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Abstract

We study the multi-agent multi-armed bandit (MAMAB)
problem, where agents are factored into overlapping groups.
Each group represents a hyperedge, forming a hypergraph
over the agents. At each round of interaction, the learner pulls
a joint arm (composed of individual arms for each agent)
and receives a reward according to the hypergraph structure.
Specifically, we assume there is a local reward for each hyper-
edge, and the reward of the joint arm is the sum of these local
rewards. Previous work introduced the multi-agent Thomp-
son sampling (MATS) algorithm and derived a Bayesian re-
gret bound. However, it remains an open problem how to de-
rive a frequentist regret bound for Thompson sampling in this
multi-agent setting. To address these issues, we propose an
efficient variant of MATS, the epsilon-exploring Multi-Agent
Thompson Sampling (ϵ-MATS) algorithm, which performs
MATS exploration with probability epsilon while adopts a
greedy policy otherwise. We prove that ϵ-MATS achieves a
worst-case frequentist regret bound that is sublinear in both
the time horizon and the local arm size. We also derive a
lower bound for this setting, which implies our frequentist
regret upper bound is optimal up to constant and logarithm
terms, when the hypergraph is sufficiently sparse. Thorough
experiments on standard MAMAB problems demonstrate the
superior performance and the improved computational effi-
ciency of ϵ-MATS compared with existing algorithms in the
same setting.

1 Introduction
Reinforcement learning (RL) is a fundamental problem in
machine learning, where an agent learns to make optimal
decisions in an environment by trial and error. A specific in-
stance of RL is the multi-armed bandit (MAB) problem, in
which an agent must choose between a set of arms, and each
of the arms has a random reward distribution. The agent’s
goal is to maximize its total reward over time. In standard
MAB problems, an agent is provided with a set of arms
[K] := 1, 2, ...,K , and each arm, when pulled, generates
a reward following a 1-subgaussian distribution with an un-
known mean. The agent’s objective is to maximize its overall
rewards within a specified time frame.

We consider the multi-agent MAB (MAMAB) problem,
where there are m agents. At each round of the interaction,
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each agent chooses an arm from its own arm set [K]. We
define the concatenation of these arms as the joint arm. The
bandit learner aims to coordinate with all agents and choose
joint arms that maximize the cumulative rewards obtained
from pulling those joint arms. It is important to note that
the size of the joint arm space is exponential in the number
of agents, specifically A = Km. This exponential growth
poses computational challenges in coordination and arm se-
lection. To address this issue, it was proposed to factor all
agents into ρ possibly overlapping groups (see wind farm
application), which forms a hypergraph over the agents with
each agent representing a node and each group representing
a hyperedge (an illustration can be found in Section 2 and
Figure 1). Instead of pulling the joint arm, the learner only
needs to pull the local arms, where each pulled local arm is
defined as the concatenation of the arms chosen by agents
within the same group. We assume each group has d agents,
and thus the total number of local arms Aloc is at most ρKd,
which is much smaller than the number of joint arms when
the groups are small. This approach gives rise to MAMAB
problems with specific coordination graph structures, which
have found practical applications in various domains such as
traffic light control (Wiering et al. 2000), warehouse com-
missioning (Claes et al. 2017), and wind farm control (Ge-
braad and van Wingerden 2015; Verstraeten et al. 2019).

We evaluate a learning strategy based on its cumulative
rewards obtained by interacting with the environment for a
total of T rounds. This evaluation can be equivalently mea-
sured by calculating the regret of the strategy compared to an
oracle algorithm that always selects the arm with the high-
est reward. Mathematically, the regret is defined as RT =

Tµ∗−E[
∑T

t=1 f(At)], where µ∗ is the mean of the optimal
arm and f(At) represents the reward obtained when pulling
the joint arm At at time t according to the given strategy.
The goal of the algorithm (or learner) is to coordinate with
all agents to determine the joint arm to pull in order to min-
imize this regret.

