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Abstract

This paper investigates a new, practical, but challenging prob-
lem named Non-exemplar Online Class-incremental contin-
ual Learning (NO-CL), which aims to preserve the discerni-
bility of base classes without buffering data examples and
efficiently learn novel classes continuously in a single-pass
(i.e., online) data stream. The challenges of this task are
mainly two-fold: (1) Both base and novel classes suffer from
severe catastrophic forgetting as no previous samples are
available for replay. (2) As the online data can only be ob-
served once, there is no way to fully re-train the whole model,
e.g., re-calibrate the decision boundaries via prototype align-
ment or feature distillation. In this paper, we propose a novel
Dual-prototype Self-augment and Refinement method (DSR)
for NO-CL problem, which consists of two strategies: 1)
Dual class prototypes: vanilla and high-dimensional proto-
types are exploited to utilize the pre-trained information and
obtain robust quasi-orthogonal representations rather than ex-
ample buffers for both privacy preservation and memory re-
duction. 2) Self-augment and refinement: Instead of updat-
ing the whole network, we optimize high-dimensional proto-
types alternatively with the extra projection module based on
self-augment vanilla prototypes, through a bi-level optimiza-
tion problem. Extensive experiments demonstrate the effec-
tiveness and superiority of the proposed DSR in NO-CL.

Introduction
With the ubiquitously prevalent personal smart devices, a
massive amount of data are being continually generated,
which requires adaptive machine learning models to learn
new tasks without forgetting the old knowledge (De Lange
et al. 2022; Zhu et al. 2021a, 2022). In privacy-sensitive on-
line scenarios, a practical Online Class-incremental contin-
ual Learning (OCL) system is expected to learn novel classes
incrementally while keeping the prior knowledge without
restoring any streaming data due to privacy and computa-
tion concerns. However, (1) existing OCL solutions heavily
rely on the example buffer for replay to re-calibrate the deci-
sion boundaries, between data batches and tasks (Fini et al.
2020). (2) OCL mainly concerns the setting of totally online
continual learning, which is a relatively uncommon scenario
for dynamic environments, and the state-of-the-art method
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Figure 1: The overall concept of proposed NO-CL (bottom),
compared with OCL (top) and NE-CL/FS-CL (middle).

(Gu et al. 2022) achieves impractical low accuracy (<20%
for CIFAR100 with 1000 buffer size), which significantly
hinders the deployment of OCL methods.

Considering dynamic continual learning scenarios, we in-
vestigate a new, practical, yet challenging protocol named
Non-exemplar Online Class-incremental continual Learn-
ing (NO-CL), as demonstrated in Figure 1(bottom). Con-
cretely, in practice, an intelligent system conducts online
class-incremental learning without restoring stream exam-
ples, while utilizing and preserving the knowledge from pre-
vious training. Such under-explored practical settings are in
line with Non-Exemplar Class-incremental continual Learn-
ing (NE-CL) (Yu et al. 2020; Zhu et al. 2021a, 2022) and
Few-Shot Class-incremental Learning (FS-CL) (Zhu et al.
2021d; Kalla and Biswas 2022; Peng et al. 2022), as shown
in Figure 1(middle), where base classes are well trained and
retained, but novel classes need to be explored. However,
NE-CL conducts class-incremental learning without exam-
ple buffers in an offline fashion, which enables the network
to align the prior information (i.e., prototypes and/or fea-
tures) gradually like semantic drift compensation (Yu et al.
2020), dual augmentation (Zhu et al. 2021a), and prototype
selection (Zhu et al. 2022). FS-CL aims to continually learn
with few shot samples also in an offline way, like gradu-
ally refining the prototypes (Zhu et al. 2021d), finetuning
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the classifier heads (Kalla and Biswas 2022), or focusing
on training robust embedding network (Peng et al. 2022).
Therefore, NE-CL and FS-CL methods can hardly solve the
NO-CL problem. Figure 2 demonstrates the brief quantita-
tive comparisons of OCL, FS-CL, NE-CL, and the proposed
method in the same NO-CL training protocols.

