

Remark 2. While Theorem 1 guarantees the existence of a
desirable DNN for the IOFM, it does not ensure its obtain-
ability. Fortunately, there are increasing number of theoreti-
cal studies that over-fitted DNNs, trained by minimizing the
cross-entropy with the GD algorithm, have a capacity enough
to memorize training data while interpolating smoothly be-
tween data (Lyu and Li 2020; Chatterji, Long, and Bartlett
2021). Additionally, to demonstrate that such DNNs are in-
deed achievable, we present interpolation results of fs(x)
between xj and xk. We consider two cases: 1) xj ,xk ∈ Dtr

s,s

and 2) xj ∈ Dtr
s,−s and xk ∈ Dtr

s,s ∪ Dtr
s,−s. We analyze the

two-moon dataset with two ratios of imbalanced samples
(0.5&0.2) and two noise ratios (0.1&0.3). For each case,
we select ten pairs of (xj ,xk) and plot averaged interpola-
tion along with its 95% confidence band, whose results are
depicted in Figure 4.

Improvement of IOFM
MixUp Loss Function To enhance the smoothness of a
trained DNN more while keeping memorizing training data,
it would be helpful to use MixUp (Zhang et al. 2017), whose
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loss function is given as:

E
(x1,y1),(x2,y2)∼Dtr

E
λ∼B(α,α)

CE (Mixλ(y1, y2), p(Mixλ(x1,x2); θ)) ,

(3)

where CE(·, ·) is the cross-entropy, Mixb(u, v) := bu+ (1−
b)v, and B(α, α) is the beta distribution with a hyperparam-
eter α. Note that when α = 0, the MixUp loss function
reduces to the standard cross-entropy loss. Throughout our
experiments, we use B(α, α) with α = 1, i.e., the uniform
distribution. Advantages of using MixUp compared to the
standard cross-entropy is well illustrated in Figure 5.

Use of Multiple IOFM Scores We adopt the concept of
the AUM (Pleiss et al. 2020) to use multiple IOFM scores
obtained from various training epochs. During the training
process of the DNN until over-fitting, we calculate the IOFM
scores at different training epochs and take the average for
the final score. The effectiveness of this ensemble technique
will be presented in the experiment section.

Computation Time Reduction in Searching Neighbors
The computational cost of calculating neighbors for each
training sample can be a concern, especially with large-scale
training datasets. This issue can be addressed by only restrict-
ing the neighbor search among a small subset of randomly
sampled training data that share the same label. In practice,
we only consider 100 samples as neighborhood candidates
and have observed that this approach maintains the perfor-
mance of the IOFM while significantly reducing the compu-
tational time, whose results will be provided in the ablation
studies.

IOFM Algorithm Incorporating the above three modifica-
tions, the final algorithm of the IOFM method is summarized
in Algorithm 1.

Remark 3. One notable aspect of the IOFM is robustness
to the choice of the training epoch. As shown in Figure 5,
the accuracy of the IOFM remains stable after reaching
its peak around 60 epochs. Considering that other existing
methods based on the ME often struggle with the selection
of the optimal training epoch, the reliable performance of
the IOFM across different epochs boosts the practicability
of the IOFM in real data applications, which will be further
illustrated in the experiment section.

Further Extension Towards Constructing
Noise-Robust Classifiers
The IOFM can be applied to learn deep classification models
with noisy labeled data. In this study, we consider a com-
bination of the IOFM with the DivideMix (Li, Socher, and
Hoi 2020), one of the state-of-the-art methods for learning
classification models in the presence of noisy labels.

DivideMix decides the cleanness of each datum based on
the per-sample loss values, discards the labels of noisy data,
and applies a semi-supervised learning algorithm to treat
noisy data as unlabeled. Then, it repeat this procedure until
accurate prediction models are constructed. To combine the
IOMF and DivideMix, we simply substitute the per-sample

Figure 5: The effect of using the MixUp compared to the
standard cross-entropy. We report AUC values for two cases:
(Left) 30% and (Right) 50% symmetrically noisy CIFAR10.
We train a PreResNet18 (He et al. 2016) for each case.

losses used in the DivideMix with the IOFM scores. A de-
tailed explanation is provided in Appendix B.