Thompson sampling (Thompson 1933), introduced by
Thompson in 1933, has emerged as an attractive algorithm
for bandit problems. It is favored for its simplicity of imple-
mentation, good empirical performance, and strong theoret-
ical guarantees (Chapelle and Li 2011; Agrawal and Goyal
2017; Jin et al. 2021a). The key idea behind Thompson sam-
pling is to sample reward estimates for each possible arm
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from a posterior distribution and select the arm with the
highest estimated value for pulling. In the single-agent set-
ting, Thompson sampling has been shown to achieve near-
optimal regret with respect to the worst possible bandit in-
stance (Agrawal and Goyal 2017). In the context of multi-
agent MAB with a coordination graph, the MATS (Multi-
Agent Thompson Sampling) algorithm was proposed by
Verstraeten et al. (2020). Unlike traditional Thompson sam-
pling, where estimated rewards are sampled for each joint
arm, MATS samples rewards for each local arm. This ap-
proach reduces the computational complexity, particularly
in cases where the coordination hypergraph is sparse. Ver-
straeten et al. (2020) provided a Bayesian regret bound for
MATS, which measures the average performance given the
probability kernel of the environment. However, in practi-
cal scenarios, it may not always be feasible for the learner
to possess knowledge or access to the probability kernel of
the environment. In such cases, the frequentist regret bound,
which measures the worst-case performance across all envi-
ronments, is often considered. It is worth noting that a fre-
quentist regret upper bound implies a Bayesian regret bound,
but not vice versa. Deriving a frequentist regret bound for
the MATS algorithm in the multi-agent MAB problem with
a coordination hypergraph remains an open question.

There are several technical challenges in the analysis of
the frequentist regret for MATS. The first challenge emerges
when applying the regret analysis of single-agent Thomp-
son Sampling (Agrawal and Goyal 2012) to our context.
This occurs due to a dependence issue among different joint
arms. Although rewards for each local arm are indepen-
dently drawn from their respective reward distributions, the
average rewards of the joint arms might be influenced by the
other joint arms when they share some local arms (see Sec-
tion 4 for detailed discussion). As a result, it is difficult to
analyze the distribution of the average reward of the optimal
arm or apply any concentration/anti-concentration inequali-
ties, while all existing frequentist regret analyses of Thomp-
son sampling (Agrawal and Goyal 2012, 2017; Jin et al.
2021a, 2022; Korda, Kaufmann, and Munos 2013; Kauf-
mann, Korda, and Munos 2012) heavily rely on the specific
form of the distribution of the average reward of the optimal
arm. A naive method of removing the dependence involves
maintaining a posterior distribution for each joint arm and
updating the distribution only when this joint arm is pulled.
However, this method could result in significant computa-
tional complexity and regret due to the large joint arm space.

In this paper, we tackle the issue using two strategies: 1)
We carefully partition the entire arm set into subsets, en-
suring each arm within a subset shares the same local arms
with the optimal arm, and 2) We conduct a regret analysis
at the level of local arms. Specifically, let 1 denote the op-
timal joint arm. We consider two events: 1) The local arm
1e of the optimal arm 1 is not underestimated, meaning the
posterior sample of 1e is larger than 1e −∆/ρ, and 2) The
local arm ae of the suboptimal arm a is not overestimated,
meaning the posterior sample of ae is lower than ae−∆/ρ.
Crucially, these events ensure that the sum of posterior sam-
ples for any suboptimal joint arms is lower than the sum of
posterior samples of 1, which leads to a lower regret.

Another challenge in our local arm level analysis arises
when we aim to establish a lower bound for the proba-
bility that the posterior sample of all local arms of 1 ex-
ceeds their means by ∆/ρ. Leveraging the original Thomp-
son Sampling analysis, we can establish this probability’s
lower bound as (∆/ρ)2ρ, leading to (ρ/∆)2ρ suboptimal
arm pulls. In terms of worst-case regret, this amounts to
O
(
T

2ρ−1
2ρ

)
. We improve this result by applying two innova-

tive techniques (for ease of presentation, these are elaborated
in full detail in Section 4), reducing the number of pulls to
Cρ, where C is a universal constant. Using these novel tech-
niques, we are able to offer a

√
T -type worst-case regret.

Main contributions. We summarize our main contribu-
tions as follows.
• We propose the ϵ-exploring Multi-Agent Thompson Sam-

pling (ϵ-MATS) algorithm, which only samples from the
posterior distribution with probability ϵ and acts greedily
with probability 1− ϵ. Note that even the local arm size is
exponentially large and thus ϵ-MATS is much more com-
putationally efficient than MATS in practice.

• We establish a frequentist regret bound for ϵ-MATS in the
order of Õ(

√
CρAlocT ), where C is some universal con-

stant and Õ(·) ignores constant and logarithmic factors.
Here ρ denotes the number of hyperedges, Aloc represents
the total number of local arms, and T is the time horizon.
Remarkably, when ϵ = 1, our result provides the first fre-
quentist regret bound for MATS (Verstraeten et al. 2020).
Despite having A joint arms, our regret bound grows as
O(

√
Aloc), which is much smaller than the total number

of joint arms.
• We also derive a lower bound in the order of
Ω(

√
AlocT/ρ) in the worst-case regret bound for our set-

ting. This lower bound implies that ϵ-MATS is optimal up
to constant and logarithmic factors when the the number
of groups ρ is small. Besides, we derive a lower bound for
the original Multi-agent Thompson Sampling. The lower
bound shows that Cρ regret is unprohibited for original
Multi-Agent Thompson Sampling, which further proves
the optimality of our regret bound Õ(

√
CρAlocT ).