To solve the proposed NO-CL problem, we devise a sim-
ple but effective method called Dual-prototype Self-augment
and Refinement (DSR). As the single-pass data can not be
revisited, unlike previous example-base continual learning
methods, directly finetuning the feature extractor will cause
severe catastrophic forgetting. Therefore, we freeze the pre-
trained feature extractor and translate the NO-CL problem
to bi-level optimizing (Sinha, Malo, and Deb 2018) privacy-
preserved prototypes with the extra projection module.
Specifically, vanilla and high-dimensional prototypes (V-P
and H-P) of base classes are restored to preserve learned in-
formation. For incremental sessions, direct calculation and
reasoning V-P tends to accumulate errors and fails to fully
explore online data. The project module is introduced to
translate V-P to the high-dimensional embedding (Gayler
2004; Kanerva 2009; Karunaratne et al. 2020), which has
been proven robust to noise. In detail, a random vector from
high-dimensional embedding is quasi-orthogonal to other
vectors with high probability (the “curse” of dimensional-
ity (Kanerva 2009)), and fine-tuning the prototype in the
high-dimensional embedding provides a sufficiently large
capacity to accommodate novel classes over time, with mini-
mal interference with learned knowledge. Therefore, we for-
mulate a bi-level optimization strategy to optimize the ex-
tra high-dimensional prototypes alternatively with the pro-
jection module, to refine the decision boundaries and re-
calibrate projection module based on optimized prototypes.
In summary, our contributions are as follows:

1) We propose a novel yet practical problem called Non-
exemplar Online Class-incremental continual Learning
(NO-CL), where an intelligent system with pre-trained
base classes information can efficiently learn novel
classes continually from the single-pass (i.e., online) data
stream, without example buffers. Meanwhile, previous
knowledge should also be preserved.

2) We develop a novel Dual-prototype Self-augment and
Refinement (DSR) method, which transfers training the
whole network to bi-level optimizing prototypes and the
extra projection module.

3) Extensive quantitative results demonstrate DSR performs
significantly better than existing OCL, NE-CL, and FS-
CL methods under the same training protocols of pro-
posed NO-CL, both in accuracy and efficiency.

Related Work
Class-incremental Learning (CL) Existing methods can
be generally divided into three categories: regularization-
based (Aljundi et al. 2018; Lee et al. 2017; Lopez-Paz
and Ranzato 2017; Chaudhry et al. 2018), structure-based
(Lee et al. 2020; Mallya and Lazebnik 2018; Kang et al.
2022), and replay-based methods (Douillard et al. 2020; Hu

Figure 2: Class-wise accuracy, online training time, and
memory overhead comparisons on the CIFAR100 with the
same protocols of NO-CL. Stat-of-the-art OCL (SCR(Mai
et al. 2021), DVC(Gu et al. 2022), and OCM (Guo, Liu, and
Zhao 2022), all with 1000 example buffer), FS-CL (ALICE
(Peng et al. 2022)), and NE-CL (SSRE (Zhu et al. 2022))
methods are illustrated. Online training batchsize is 10.

et al. 2021). The detailed review can refer to (De Lange
et al. 2022; Mai et al. 2022). Recently, some practical yet
challenging settings of class-incremental learning, including
Online Class-Incremental continual Learning (OCL), Non-
Exemplar Class-incremental continual Learning (NE-CL),
and Few-Shot Class-incremental Learning (FS-CL) are also
proposed. Here we give a brief introduction.

Online Class-incremental continual Learning (OCL)
OCL aims to learn new classes continually from online data
streams (each sample is seen only once). As the model needs
to learn novel classes from the data stream while not forget-
ting previous classes, OCL methods (Mai et al. 2022; Cac-
cia et al. 2022; Aljundi et al. 2019b; Mai et al. 2021; Guo,
Liu, and Zhao 2022; Gu et al. 2022; Zhang et al. 2022; Lin
et al. 2023) follow replay-based protocols, where example
buffers are stored and retrieved between data batches and
tasks. Concretely, (Guo, Liu, and Zhao 2022; Gu et al. 2022)
dig the critical information by maximizing their mutual in-
formation. (Zhang et al. 2022) design augmentation strate-
gies to address the underfitting-overfitting dilemma of on-
line rehearsal. However, as pointed out by (Fini et al. 2020),
example buffers in OCL violate privacy and computation re-
strictions, especially in online learning scenarios. However,
the example-free task-incremental online continual learning
method (Fini et al. 2020) needs the prior task information.
Also, even equipped with the example buffers, the state-
of-the-art method (Gu et al. 2022) only achieves relatively
low accuracy (<20% for CIFAR100 (Krizhevsky and Hin-
ton 2009) with 1000 buffer size). Considering these prob-
lems, we proposed a novel yet practical setting called NO-
CL, which aims to better preserve privacy and utilize pre-
trained offline knowledge in practical online applications.

Non-Exemplar Class-incremental Learning (NE-CL)
Due to computation burden or privacy security, some works
(Yu et al. 2020; Zhu et al. 2022; Yin et al. 2020; Zhu
et al. 2021c) develop non-exemplar class-incremental learn-
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ing methods where no past data can be stored. (Yu et al.
2020) compensates unknown prototype drifts of old classes
via the drifts of current data. (Zhu et al. 2021c) employs
self-supervised learning to obtain more transferable features.
Also, prototypes are also augmented to preserve the deci-
sion boundaries of previous classes. Recently, (Zhu et al.
2022) considers to adjust the joint representation learning
and distillation process. However, NE-CL needs to offline
train novel classes to adjust prototypes and gradually distill
features. Therefore, NE-CL methods fail to solve the pro-
posed NO-CL problem as analysis and experiments below.

