
Binding-Adaptive Diffusion Models for Structure-Based Drug Design

Zhilin Huang1,2*, Ling Yang3*, Zaixi Zhang4, Xiangxin Zhou5,
Yu Bao6, Xiawu Zheng2, Yuwei Yang6, Yu Wang2†, Wenming Yang1,2†

1Shenzhen International Graduate School, Tsinghua University
2Peng Cheng Laboratory

3Peking University
4University of Science and Technology of China

5University of Chinese Academy of Sciences
6ByteDance

zerinhwang03@pku.edu.cn, zaixi@mail.ustc.edu.cn, {zhouxiangxin1998, nlp.baoy}@gmail.com,
yuwei.yang@bytedance.com, {zhengxw01, wangy20}@pcl.ac.cn, {yangling0818, yangelwm}@163.com

Abstract

Structure-based drug design (SBDD) aims to generate 3D
ligand molecules that bind to specific protein targets. Exist-
ing 3D deep generative models including diffusion models
have shown great promise for SBDD. However, it is com-
plex to capture the essential protein-ligand interactions ex-
actly in 3D space for molecular generation. To address this
problem, we propose a novel framework, namely Binding-
Adaptive Diffusion Models (BINDDM). In BINDDM, we
adaptively extract subcomplex, the essential part of binding
sites responsible for protein-ligand interactions. Then the se-
lected protein-ligand subcomplex is processed with SE(3)-
equivariant neural networks, and transmitted back to each
atom of the complex for augmenting the target-aware 3D
molecule diffusion generation with binding interaction in-
formation. We iterate this hierarchical complex-subcomplex
process with cross-hierarchy interaction node for adequately
fusing global binding context between the complex and its
corresponding subcomplex. Empirical studies on the Cross-
Docked2020 dataset show BINDDM can generate molecules
with more realistic 3D structures and higher binding affinities
towards the protein targets, with up to -5.92 Avg. Vina Score,
while maintaining proper molecular properties. Our code is
available at https://github.com/YangLing0818/BindDM

Introduction
Designing ligand molecules that can bind to specific protein
targets and modulate their function, also known as structure-
based drug design (SBDD) (Anderson 2003; Batool, Ah-
mad, and Choi 2019), is a fundamental problem in drug
discovery and can lead to significant therapeutic benefits.
SBDD requires models to synthesize drug-like molecules
with stable 3D structures and high binding affinities to the
target. Nevertheless, it is challenging and involves massive
computational efforts because of the enormous space of syn-
thetically feasible chemicals (Ragoza, Masuda, and Koes
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Figure 1: BINDDM extracts subcomplex from protein-
ligand complex, and utilizes it to enhance the binding-
adaptive 3D molecule generation in complex.

2022a) and freedom degree of both compound and protein
structures (Hawkins 2017).

Recent advances in modeling geometric structures of
biomolecules (Bronstein et al. 2021; Atz, Grisoni, and
Schneider 2021) motivate a promising direction for SBDD
(Gaudelet et al. 2021; Zhang et al. 2023b). Several new gen-
erative methods have been proposed for the SBDD task (Li,
Pei, and Lai 2021; Luo et al. 2021; Peng et al. 2022; Powers
et al. 2022; Ragoza, Masuda, and Koes 2022b; Zhang et al.
2023a), which learn to generate ligand molecules by model-
ing the complex spatial and chemical interaction features of
the binding site. For instance, some methods adopt autore-
gressive models (ARMs) (Luo and Ji 2021; Liu et al. 2022a;
Peng et al. 2022) and show promising results in SBDD tasks,
which generate 3D molecules by iteratively adding atoms or
bonds based on the target binding site. However, ARMs tend
to suffer from error accumulation, and it also is difficult to
find an optimal generation order.

An alternative to address these limitations of ARMs is to
sample the atomic coordinates and types of all the atoms
at once (Du et al. 2022). Recent diffusion-based SBDD
methods (Guan et al. 2023a; Schneuing et al. 2023; Lin
et al. 2022; Guan et al. 2023b) adopt diffusion models
(Ho, Jain, and Abbeel 2020; Song et al. 2020) to model
the distribution of atom types and positions from a stan-
dard Gaussian prior with post-processing to assign bonds.
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These diffusion-based methods learn the joint generative
process with a SE(3)-equivariant diffusion models (Hooge-
boom et al. 2022) to capture both spatial and chemical inter-
actions between atoms, and have achieved comparable per-
formance with previous autoregressive models.