• We further conduct extensive experiments on various
MAMAB problems, including the Bernoulli 0101-Chain,
the Poisson 0101-Chain, and the Gem Mining problem
(Roijers, Whiteson, and Oliehoek 2015; Bargiacchi et al.
2018; Verstraeten et al. 2020). Through empirical evalu-
ation, we demonstrate that the regret of ϵ-MATS can be
significantly lower compared to MATS as ϵ decreases, out-
performing existing methods in the same setting. We also
find that ϵ-MATS exhibits improves computational effi-
ciency compared to MATS.

2 Preliminary and Background
In this section, we present the preliminary details of our set-
ting. We also provide a notation table in Table 1 for the
convenience of our readers. We adopt the MAMAB (Multi-
Agent Multi-Armed Bandit) framework introduced by Ver-
straeten et al. (2020), where there are m different agents,
who are grouped into ρ potentially overlapping groups. Each
group can be represented as a hyperedge in a hypergraph,
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where the agents correspond to the nodes. Figure 1 provides
an example for easier visualization. During each round, ev-
ery agent i ∈ [m] selects an arm from their respective arm
set Ai, which is referred to as the ”individual” arm played
by agent i. For simplicity, we assume that each agent i has
the same number of arms, denoted as K = |Ai|. However, it
is straightforward to extend the framework to accommodate
varying numbers of arms |Ai|. The arms chosen by all agents
are concatenated to form a ”joint” arm denoted by a, which
belongs to the set A1 × · · · × Am. Consequently, the total
number of joint arms is defined as A := |A1 × · · · × Am|.

We define a ”local” arm as the concatenation of individ-
ual arms for a specific group e ∈ [ρ]. In other words, if
agents i1, . . . , id ∈ [m] form a hyperedge, then the local
arm ae ∈ Ai1 × · · · × Aid represents the d-tuple of arms
selected by these agents. We shall denote the set of local
arms for group e as Ae. Let Aloc be the total number of lo-
cal arms. It is straightforward to see that Aloc ≤ ρKd, with
equality when the groups don’t overlap. It is important to
note that the arm space grows exponentially with the num-
ber of agents, leading to computational challenges in arm
selection. To address this combinatorial complexity, we em-
ploy variable elimination techniques, which will be further
explained in the subsequent sections.

In this paper, the global reward f(a) associated with each
joint arm a is decomposed into ρ local rewards fe(ae),
where ae represents the local arm for group e. This de-
composition takes advantage of the hypergraph structure.
Specifically, for a given hypergraph with ρ hyperedges, we
have the relationship f(a) =

∑ρ
e=1f

e(ae). The mean re-
ward of a group e is denoted as µae = E[fe(ae)]. Con-
sequently, the mean reward of a joint arm a is given by
µa =

∑ρ
e=1µae = E[f(a)]. We assume the local rewards

fe(ae) to be 1-subgaussian, i.e. P(|fe(ae)| ≥ ϵ) ≤ 2e−ϵ2 .
As a result, the global reward f(a) is

√
ρ-subgaussian.

Our objective is to maximize the expected cumulative
global rewards obtained over a horizon of T rounds of inter-
action with the environment. Without loss of generality, we
assume that 1 is the optimal joint arm that yields the highest
expected global reward. It is important to note that the goal
is defined based on the performance of the best joint arm. In
other words, even if a local arm ae has a high local reward,
it may not be selected frequently by an optimal policy if it is
not part of joint arms with high mean rewards. To quantify
the performance of a bandit strategy, we use the concept of
regret denoted by RT , defined as the expected difference be-
tween the cumulative rewards obtained by always selecting
the optimal joint arm 1 and the actual rewards obtained by
following a specific strategy. Mathematically, the regret RT

is given by:

RT = E
[∑T

t=1(µ1 − f(At))
]
=

∑T
t=1(µ1 − µAt

), (2.1)

where At represents the joint arm selected at round t. The
regret captures the deviation from the cumulative rewards
that would have been obtained if the optimal joint arm was
chosen at each round. Minimizing regret is a key objective in
designing effective strategies for the hypergraph MAMAB
problem.