Few-Shot Class-incremental Learning (FS-CL) Com-
pared to NE-CL, FS-CL assumes that novel classes come
with few reference images. State-of-the-art FS-CL methods
are mainly divided into two types. Some methods (Cher-
aghian et al. 2021; Dong et al. 2021; Tao et al. 2020;
Kang et al. 2023) update the backbone to accommodate new
classes while preserving base class via gradual knowledge
distillation (Zhao et al. 2023), meanwhile, heavily relying on
complex example buffers to retain the learned information of
the previous network. Some methods (Peng et al. 2022; Her-
sche et al. 2022; Kalla and Biswas 2022) freeze the back-
bone and re-adopt features from the base classes to recog-
nize new classes. Therefore, contrastive learning (Song et al.
2023), meta-learning (Hersche et al. 2022), self-supervised
learning (Kalla and Biswas 2022), and data augmentation
(Peng et al. 2022; Zhou et al. 2022) strategies have been em-
ployed to obtain the backbone with high transferable repre-
sentations. However, such FS-CL methods finetune the net-
work offline and/or do not fully explore novel classes, lead-
ing to relatively poor performance on NO-CL.

Bi-level Optimization (BO) Problem Bi-level optimiza-
tion aims to solve a nested optimization problem, where
the outer-level optimization is subjected to the result of the
inner-level optimization (Sinha, Malo, and Deb 2018; Liu
et al. 2022). It has been widely employed in machine learn-
ing areas like meta-learning and hyperparameter selection.
For CL problems, (Liu et al. 2020) uses BO to alternatively
optimize the CL and the exemplar models. (Liu, Schiele, and
Sun 2021) applies BO to learn the aggregation weights of the
plastic and elastic branches of CL models. (Luo et al. 2023)
solves the bi-level optimization of the CL model and exam-
ple compression model. For the proposed NO-CL problem,
we formulate dual prototypes and bi-level optimize proto-
types and the projection module. The optimization process
quickly converges, as shown in Figure 2 and Appendix E1.

Problem Formulation
As shown in Figure 1, the NO-CL problem com-
prises base classes from pre-training data and novel
classes from online training data. During online learn-
ing, only the raw data of the current classes is avail-
able, and the network aims to incrementally learn on-
line new classes whilst retaining learned information be-
fore the current session. Concretely, assuming an m-
step NO-CL problem, let {D0

train,D1
train, ...,Dm

train} and
{D0

test,D1
test, ...,Dm

test} denote the training and testing data

1Appendix is in https://arxiv.org/abs/2303.10891

from sessions {0, 1, ...,m}, respectively. Each training and
testing sessions i have the corresponding label sets denoted
by Citrain and Citest. Citrain are mutually exclusive across
different training sets, i.e., ∀i ̸= j, Citrain ∩ C

j
train = ϕ.

While during evaluation, the model will be tested on all
seen classes so far, i.e., for session i, the corresponding la-
bel space is C0test ∪C1test...∪Citest. Besides, the base session
(i = 0) provides a large number of classes and also allows
offline pre-training. For the incremental sessions (i > 0),
the data comes in the online stream state without rehearsal.
During incremental sessions, like NE-CL (Yu et al. 2020;
Zhu et al. 2022), considering privacy and computation con-
straints, buffers with raw data are not permitted.

Dataset Partition. Similar to (Yu et al. 2020; Zhu et al.
2022, 2021d; Kalla and Biswas 2022; Peng et al. 2022), the
benchmark datasets are divided into (60%+4%×10), where
the base session contains 60% classes for pre-training, and
the rest classes are online incrementally learned within 10
sessions. Also, the results of (40%+6%×10), (80%+2%×
10), and (60%+2%× 20) are also provided in Appendix B.

Methodology
As for the proposed NO-CL problem, we aim to fully
explore single-pass data stream novel classes while pre-
serving previous information without example buffers. The
stability-plasticity dilemma is intractable as the single-pass
data stream results in the overfitting of novel classes while
severely interfering with previously learned information. As
NO-CL has no example buffers to rehearse between data
batches and tasks to eliminate forgetting. we transfer train-
ing the whole network to alternatively update the extra pro-
jection module and dual prototypes in the bi-level optimiza-
tion problem. Figure 3 shows the framework of the proposed
DSR method. In the following section, we introduce the base
session training protocol, Dual-prototype Self-augment and
Refinement (DSR) for online continual learning, including
vanilla-prototype self-augment, bi-level optimization proce-
dure for dual prototypes and projection module.