We want to emphasize that the IOFM can be combined
with other ME-based learning frameworks, not just Di-
videMix. There are many possibilities to explore and further
develop improved learning algorithms with noisy labeled
data, which would be an interesting future work.

Experiments
Throughout extensive experiments, we empirically evaluate
the two aspects of the IOFM. First, we demonstrate the supe-
riority of the IOFM for difficult data such as imbalanced data
or heavily noisy cases. Second, we show that the IOFM is
really helpful to construct accurate deep classification models
in various cases. In each experiment, we report the averaged
results based on three trials with random initializations. We
use Pytorch framework using a single NVIDIA TITAN XP
GPU.

Datasets We provide a brief description of datasets we ana-
lyze. The detailed processes of corrupting labels to generate
noisy labeled data for each dataset are stated in Appendix C.

First, we analyze two small image datasets, CIFAR10&100
(Krizhevsky and Hinton 2009). Each data set consists of
50K training data and 10K test data with an input size of
3× 32× 32, all of which are cleanly labeled. To add noisy
labels to CIFAR10&100, we consider both symmetric and
asymmetric settings, as done in other studies (Zhang and
Sabuncu 2018; Yi and Wu 2019). Additionally, we explore
the instance-dependent noise (IDN, Cheng et al. (2021)) and
hand-crafted label scenarios (CIFAR10&100-N, Wei et al.
(2022b)).

We also analyze two large image datasets, Mini-ImageNet
(Vinyals et al. 2016) and Clothing1M (Xiao et al. 2015). We
use the subset of the Clothing1M dataset, comprising 48K
samples, with roughly 20% noisy labels whose ground-truth
labels are known. For Mini-ImageNet, we employ two noisy
versions, Blue and Red (Jiang et al. 2020). We note that all
results for large datasets are deferred to Appendix D.

Architecture We employ PreActResNet18 (He et al. 2016)
for CIFAR10&100, Inception-Resnet-v2 (Szegedy et al.
2017) for Mini-ImageNet, and ResNet50 (Szegedy et al.
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Dataset CIFAR100
Imbalance type Step Long-tail
Noise type symm. Asymm. symm. Asymm.
Noise rate (r) 0.3 0.5 0.2 0.3 0.5 0.2
Loss 0.958(0.698) 0.938(0.632) 0.826(0.674) 0.939(0.670) 0.896(0.609) 0.765(0.667)
Ens-Loss 0.969(0.945) 0.951(0.912) 0.829(0.816) 0.954(0.918) 0.915(0.873) 0.796(0.791)
Margin 0.952(0.689) 0.927(0.626) 0.847(0.684) 0.929(0.660) 0.887(0.603) 0.793(0.676)
AUM 0.966(0.851) 0.947(0.779) 0.871(0.802) 0.951(0.798) 0.911(0.727) 0.827(0.775)
sinIOFM 0.965(0.902) 0.949(0.874) 0.862(0.766) 0.953(0.872) 0.909(0.833) 0.826(0.723)
IOFM 0.973(0.958) 0.958(0.936) 0.911(0.910) 0.961(0.942) 0.927(0.905) 0.875(0.874)

Table 1: Comparison of the clean/noisy classification AUC values on the imbalanced CIFAR100. We list the best and final (in the
parentheses) results.

Dataset CIFAR10 CIFAR100
Noise type Symm. Asymm. Symm. Asymm.
Noise rate (r) 0.8 0.9 0.4 0.8 0.9 0.4
Loss 0.919(0.569) 0.836(0.556) 0.933(0.753) 0.847(0.557) 0.708(0.521) 0.621(0.552)
Ens-Loss 0.947(0.895) 0.867(0.763) 0.908(0.901) 0.873(0.704) 0.733(0.660) 0.642(0.638)
Margin 0.918(0.567) 0.834(0.554) 0.940(0.756) 0.833(0.553) 0.704(0.520) 0.634(0.553)
AUM 0.948(0.809) 0.869(0.687) 0.927(0.874) 0.874(0.693) 0.734(0.588) 0.677(0.637)
sinIOFM 0.924(0.699) 0.842(0.622) 0.912(0.825) 0.859(0.684) 0.714(0.567) 0.664(0.607)
IOFM 0.954(0.907) 0.887(0.811) 0.934(0.921) 0.890(0.806) 0.746(0.653) 0.713(0.712)

Table 2: Clean/noisy classification AUC results on heavily noisy CIFAR10&100. The best and final (in the parentheses) results
are listed.