1

2

3

4

5
6

7

Figure 1: The hypergraph representation of a bandit envi-
ronment with 8 agents and 3 groups. Each agent is repre-
sented by a vertex numbered by {1, 2, . . . 7} and each group
is represented by a hyperedge. In this case, there are three
hyperedges with each with size 3. Letting ai be the action
taken by player i, the reward for the joint action (a1, . . . , a7)
is decomposed as f(a1, a2, . . . , a7) = f1(a1, a2, a6) +
f2(a2, a3, a4) + f3(a5, a6, a7), where ai is the individual
arm picked by agent i.

Remark 2.1. Although the results of our paper hold true re-
gardless of the coordination hypergraph structure between
the agents, they are most meaningful when the graph is
sparse (i.e. the number of agents in each group is small). In
particular, as there are A joint arms, if one were to consider a
different reward function for each arm, the regret and imple-
mentation complexity would be on the order of A. However,
our results exploit the fact that there are only Aloc local re-
ward functions, and thus our regret bound is in terms of Aloc,
which is much smaller than A when the groups are small.

3 The ϵ-Exploring Multi-Agent Thompson
Sampling Algorithm

In this section, we present the ϵ-exploring Multi-Agent
Thompson Sampling Algorithm (ϵ-MATS), whose pseudo-
code of ϵ-MATSis displayed in Algorithm 1. ϵ-MATS is
a combination of the MATS algorithm (Verstraeten et al.
2020) and a greedy policy. The idea of adding a greedy
policy to Thompson Sampling was initially proposed in Jin
et al. (2022) and subsequently explored in Jin et al. (2023).
In ϵ-MATS, at each round t ∈ [T ], similar to MATS, Algo-
rithm 1 maintains a posterior distribution N (µ̂ae(t), c

nae (t) )

for each local arm ae, e ∈ [ρ], where µ̂ae(t) is the aver-
age reward of arm ae, nae(t) represents the number of pulls
of arm ae, and c is a scaling parameter. Both MATS and ϵ-
MATS maintain estimated rewards θae(t) for each local arm,
and select the joint arm that yields the highest sum of esti-
mated local rewards, i.e., At = argmaxa∈A

∑
e∈[ρ] θae(t).

After receiving the true rewards, the algorithms update the
average reward µ̂ae(t) and the number of pulls of At ac-
cordingly.

The difference between MATS and ϵ-MATS lies in the way
they construct the estimated rewards θae(t) for each local
arm. In particular, MATS samples θae(t) from the respec-
tive posterior distribution for local arm ae. In contrast, the
proposed ϵ-MATS algorithm only samples θae(t) from the
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posterior distribution with a probability of ϵ, and it directly
sets θae(t) = µ̂ae(t), i.e., as the empirical mean reward.
Here ϵ ∈ (0, 1] is a user-specified parameter that controls
the level of exploration. For small values of ϵ, ϵ-MATS sig-
nificantly reduces the level of exploration in MATS, which
leads to improved computational efficiency.

ϵ-Exploring. The idea of ϵ-exploring is inspired from the
recent work of Jin et al. (2023). We prove in the next sec-
tion that ϵ-MATS achieves the same order of finite-time re-
gret bound as the MATS algorithm, even though it only
needs to perform a small fraction of TS-type exploration.
Furthermore, this algorithm runs faster since it doesn’t have
to sample each local arm from the Gaussian distribution as
frequently as MATS. We also show that for specific appli-
cations the regret of ϵ-MATS converges much faster than
MATS and other algorithms in the same setting.

Variable Elimination. In Line 9 of Algorithm 1, ϵ-MATS
needs to find the joint arm a that maximizes the sum of the
estimated local rewards. However, this step can be compu-
tationally expensive if naively implemented, as it would re-
quire considering all possible joint arms, resulting in a com-
plexity of O(Km) since the joint space size is Km. Fol-
lowing (Verstraeten et al. 2020), we use variable elimination
(Guestrin, Koller, and Parr 2001) to reduce this computation
burden. The key idea behind variable elimination is to opti-
mize over one agent at a time instead of summing all esti-
mated local rewards for each joint arm and then performing
the maximization. By doing so, we can significantly reduce
the computational burden. To explain how variable elimi-
nation works, let us rewrite the maximum sum of the local
estimates as follows:

max
a

f(a) = max
a

ρ∑
e=1

fe(ae) = max
a

[ ∑
ae∈a:am /∈ae

fe(ae)