Base Session Training
For the base session pre-training, we aim to obtain vanilla-
and high-dimensional prototypes for sequentially online ses-
sions. Therefore, we employ loss regularizations on the out-
puts of the feature extractor and projection module:

Lbase = Lbase
vp + Lbase

hp (1)

where Lbase
vp = Loss(Projvp(θ1(x)), y) and Lbase

vp =
Loss(Projhp(θ2(θ1(x))), y). x, y, θ1, and θ2 denote in-
put samples, labels, feature extractor, and projection mod-
ule. Projvp/hp are linear layers to align vanilla- and high-
dimensional prototypes for loss calculations. For loss func-
tions (Loss), we adopt two variations: cross-entropy (CE)
loss and supervised contrastive (SC) loss (Khosla et al.
2020) (Details please refer to Appendix A). To train the ro-
bust embedding, recent NE-CL, FS-CL, and OCL methods
focus on training diverse features that are transferable across
sessions, like data augmentation (Peng et al. 2022; Zhu et al.
2021a,c), self-supervised learning (Zhu et al. 2021c; Kalla
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Figure 3: Overview of the proposed DSR method. The base and novel sessions train in offline and online ways, respectively. V-
P, SA-P, and H-P mean vanilla, self-augment, and high-dimensional prototypes. Backbone, projection module, V-P, and H-P are
represented by θ1, θ2, φ, and ϕ. hist(·) and G (·) denote histogram and feature transformation (Eq. (2), i.e., purple dotted line).
Yellow and Gray mean the learnable and frozen components, and red dotted lines represent the refined decision boundaries.

Figure 4: t-SNE (Laurens and Hinton 2008) visualization
of the feature embeddings. For better visualization, we train
eight classes on the base session and incremental learn two
classes (marked in green and red dots) sequentially. Red cir-
cles in H-P mean the confusion in novel classes and among
base and novel classes. Best viewed in color.

and Biswas 2022), mutual information regularization (Gu
et al. 2022; Guo, Liu, and Zhao 2022), supervised con-
trastive regularization (Mai et al. 2021; Lin et al. 2023). Sim-
ilarly, for the NO-CL problem, sophisticated pre-training
strategies also improves the generalization and transfer abil-
ity of our method to accommodate online new classes (re-
fer to Ablation studies with data augmentation (Peng et al.
2022; Zhu et al. 2021b) (w/ DA) in Table 3 and Appendix C).
As shown in Table 1, even the vanilla cross-entropy variation
of our method surpasses other dedicated training methods.

Dual-prototype Self-augment and Refinement

Overview. After the base session training, the backbone
maps the data from the input domain X to a feature space:
θ1 : X → Rdf . θ1 are parameters of backbone. The proto-
types in Rdf are computed and restored to retain previous
knowledge. Previous example-free prototype-based meth-
ods (Yu et al. 2020; Zhu et al. 2021a,c) offline refine pro-
totypes and/or features together with samples from novel
classes to achieve the plasticity and stability trade-off. How-
ever, as for online learning, the single-pass data stream fails
to gradually update the prototypes and network parameters.
Besides, directly classifying novel classes based on frozen
backbone fails to fully explore data samples of novel classes.
Therefore, we devise dual prototypes strategy and optimize
prototypes alternatively with the projection module through
bi-level optimization. Specially, we introduce the vanilla-
prototype self-augment, high-dimensional prototypes and
projection module bi-level optimization procedure.

Vanilla-prototype Self-augment. We restore the vanilla
prototype of the base and novel class to rehearse for retain-
ing and calibrating learned and online information. How-
ever, vanilla retrieving previous prototypes will confuse the
decision boundary. As a solution, (Zhu et al. 2021c) tries to
augment prototypes via Gaussian noise when learning new
classes. However, the distribution tends to skew to 0 and
loses the discriminative representation, due to the relu (Nair
and Hinton 2010) activation function in the final layer of the
backbone (i.e., ResNet (He et al. 2016)). Therefore, to make
feature distribution more Gaussian-like, we transform fea-
tures similar to Tukey’s Ladder of Powers Transformation
(Tukey 2010), which is a kind of power transformation that
can reduce the skewness of distributions. The distribution is
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rectified and normalized as follows:

G(x) =

{
xλ

max(∥xλ∥2,ϵ)
if λ ̸= 0

log(x)
max(∥log(x)∥2,ϵ)

if λ = 0
. (2)

where ϵ = e−6 and λ is the hyper-parameter to control the
distribution, i.e., decreasing λ makes the distribution less
positively skewed and vice versa. The Gaussian-like rectifi-
cation (denoted as G (·)) are applied after the backbone (θ1)
in both base and online sessions as f = G(θ1(x)). For class
i in the session m, the vanilla prototype (vp) and its relative
variance (v) are computed as:

vpmi =
1

|ki|
∑ki

j=1f
m
j , vmi =

1

|ki|
∑ki

j=1

(
fm
j − vpmi

)2 (3)

where ki represents the number of samples (x) of class i in
Dm

train. Previous knowledge is retained by self-augmenting
prototypes from the class-specific Gaussian distribution:
D(φm

i ) = {(φm
i , i)| ∼ N (vpmi , vmi )} . Without example

buffers, we freeze the backbone θ1 and translate online class-
incremental learning into the bi-level optimization, where
the high-dimensional embedding and projection module are
proposed to facilitate prototype refinement and calibration.

High-dimensional Prototypes Refinement. Recently,
Hyperdimensional Computing has been used in computer vi-
sion tasks like few shot learning (Karunaratne et al. 2021),
out-of-distribution detection (Wilson et al. 2023), and im-
age translation (Theiss et al. 2022), which leverage quasi-
orthogonal high-dimensional representations without induc-
ing much training and inference overhead. As for NO-CL,
we project vanilla prototypes into high-dimensional proto-
types (H-P) to accommodate online new classes with min-
imal interference with learned knowledge. The initial H-P
(ϕm) in the m-th online session is obtained based on the
single-pass raw data:

ϕm
i =

1

|ki|
∑ki

j=1

(
Projθ2

(
fm
j

))
(4)

where Projθ2 represents the projection module with pa-
rameters (θ2) and k means the number of raw samples of
class i. As we can see in Figure 4 (Novel: H-P), though
the prototypes have been clustered and separated to some
extent in high-dimensional embedding, the overlaps among
novel classes and between base and novel classes also ex-
ist. Therefore, we refine the high-dimensional prototypes of
novel classes (ϕn) and re-calibrate the projection module
(θ2) based on refined online H-P (ϕn), pre-computed base
H-P (ϕb), and V-P (φ). The bi-level optimization object is
formulated as follows:

min
θ2

[L1(θ2;φ;ϕ
∗
n ∪ ϕb)] (5a)

s.t. ϕ∗
n = argmin

ϕn

L2(ϕn;ϕb) (5b)

In the following, we elaborate on the implementation de-
tails for the bi-level optimization.

In the inner-level optimization, i.e., Eq. (5b), as analyzed
above, to eliminate the overlaps in H-P (ϕ), we refine ϕn by
decreasing the cosine similarity of H-P among inter-novel
classes (Lin), and between base and novel classes (Lbn), re-
spectively. The formulas are as follows:

Algorithm 1: Training procedure of DSR.

Input: Training data {D0
train,D1

train, ...,Dm
train},

base epoch n1, online iteration T
Output: Optimal θ1, θ2, and ϕn

1 Initialize: θ1, θ2;
2 Base Session: // train θ01 and θ02
3 while epoch < n1 do
4 train θ01 and θ02 with Eq. (1).
5 end
6 Obtain φ0 and ϕ0 with Eq. (3)&(4);
7 Online Session: // bi-level optimize θ2 and ϕn

8 for incremental sessions M ∈ {1, 2...m} do
Input: θM−1

1 , θM−1
2 , φM−1 ϕM−1, DM

train.
9 Output: θM1 , θM2 , φM , ϕM .

10 θM1 ← θM−1
1 ;

11 Obtain φM and ϕM with Eq. (3)&(4);
12 while t < T or not converged do
13 –inner-level optimization–
14 Update ϕM with Eq. (9);
15 –outer-level optimization–
16 Update θM2 with Eq. (11);
17 end
18 end

L2(ϕn;ϕb) = Lin(ϕn) + Lbn(ϕn, ϕb) (6)

Lin(ϕn) =

|ϕn|∑
i,j=1,s.t. i ̸=j

< σ(ϕi
n), σ(ϕ

j
n) > (7)

Lbn(ϕn) =
∑|ϕn|

i=1

∑|ϕb|
j=1< σ

(
ϕi
n

)
, σ

(
ϕj
b

)
> (8)

where <·,· > and σ mean cosine similarity and tanh ac-
tivation function. Moreover, to avoid significant deviations
from the original representations, ϕn updates in the expo-
nential moving average strategy (EMA):

ϕ∗
n = αϕn + (1− α) (ϕn − γ ▽ϕn L2(ϕn;ϕb)) (9)

where α is the momentum hyper-parameter(α = 0.9 in this
paper), and γ is the learning rate.