2015) for Clothing1M, respectively. For the latter two ar-
chitectures, we utilize pre-trained models trained on Ima-
geNet. Details about the learning schedules can be found in
Appendix C.

Clean Data Identification Performance
We begin by assessing the accuracy of the IOFM in dis-
tinguishing clean labeled data from noisy ones and com-
pare it with other baseline methods. We assess the perfor-
mance using the clean/noisy classification AUC values on
the training data. Our focus is on two challenging scenarios:
1) datasets with imbalanced ground-truth label distributions,
and 2) datasets with highly corrupted labels.

We consider two versions of the IOFM: 1) the original
IOFM (IOFM) based on the ensemble of multiple IOFM
scores from multiple epochs, and 2) the IOFM based on
the single score at the last epoch (sinIOFM). We consider
sinIOFM since it is computationally simpler than the IOFM.

For baselines, we consider two methods based on the ME:
1) small-loss method (Loss), a frequently adopted strategy in
numerous studies that uses the per-sample-loss as the score,
and 2) AUM (Pleiss et al. 2020). We also include the en-
sembled version of the small-loss method (Ens-loss), using
averaged per-loss values from multiple epochs, as well as the
AUM without ensemble (Margin).

Imbalanced Case The original image datasets have bal-
anced labels. To create imbalanced data, we employ two sub-
sampling strategies: 1) the Step strategy and 2) the Long-tail
strategy, which are considered in Cao et al. (2019). Detailed
descriptions of these strategies are stated in Appendix C.

Table 1 presents the results for CIFAR100. The results for
CIFAR10 and Mini-ImageNet datasets, which are similar,
are included in Appendix D. In all cases, the IOFM domi-
nates all of the baselines as well as sinIOFM. Additionally,
sinIOFM is superior to Loss and Margin which do not use
ensemble techniques, while being competitive to Loss-Ens
and AUM both of which employ ensemble techniques. These
observations imply that ensemble techniques are generally
helpful for noisy label detection, despite their increased com-
putations, and sinIFOM is a useful alternative to the IOFM
when computing resource for the ensemble technique is not
sufficient.

Another interesting observation is that the performance
gap between the best and last results for the IOFM is minimal.
Even the last results of the IOFM are favorably comparable
with the best results of the baselines. This suggests that the
IOFM can be readily applied in practice without fine-tuning
the optimal epoch. In contrast, the optimal tuning of the epoch
is indispensable for the baselines which would be difficult
and thus hamper their applications to real data analysis.

Heavily Noisy Case Table 2 summarizes the results on
the heavily noised case on CIFAR10&100. Similar to the
imbalanced scenario, the IOFM performs well to achieve
the best or the second best performance for the all cases.
Furthermore, the differences of the best and last results of the
IOFM are the smallest, which means that the IOFM can be
implemented in practice without fine-tuning. We believe that
the IOFM could be an off-the-shelf algorithm for noisy label
detection.
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Dataset CIFAR10
Imbalance type Step
Noise type symm. Asymm.
Noise rate (r) 0.3 0.5 0.2 0.4
Cross-Entropy 72.72 68.99 81.19 74.95
Mixup 74.81 65.63 81.97 75.93
DivideMix 85.76 85.16 87.15 78.35
IOFM+DivideMix 88.19 88.07 87.35 78.73

Table 3: Comparison of the best test accuracies(%) of various
methods on the imbalanced CIFAR10.

Data set CIFAR10
Noise type Symm. Asymm.
Noise rate (r) 0.8 0.9 0.4
Cross-Entropy 62.9 42.7 85.0
Co-teaching+ (Yu et al. 2019) 67.4 47.9 -
P-correction (Yi and Wu 2019) 77.5 58.9 88.5
MLNT (Li et al. 2019) - 59.1 89.2
M-correction (Arazo et al. 2019) 86.8 69.1 87.4
PENCIL (Yi and Wu 2019) 77.5 58.9 88.5
DivideMix 92.90 71.34 93.36
ELR+ (Liu et al. 2020) 93.3 78.7 93.0
IOFM+DivideMix 93.48 81.20 93.41

Table 4: Comparison of the best test accuracies(%) of vari-
ous methods on highly corrupted CIFAR10. The results of
DivideMix are re-implemented by us.