︸ ︷︷ ︸
I1

+ max
ae:am∈ae

∑
ae∈a:am∈ae

fe(ae)︸ ︷︷ ︸
I2

]
, (3.1)

where am represents an individual arm of agent m. In Equa-
tion (3.1), we decompose the sum of the rewards into two
cases based on the optimization variable a. In I1, we con-
sider all the groups ae that do not contain agent m. The
maximization in this case is performed independently of the
selection of individual arm am. Thus, the remaining agents
can be optimized separately, resulting in a smaller optimiza-
tion problem involving at most m−1 agents. In I2, we focus
on the groups that contain agent m. Here, we aim to find the
individual arm am that maximizes the sum of the local re-
wards for the joint arms containing am. This sum depends
on the individual arms of the other agents that share a group
with agent m. After determining the optimal am, the rest of
the maximization is performed independently on the remain-
ing agents in I1. For more examples and details on variable
elimination, please refer to (Guestrin, Koller, and Parr 2001).

We have the following result for variable elimination.

Lemma 3.1. Let G1, . . . , Gρ be the set of agents that be-
long to group 1, . . . , ρ respectively. Then we have Aloc =

Algorithm 1: ϵ-Exploring Multi-Agent Thompson Sampling

1: Input: number of agents m, joint arm set ×m
i=1Ai, hy-

perparameters c and ϵ
2: for e ∈ [ρ],ae ∈ Ae do
3: Set nae(1) = 0 and µ̂ae(1) = 0
4: end for
5: for t = 1, ..., T do
6: for e ∈ [ρ],ae ∈ Ae do
7:

θae(t) =

{
∼ N (µ̂ae(t), c

nae (t)+1
) w.p. ϵ

= µ̂ae(t) w.p. 1− ϵ

8: end for
9: Pick At = argmaxa∈×m

i=1Ai

∑ρ
e=1θae(t)

10: Observe rewards fe(Ae
t ) for all e ∈ [ρ]

11: for e ∈ [ρ] do
12: Update µ̂Ae

t
(t) =

(
nAe

t
(t)µ̂Ae

t
(t) +

fe(Ae
t )
)
/(nAe

t
(t) + 1)

13: Set nAe
t
(t) = nAe

t
(t) + 1

14: end for
15: end for

∑ρ
e=1

∏
i∈Ge

|Ai|. At every round in Algorithm 1, follow-
ing the above variable elimination procedure, the com-
plexity of searching for the optimal arm is O(Aloc) =
O
(∑ρ

e=1

∏
i∈Ge

|Ai|
)
.

As we discussed, without variable elimination, one would
naively add up all the estimated local rewards θae for each
joint arm a and find the joint arm with the largest poste-
rior θa, leading to computational complexity in the order of
O(A) := O (

∏ρ
i=1 |Ai|) at each round, which grows expo-

nentially in the number of agents. In contrast, Lemma 3.1
indicates that by using variable elimination, ϵ-MATS only
needs Aloc computation to find the joint arm with the largest
estimated reward. Note that this theoretical guarantee is of
independent interest to MATS as well since none was given
in the original paper (Verstraeten et al. 2020).

4 Finite-Time Frequentist Regret Analysis
In this section, we present the proof of the frequentist regret
bound for ϵ-MATS.

Finite-Time Frequentist Regret Bound of ϵ-MATS
For convenience, we use ∆a = µ1 − µa to denote the sub-
optimality gap between joint arm a and the optimal joint
arm. We let ∆min = mina∈×m

i=1Ai\{1} ∆a and ∆max =
maxa∈×m

i=1Ai ∆a be the minimum and maximum gap re-
spectively. Moreover, let ∆ae = min{∆a | ae ∈ a} be the
minimum reward gap between joint arm a which contains
ae and 1. We present the regret of ϵ-MATS as follows.

Theorem 4.1. Let c = log T. The regret of ϵ-MATS satisfies
the following results.
1. There exists some universal constant C1 such that

RT ≤ C1(C1/ϵ)
ρρ2 log2(TAloc)/∆min
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+ C1

∑
e∈[ρ]

∑
ae∈Ae\{1e}

ρ2 log2(TAloc)

∆ae
+ C1∆max.

2. There exists some universal constant C2 such that

RT ≤ C2∆max + C2ρ

√
((C2/ϵ)ρ +Aloc)T log2(TAloc).

Note that when ϵ = 1, ϵ-MATS reduces to MATS, which
gives the first frequentist regret bound of MATS. In partic-
ular, our bound is in the same order as the Bayesian regret
bound (Theorem 1 (Verstraeten et al. 2020)) in terms of the
order of T and Aloc. Compared with the Bayesian regret of
(Verstraeten et al. 2020), our worst-case regret has an addi-
tional

√
log T factor because we inflate the variance of pos-

terior distribution by log T , which is a common trick in de-
riving the worst case regret bound of Thompson sampling
(Agrawal and Goyal 2017; Jin et al. 2021a). The derivation
of (C2/ϵ)

ρ is provided in the following subsection.