The aim of the outer-level optimization, i.e., Eq. (5a),
is to re-calibrate projection module (θ2) based on refined
ϕ∗
n and ϕb by self-augmenting vanilla prototypes from pre-

computed D(φ). The optimization of θ2 is as follows:

L1 = −
∑C

i=1

∑K
k=1 < θ2 (D(φ)) , ϕ∗

n ∪ ϕb > (10)

θ2 = θ2 − β ▽θ2 L1(θ2;φ;ϕ
∗
n ∪ ϕb) (11)

where β is the learning rate, C and K are the number of
learned classes and sampled prototypes, respectively.

For inference, cosine similarities are computed between
sample embeddings and H-P (ϕ) of learned classes (C) for
classification: pred = arg max

i=1,.,C
< θ2(G(θ1(x))), ϕi >.
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Methods CORE-50 CIFAR100 Mini-ImageNet
Metrics Acc(base/novel)|HM Acc(base/novel)|HM Acc(base/novel)|HM
FACT 43.0(53 /29)|37.1 44.8(56/28)|37.2 45.5(58/26)|36.3
ALICE 41.5(51/28)|25.9 43.5(56/24)|33.8 45.8(59/26)|35.8
PASS 37.9(63/1)|1.0 38.6(64/1)|1.8 40.4(65/2)|3.4
SSRE — 39.8(66/1)|1.0 —
MS 1000 2000 1000 2000 1000 2000
MIR 22.6(25/20)|21.9 24.5(27/21)|23.5 24.2(26/21)|23.3 25.1(27/22)|24.3 22.9(25/20)|22.2 23.8(26/21)|23.1
GD 25.8(27/24)|25.8 27.5(29/25)|26.9 25.8(27/24)|25.4 27.1(29/25)|26.6 23.2(25/22)|23.1 24.4(25/23)|24.4
ASER 29.4(31/28)|29.0 31.4(34/28)|30.5 30.7(31/30)|30.5 33.6(35/32)|33.2 25.4(28/22)|24.5 29.7(30/29)|29.5
SCR 39.4(38/42)|39.7 40.7(41/40)|40.5 37.1(41/36)|38.3 41.9(45/38)|41.1 36.2(36/36)|36.1 38.8(44/31)|36.4
SCRft 39.6(46/30)|36.2 43.6(52/32)|39.2 39.6(50/24)|32.3 42.1(54/25)|33.8 38.8(44/31)|36.2 42.8(48/36)|40.8
OCM 41.0(42/40)|40.8 42.5(43/42)|42.3 37.3(38/37)|37.2 41.6(43/40)|41.3 37.2(36/39)|36.1 40.9(46/34)|38.8
OCM ft 41.1(47/33)|38.7 43.7(48/37)|41.9 40.8(46/33)|38.3 42.3(47/35)|40.3 39.0(41/37)|38.2 41.2(43/39)|40.8
DVC 39.9(40/41)|40.0 41.8(43/41)|41.6 38.6(38/39)|38.9 41.8(43/39)|41.2 35.6(34/37)|35.9 38.4(37/41)|38.9
DVCft 41.9(48/33)|38.9 43.7(49/36)|41.5 39.0(43/33)|37.2 40.5(44/36)|39.4 36.2(40/31)|34.8 39.3(41/37)|38.8
Ours(+CE) 46.8+3.1(48/46)|46.6 45.8+1.0(50/40)|44.2 47.7+1.9(53/40)|45.6
Ours(+SC) 49.1+5.4(50/48)|50.0 48.6+3.8(52/43)|47.2 50.7+4.9(56/43)|48.4

Table 1: Class-wise accuracy (Acc) by the end of the training of all classes, base classes, and novel classes. Harmonic accuracy
(HM) is also illustrated. MS and ft mean the example memory size and finetuning versions. The best results are in bold.

Experiments
Datasets and Evaluation Protocols. As mentioned in sec-
tion 3, the benchmark datasets are divided into (60%+4%×
10), where the base session contains 60% classes for base
session training, and the rest of the classes are online in-
crementally learned within 10 sessions. Other splits are also
provided in Appendix B. We conduct experiments on three
widely used datasets, including CORE-50 (Lomonaco and
Maltoni 2017), CIFAR 100 (Krizhevsky and Hinton 2009),
and Mini-ImageNet (Vinyals et al. 2016), which have 50,
100, and 100 classes, respectively. Following recent class-
incremental learning methods (De Lange et al. 2022; Mai
et al. 2022), class-wise average accuracy (Acc) and aver-
age forgetting (Af ) are applied to evaluate the performance.
Meanwhile, for the NO-CL problem, the number of base and
novel classes is unbalanced. To evaluate the overall perfor-
mance of the stability-plasticity dilemma, we also employ
harmonic metric (HM, i.e., HM = 2×Accb×Accn

Accb+Accn
, Accb and

Accn denote the accuracy of base and novel classes) like
(Kalla and Biswas 2022; Peng et al. 2022).