Classification Accuracy Performance
We carry out test accuracy comparison of the modified Di-
videMix with the IOFM (IOFM+DivideMix) with other base-
line methods under various scenarios, including those consid-
ered in the previous section.1 We note that additional experi-
mental results, such as those in IDN scenarios, can be found
in Appendix D.

Table 3 shows the test accuracies of the best prediction
models for each method on the imbalanced CIFAR10 with
the step strategy. The results of the imbalanced CIFAR10
with the long-tail strategy and the imbalanced CIFAR100
with both strategies can be found in Appendix D. We can
clearly observe that the utilization of IOFM scores enhances
the original DivideMix in most cases and consistently dom-
inates the other approaches. Specifically, in situations with
symmetric noise, our method often outperforms the original
DivideMix by over 3%.

The results for heavily noisy cases are presented in Table
4. For existing methods, we include the prediction accura-
cies given in their respective papers. Similar to the imbal-
anced cases, the IOFM consistently improves DivideMix in
all scenarios and outperforms other state-of-the-art methods,
indicating the effectiveness of using IOFM to improve ex-
iting algorithms. Notably, in the case where 90% of labels
are corrupted in CIFAR10, our method demonstrates high
performance, enhancing DivideMix by nearly 10%.

1Our source code is based on the publicly available GitHub code
of DivideMix.

Dataset CIFAR10-N
Noise type Aggre Rand1 Worst
ERL+ (Liu et al. 2020) 94.83 94.43 91.09
CORES (Cheng et al. 2021) 95.25 94.45 91.66
NLS (Wei et al. 2022a) 91.97 90.29 82.99
SOP+ (Liu et al. 2022b) 95.61 95.28 93.24
ROBOT (Lin et al. 2023) 91.35 90.46 84.05
IOFM+DivideMix 95.71 95.62 93.04

Table 5: Comparison of the best test accuracies(%) of various
methods on CIFAR10-N.

We also explore CIFAR10&100 with hand-crafted anno-
tations, CIFAR10&100-N. The results for CIFAR10-N are
summarized in Table 5 and the results for CIFAR100-N are
in Appendix D. We present results over three noisy scenarios.
Our method consistently achieves the best or second-best
accuracies compared to other recent baselines in all cases.

Ablation Studies
We conduct additional experiments to gain further insights for
the IOFM. The summarized results of these experiments are
provided in In the following, we provide the summary of fur-
ther experiments, whose detailed results including tables and
figures are deferred to Appendix D. 1) Our method becomes
more accurate as the value of L increases, but it saturates
when L ≥ 80. 2) H = 3 is sufficient for approximating the
IOFM score. 3) For an imbalanced CIFAR10, the neighbor-
hood search using sampling takes only 2.13 seconds, which
is about 50 times faster compared to the non-sampling case.
Considering that training a model with the CE and MixUp
for a single epoch require 10.56 and 10.87 seconds, respec-
tively, the sampling strategy makes the total running time
of the IOFM comparable to other existing methods. 4) The
sampling method maintains the performance of the IOFM. 5)
The IOFM is robust to choosing models and optimizers.

Concluding Remarks
In this study, we have developed a novel approach named
the IOFM for identifying clean labeled samples within train-
ing data that contain noisy labels. Our approach is based on
a novel finding that there is a discordance between noisy
and clean labeled data with respect to the distribution of the
prediction values of an over-fitted DNN around the neighbor-
hood on the feature space. Combined with MixUp loss func-
tion, incorporating multiple scores, we empirically demon-
strated that the IOFM achieves superior results, particularly
in challenging and realistic scenarios, and does not suffer
from fine-tuning the optimal choice of training epoch.

It would be interesting to apply our methods to supervised
anomaly detection tasks (Pang et al. 2021). When the infor-
mation about the anomalousness (normal or abnormal) of
each training datum is available but not entirely accurate,
we can regard the task as the noisy label problem with an
extremely imbalanced label distribution. We expect that our
methods would successfully address this anomaly detection
problem.
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