Technical Challenges in Frequentist Regret
Analysis and the Proof Outline
For simplicity, this part assumes ϵ = 1 (which reduces to
MATS given in Verstraeten et al. (2020)). First, let’s in-
troduce some notations to simplify our discussion. We de-
note Sr as the set of joint arms with gaps in the interval
(2−r, 2−r+1] and let δr = 2−(r+2). The regret incurred by
pulling the arms in Sr is represented as R(Sr). Furthermore,
we define Sr(t) as the set of joint arms not overestimated at
time t, formally given by:

Sr(t) = {a | a ∈ Sr, ∀e ∈ [ρ]

and ae ̸= 1e, θae(t) ≤ µae + δr/ρ}.
The regret R(Sr) can be expressed as

R(Sr)

≤ 8δr ·
(∑T

t=1 1{At ∈ Sr(t)}︸ ︷︷ ︸
I1

+
∑T

t=1 1{At /∈ Sr(t)}︸ ︷︷ ︸
I2

)
.

The term I2 is relatively straightforward. It’s important to
note that whenever we pull the arm At /∈ Sr(t), we in-
evitably pull a local arm whose posterior sample has not yet
converged to its true mean. After sufficient pulls of each lo-
cal arm (due to pull At with At /∈ Sr(t)), and by employ-
ing the maximal inequality for the reward distribution along
with the concentration bound for the posterior distribution,
we can demonstrate that the event At /∈ Sr(t) occurs with
an exceedingly small probability.

We now discuss how to bound term I1 and the associated
challenges. In the regret analysis for single agent Thomp-
son Sampling (TS) by Agrawal and Goyal (2012); Jin et al.
(2022), the term I1 is bounded as follows.

T∑
t=1

1{At ∈ Sr(t)} ≤ Eµ̂1,s

[
1/P(θ1,s ≥ µ1 − δr)

]
, (4.1)

where µ̂1,s is the empirical mean of arm 1 after being pulled
s times, θ1,s is the posterior sample from N (µ̂1,s, cρ/s),
and 1/P(θ1,s ≥ µ1 − δr) represents the expected maximum
number of posterior samples from N (µ̂1,s, cρ/s) such that
one sample is larger than µ1 − δr.

However, in a multi-agent setting, we can’t decompose it
in the same way due to two main reasons:

1. Since arm 1 might share some local arms with other joint
arms, the number of pulls of each local arm of 1 could be
different at time t. This contrasts with µ̂1,s in Equation
(4.1), where we assume that arm 1 is pulled exactly s
times.

2. More importantly, while the samples of each local arm
are independently drawn from their respective reward
distributions, a dependency issue arises in the case of the
joint arm. To explain, if each local arm 1e is pulled a
fixed number of times, Ne, the mean reward of 1 fol-
lows the

(√∑
e∈[ρ](Ne)

−1
)

-subgaussian with a mean

of
∑

e∈[ρ]µ̂1e,Ne. Leveraging the properties of subgaus-
sian random variables, it can be demonstrated that the
mean reward of joint arm 1 converges to its true mean as
the number of pulls increases. However, this is not true
when the pulls of local arms are history-dependent. In
such cases, MATS is more likely to pull suboptimal arms
that share overestimated local arms of 1 (the posterior
samples from these local arms could surpass those from
other underestimated local arms of 1). If this situation
occurs, µ̂1(t) is likely to be underestimated, making its
distribution challenging to ascertain. Therefore, it will be
difficult to derive the concentration results for µ̂1(t) and
consequently, the probability of θ1(t) ≥ µ1 − δr would
also be hard to establish.

We solve the above issues by 1: carefully dividing Sr into
subsets, where the arms in each subset share the same local
arms with 1 (total 2ρ subsets); and 2: bounding term I1 in
local arms level. These two methods allow us to prove that

T∑
t=1

1{At ∈ Sr(t)}

≤2ρ
τ∑

s=1

ρ∏
e=1

Eµ̂1e,s
[1/P(θ1e,s ≥ µ1e − δr/ρ)] + Θ(1). (4.2)

In the right hand of inequality, 2ρ is due to the existence of
2ρ subsets, and τ is defined as Θ(ρ2(log(TAloc))

2/(δr)
2).