Comparison Methods. We compare DSR with three cat-
egories baselines: (1) OCL: GD(Prabhu, Torr, and Doka-
nia 2020), MIR (Aljundi et al. 2019a), ASER (Shim et al.
2021), SCR (Mai et al. 2021), OCM (Guo, Liu, and Zhao
2022), DVC (Gu et al. 2022). (2) NE-CL: PASS (Zhu et al.
2021c), SSRE (Zhu et al. 2022). (3) FS-CL: FACT (Zhou
et al. 2022), ALICE (Peng et al. 2022). All comparisons are
trained and inferred in the same protocols of NO-CL.

Implementation details. Following (Gu et al. 2022; Guo,
Liu, and Zhao 2022), we employ a reduced ResNet-18 as the
backbone without pre-training. We use stochastic gradient
descent with a learning rate of 0.1 with a batch size of 100
during the base session. The dimension of high-dimensional
embedding is 2048, and Projθ2 is implemented as a two-

layer MLP with a hidden layer of 512 dimensions with relu
as the activation function. For other hyper-parameters, we
set the base session training epoch n1, online iteration T to
100, 20, set online learning rate γ, β all to 0.01, set fea-
ture transform coefficient λ and the number of sampled pro-
totypes K to 0.5, 20. Analysis of hyper-parameters is per-
formed in Appendix D. As for compared methods, we adopt
the same training protocols of NO-CL as ours and adopt
the defaulted hyper-parameters of their methods (please re-
fer to Appendix A). We report the mean result of all methods
over ten different runs.

Results and Ablation Studies
Comparing with the State-of-the-art. We compare our
method (+CE and +SC loss versions) with other SOTA
methods in the setting of the proposed NO-CL problem.
The results are illustrated in Tables 1 and 2 and Figure 5,
which give the following observations. 1). Overall, in terms
of class-wise accuracy, our method with CE and SC loss
achieves pleasant results, especially with SC loss, which
outperforms others by 5.4%, 3.8%, and 4.9% in CORE-
50, CIFAR100, and Mini-ImageNet, respectively. Note that
SOTA methods like FACT, ALICE, PASS SCR, OCM, and
DVC adopt sophisticated pre-training strategies like self-
supervised learning, supervised contrastive learning, data
augmentation etc. For harmonic accuracy (HM), which mea-
sures the performance of stability-plasticity trade-offs, ours
also exceed other methods by a large margin. Our method
also outperforms OCL methods, which employ large ex-
ample buffers, in most cases for average forgetting met-
rics. 2). Concretely. for OCL methods, though equipped
with large example buffers and pre-trained information, the
over-fitting and catastrophic forgetting problems are also se-
vere compared to ours. To avoid these issues, similar to
ours, we freeze the backbone after base session training
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Figure 5: The line chart represents class-wise average accuracy of SOTA methods (DVC(Gu et al. 2022), OCM(Guo, Liu, and
Zhao 2022), PASS(Zhu et al. 2021c), and ALICE (Peng et al. 2022)) along the incremental sessions.

Method CORE-50 CIAFR 100 Mini-ImageNet
MS 1000/2000 1000/2000 1000/2000
SCR 10.8/9.2 13.2/9.6 15.3/12.3
SCRft 8.3/7.6 7.2/6.7 9.3/8.4
OCM 15.2/12.6 16.1/13.4 16.9/12.3
OCMft 9.3/8.1 10.6/7.6 11.7/9.1
DVC 11.3/10.8 14.3/12.0 16.9/13.4
DVCft 8.7/7.9 9.2/8.6 11.8/9.7
Ours(+CE) 7.6 7.8 9.0
Ours(+SC) 7.3 6.9 8.2

Table 2: Average forgetting (Af , lower is better) results.

and only jointly finetune the classifier head with online data
and buffer samples (denoted as ft). As we can see from
SCRft, OCMft, and DVCft, simply freezing the backbone
can not achieve the stability-plasticity trade-off that though
base knowledge can be better preserved while damaging the
ability to learn online novel classes. Although large exam-
ple buffers and frequent rehearsal can eliminate these is-
sues, which somewhat violate the online learning protocols.
3). As for NE-CL methods, PASS and SSRE fail to learn
the novel classes in online sessions. Due to the lack of old
class samples, PASS and SSRE promote knowledge transfer
in the progressive knowledge distillation process, while the
distillation constraints hamper the online learning of novel
classes. 4). For the FS-CL methods, FACT and ALICE fo-
cus on training generalization feature representations during
the base session. They directly infer novel classes based on
robust embedding. However, without adjusting the represen-
tation, ALICE fails in a large number of sessions, as shown
in the last few sessions in Figure 5 and 60%+2%× 20 con-
figuration in Appendix B. Note that NE-CL methods, i.e.,
PASS and SSRE, employ the more sophisticated pre-training
strategy, which perform slightly better than ours in the base
session. 3). Moreover, as for computation overhead during
online learning, which is usually considered in OCL scenar-
ios (Fini et al. 2020), as shown in Figure 2, our method only
consumes ∼ 35 seconds and minimal memory overhead in
CIFAR100 dataset. More quantitative results of computation
overhead are in Appendix E.