The term Θ(1) exists because after each local arm is pulled
more than τ times, the event P (θ1e,s ≥ µ1e − δr/ρ) is
highly likely to occur. The cost for the non-occurrence of
this event can be bounded by Θ(1). Follow Agrawal and
Goyal (2012); Jin et al. (2022), one can show that

ρ∏
e=1

Eµ̂1e,s

[
1/P

(
θ1e,s ≥ µ1e − δr

ρ

)]
≤

(ρ√log T

δr

)2ρ
.

The above results are underwhelming, particularly in re-
gards to the worst-case regret, which is Õ(T 2ρ/(2ρ−1)). In
order to enhance these outcomes, we are introducing two in-
novative techniques:
1. First, deriving from the concentration bound, we obtain

that with high probability µ̂1e,s ≥ µ1e −
√
2 log T/s.

Instead of considering the expectation over the entire real
line for µ̂1e,s, we confine µ̂1e,s to the interval (µ1e −√

2 log T/s,∞).
2. Secondly, we marginally increase the variance of the

posterior distribution by log T . According to the anti-
concentration bound of the Gaussian posterior, the likeli-
hood of θ1e,s exceeding µ̂1e,s+

√
2 log T/s remains con-

stant. In conjunction with the condition µ̂1e,s ≥ µ1e −
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Figure 2: The hypergraph on a 0101-Chain with 10 agents.
Each hyperedge (a group of two agents) is denoted by a
black oval.

√
2 log T/s, we can ascertain that P(θ1e,s ≥ µ1e) is also

a constant.
With the above two methods, we can prove I1 ≤ τ · Cρ,
where C is some constant. Finally, by summing over all
possible values of r (i.e.,

∑
r R(Sr)), we derive our regret

bound.

Lower Bound on the Worst-Case Regret Bound
We now present some lower-bound results on the worst-case
regret in our setting. The first theorem states a lower bound
in terms of the horizon length T and the total number of
local arms across all groups Aloc when ρ > 0 is treated as a
fixed constant.
Theorem 4.2. For any policy π, there exists a mean vector
µ ∈ [0, 1]Aloc (where each component corresponds to the
mean of a local arm) such that Rn(π, νµ) = Ω(

√
AlocT/ρ).

Recall that our worst-case regret bound in Theorem 4.1
is Õ(

√
CρAlocT ), with C representing a universal constant.

According to Theorem 4.2, when the number of groups ρ
is constant, indicating a sparse hypergraph, our worst-case
regret for ϵ-MATS is nearly optimal up to constant and loga-
rithmic terms.

The next theorem shows the worst possible dependence of
the regret bound of ϵ-MATS on the number of groups, i.e., ρ.
Theorem 4.3. For c = ϵ = 1, there is a bandit instance
such that the regret of Algorithm 1 is Ω(Cρ), where C > 1
is some constant.

Theorem 4.3 shows that Cρ regret is unavoidable for orig-
inal Multi-Agent Thompson Sampling, which further proves
the optimality of our regret bound Õ(

√
CρAlocT ).

5 Experiments
In this section, we evaluate the proposed ϵ-MATS algo-
rithm on several benchmark MAMAB problems including
Bernoulli 0101-Chain, Poisson 0101-Chain, and Gem Min-
ing (Roijers, Whiteson, and Oliehoek 2015; Bargiacchi et al.
2018; Verstraeten et al. 2020). We compare ϵ-MATS with the
vanilla MATS (Verstraeten et al. 2020), MAUCE (Bargiac-
chi et al. 2018), and the random policy. We also provide a
thorough ablation study of ϵ-MATS to find the optimal trade-
off between greedy and Thompson sampling exploration in
practice. We run all our experiments on Nvidia RTX A5000
with 24GB RAM and each experiment setting is averaged
over 50 trials. Please refer to Appendix G for detailed ex-
perimental setup, ablation studies, and more experimental
results.

Bernoulli and Poisson 0101-Chain
In this subsection, we conduct experiments on the Bernoulli
and Poisson 0101-Chain problems, which are commonly

studied in the MAMAB literature (Bargiacchi et al. 2018;
Verstraeten et al. 2020). An illustration is provided in Figure
2, where the agents are positioned along a 1-dimensional
path forming a graph. Specifically, the graph consists of m
agents and m − (d − 1) edges (or groups), where d is the
number of agents within each hyperedge. The agents i to
i + d − 1 in the group i are connected to a local reward
function f i(ai, ai+1, ..., ai+d−1), where ai denotes the indi-
vidual arm of agent i. Each agent can has two arms: 0 and
1.

We consider two settings where d = 2 and d = 3 re-
spectively. For each setting, we conduct experiments for
two types of reward distributions (Bernoulli and Poisson),
which results in the Bernoulli 0101-Chain problem and the
Poisson 0101-Chain problem respectively. Due to the space
limit, we defer the details of the reward generation to Ap-
pendix G.

We first perform an ablation study to show the effect of
different ϵ on the performance of ϵ-MATS. The results are
presented in Figures 3(a) and 3(b). It can be seen that with ϵ
decreasing from 1 (this corresponds to the MATS algorithm)
to 0.1, the cumulative regret of ϵ-MATS also becomes lower.
When ϵ gets smaller than 0.1, the regret rapidly increases
due to insufficient exploration. In the rest of the experiments
in this subsection, we fix ϵ = 0.1 for the best performance.
We also compare the runtime complexity of ϵ-MATS for dif-
ferent ϵ, which is presented in Figures 3(c) and 3(d) for the
setting d = 2 and d = 3 respectively. In particular, we cal-
culate the ratio between the runtime of ϵ-MATS and MATS
(ϵ = 1) for running 1000 iterations. Figure 3(c) shows that
lower value of ϵ decreases the runtime complexity of ϵ-
MATS in both Bernoulli 0101 and Poisson 0101 problems.
Comparing Figure 3(c) and Figure 3(d), we can see that the
computational efficiency is adversely affected by the size of
each group. In Figure 4, we compare the regret of ϵ-MATS
with MATS, MAUCE, and Random for both Bernoulli 0101
and Poisson 0101 tasks, which demonstrate that ϵ-MATS can
significantly outperform baseline methods.

6 Conclusion and Future Work
In this paper, we studied the problem of multi-agent multi-
armed bandits. We proposed ϵ-MATS which combines the
MATS exploration with probability ϵ and greedy exploita-
tion with probability 1 − ϵ. We provided a frequentist fi-
nite time regret bound for ϵ-MATS, which is in the or-
der of Õ(

√
CρAlocT ). When ϵ = 1, our result yields the

first frequentist regret bound for MATS in the coordination
hypergraph setting (Verstraeten et al. 2020). We also de-
rived a lower bound for this environment in the order of
Ω(

√
AlocT/ρ), implying ϵ-MATS is near optimal when ρ

is assumed to be small, i.e., the coordination hypergraph is
sparse. Empirical evaluations demonstrate the superior per-
formance of ϵ-MATS compared with existing algorithms for
MAMAB problems with a coordination hypergraph.

Our experimental findings present a notable observation:
the performance of ϵ-MATS frequently surpasses that of
MATS. Nevertheless, the regret bound presented in our main
theorem suggests that MATS has a slightly better worst-
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Figure 3: Ablation study on ϵ-MATS. (a) and (b): Regret performance (m = 10, and d = 2) with different ϵ in Bernoulli 0101
and Poisson 0101 tasks. Note when ϵ = 1.0, ϵ-MATS reduces to MATS. (c) and (d): The relative computational time of ϵ-MATS
with different ϵ compared with MATS.
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(b) Poisson 0101: m = 10, d = 2

0 500 1000 1500 2000 2500 3000

time step
0

200

400

600

800

1000

1200

cu
m

ul
at

iv
e 

re
gr

et

(c) Bernoulli 0101: m = 10, d =
3
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(d) Poisson 0101: m = 10, d = 3

Figure 4: Regret performance compared with other algorithm baselines in Bernoulli 0101 and Poisson 0101 with different
agents in a group (d = 2 or d = 3).

case regret bound compared to ϵ-MATS. This discrepancy
offers a compelling avenue for future research to explore the
potential for ϵ-MATS to achieve the same regret bound as
MATS. Additionally, while this paper focuses on the worst-
case regret bound, it would be intriguing to investigate if ϵ-
MATS could exhibit a more favorable regret bound in some
easier bandit instances, leading to the analysis of instance-
dependent regret bounds. Finally, it would be intriguing to
investigate the potential of applying the core concepts of co-
ordination hypergraph and epsilon-exploring in our paper to
enhance Thompson sampling-based algorithms within more
complex settings, such as linear bandits, neural contextual
bandits, and Markov decision processes (Xu et al. 2022b,a;
Zhang et al. 2020; Ishfaq et al. 2023).

Broader Impact
This work has the potential to positively influence practical
implementations in algorithms for multi-agent decision sys-
tems such as wind farm management. The algorithm demon-
strates effective handling of the exponentially large joint ac-
tion space, which could be leveraged to mitigate complexity
in other combinatorial problems. Thus the insight of the pro-
posed algorithm might help reduce the human resource and
computational resources in such problems.
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