Ablation Studies. (1) The necessity of DSR strategy:
To overall validate the necessity of DSR strategy, we di-
rectly infer with the prototypes from the high-dimensional
embedding (denoted as baseline). For example-free online
sessions, Though quasi-orthogonal high-dimensional repre-
sentations preserve the pre-trained information and accom-
modate online new classes to some extent, the baseline does
not fully leverage the online data stream and fails in all
class-wise accuracy and HM metrics. Moreover, based on
the baseline, we directly optimize the H-P with the L2 (Eq.
(6)) function (baseline+L2). Note that for the proposed NO-
CL, we have no example buffer to re-calibrate the back-
bone (θ1). Direct optimization prototypes results in degrad-
ing performance. We ablate inner-level updating (w/o L2).
Novel classes degrade to some extent. (2) The effective-
ness of each component: We ablate Gaussian-like rectifi-
cation (w/o G (·)) and directly revisit the prototype without
sampling repeatedly from Gaussian distributions (w/o SA-
P). We can see that the Gaussian-like rectification brings
∼1.5% gains via reducing the skewness of distributions.
Augmented prototypes significantly preserve the decision
boundaries of previous classes while also being beneficial
to the overall performance through joint optimization. To
prove the effectiveness of amending prototypes in the high-
dimensional embedding (w/o HD), we project the vanilla
prototypes to low-dimensional embedding (256) instead of
high dimension (2048). The performance of both base and
novel classes degrades, particularly in novel classes. The
reason is that prototypes in low-dimensional embedding re-
quire dedicated alignments, otherwise resulting in confusion
both in base and novel classes, which is not suitable for NO-
CL. EMA updating HD better realizes the trade-off between
learned and refined knowledge. More ablations can refer to
Appendix D. (3) The importance of the base session train-
ing: We adopt the data augmentation strategy (w/ DA) pro-
posed by (Peng et al. 2022; Zhu et al. 2021b) in the base
training session to obtain diverse and transferable represen-
tations. More base session training strategies please refer to
Appendix C. We learn that the robust embedding improves
our method by a large margin, both in preserving old classes
and online accommodating novel classes, which provides a
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Ablations CIFAR100 Mini-ImageNet
Metrics Acc(base/novel)|HM Acc(base/novel)|HM
baseline 43.4(54.2/27.4)|36.3 43.7(57.1/23.6)|33.4
baseline+L2 38.9(52.3/18.9)|27.8 40.2(54.9/18.1)|27.2
w/o L2 46.8(51.6/39.7)|44.9 48.9(55.1/39.8)|46.2

w/o G (·) 47.1(51.0/41.3)|45.6 49.1(54.3/41.4)|47.0
w/o SA-P 46.2(50.5/39.7)|44.4 47.5(53.9/37.9)|44.5
w/o HD 46.7(51.6/39.4)|44.7 48.5(54.7/39.3)|45.7
w/o EMA 48.0(51.4/43.0)|46.8 50.1(55.3/42.3)|47.9

Ours 48.6(52.4/42.9)|47.2 50.7(56.1/42.6)|48.4

Ours w/ DA 51.2(55.7/44.6)|49.5 53.2(58.2/45.8)|51.3

Table 3: Ablation studies on CIFAR100 and Mini-ImageNet.
Experiments are conducted with the SC loss.

direction to solve the proposed NO-CL problem.

Conclusion
In this paper, we formulate a novel, practical, but chal-
lenging problem named NO-CL, which aims to preserve
pre-trained base classes information, while efficiently learn-
ing novel classes continually from the single-pass (i.e., on-
line) data stream, without example buffers. To solve this
problem, we have proposed a novel Dual-prototype Self-
augment and Refinement (DSR) method, which presents
two solutions: 1) Dual class prototypes: vanilla and high-
dimensional prototypes (V-P and H-P) are maintained to
utilize the pre-trained information and obtain robust quasi-
orthogonal representations. 2) Self-augment and refinement:
Without buffers and offline training, we bi-level optimize
the extra high-dimensional prototypes alternatively with the
projection module, to refine the decision boundaries and re-
calibrate projection module based on optimized H-P and
self-augment V-P. Extensive experiments demonstrate the
effectiveness of DSR in handling the NO-CL problem.
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