Despite the state-of-the-art performance, existing meth-
ods pay little attention to the binding-specific substructure
of protein-ligand complex, i.e., the essential part of bind-
ing sites responsible for protein-ligand interactions, which
plays a crucial role in generating molecules with high bind-
ing affinities towards the protein targets (Bajusz et al. 2021;
Kozakov et al. 2015). Although recent FLAG (Zhang et al.
2023a) and DrugGPS (Zhang and Liu 2023) learn to gener-
ate pocket-aware 3D molecules fragment-by-fragment, these
massive pre-defined fragments (e.g., motifs or subpockets)
are still complex for the model to exactly discover essen-
tial protein-ligand interactions from highly diverse protein
pockets in nature (Spitzer, Cleves, and Jain 2011; Basanta
et al. 2020). Consequently, these limit their practical use in
designing high-affinity molecules for new protein targets.

To address these issues, we propose BINDDM, a new
binding-adaptive diffusion model for SBDD. Instead of us-
ing pre-defined fragments of pockets or molecules (e.g.,
subpockets or motifs), at each time step of denoising pro-
cess, we directly extract essential binding subcomplex from
protein-ligand complex with a learnable structural pool-
ing. Then we process the selected subcomplex with SE(3)-
equivariant GNNs, and transmit them back to the complex
as enhanced binding context to improve the atomic target-
aware 3D molecule generation. To facilitate the exchange
between the complex and its subcomplex, we iterate the
above process via our designed cross-hierarchy interaction
nodes. Extensive experiments demonstrate that BINDDM
can generate molecules with more realistic 3D structures and
higher binding affinities towards the protein targets, while
maintaining proper molecular properties. We highlight our
main contributions as follows:

• We propose a hierarchical complex-subcomplex diffu-
sion model for structure-based drug design, which in-
corporates essential binding-adaptive subcomplex for 3D
molecule diffusion generation.

• We design and incorporate cross-hierarchy interaction
nodes into our iterative denoising networks in the gener-
ation process for sufficiently fusing context information.

• Empirical results on CrossDocked2020 dataset demon-
strate that our BINDDM achieves better performance
compared with previous methods, higher affinity with
target protein and other drug properties.

Related Work
Structure-Based Drug Design
As the increasing availability of 3D-structure protein-ligand
data (Kinnings et al. 2011), structure-based drug design
(SBDD) becomes a hot research area and it aims to gen-
erate diverse molecules with high binding affinity to specific
protein targets (Luo et al. 2021; Yang et al. 2022; Schneuing
et al. 2023; Tan, Gao, and Li 2023). Early attempts learn to

generate SMILES strings or 2D molecular graphs given pro-
tein contexts (Skalic et al. 2019; Xu, Ran, and Chen 2021).
However, it is uncertain whether the resulting compounds
with generated strings or graphs could really fit the geo-
metric landscape of the 3D structural pockets. More works
start to involve 3D structures of both proteins and molecules
(Li, Pei, and Lai 2021; Ragoza, Masuda, and Koes 2022b;
Zhang et al. 2023a). Luo et al. (2021), Liu et al. (2022b), and
Peng et al. (2022) adopt autoregressive models to generate
3D molecules in an atom-wise manner. Recently, powerful
diffusion models (Sohl-Dickstein et al. 2015; Song and Er-
mon 2019; Ho, Jain, and Abbeel 2020) begin to play a role
in SBDD, and have achieved promising generation results
with non-autoregressive sampling (Lin et al. 2022; Schneu-
ing et al. 2023; Guan et al. 2023a). TargetDiff (Guan et al.
2023a), DiffBP (Lin et al. 2022), and DiffSBDD (Schnei-
der et al. 1999) utilize E(n)-equivariant GNNs (Satorras,
Hoogeboom, and Welling 2021) to parameterize conditional
diffusion models for protein-aware 3D molecular genera-
tion. Despite progress, existing methods pay little atten-
tion to binding-specific protein-ligand substructures. In con-
trast, We propose BINDDM to automatically extracts essen-
tial binding-adaptive subcomplex, and design a hierarchical
equivariant molecular diffusion model for SBDD.

Diffusion Models for SBDD
As a new family of deep generative models, diffusion mod-
els (Sohl-Dickstein et al. 2015; Ho, Jain, and Abbeel 2020;
Song et al. 2020) have been recently applied in SBDD tasks.
They usually represent the protein-ligand complex by treat-
ing protein binding pockets and ligand molecules as atom
point sets in the 3D space, and define a diffusion process for
both continuous atom coordinates and discrete atom types
for reverse diffusion generation. TargetDiff (Guan et al.
2023a) and DiffBP (Lin et al. 2022) both propose a target-
aware molecular diffusion process with a SE(3)-equivariant
GNN denoiser. DecompDiff (Guan et al. 2023b) proposes a
two-stage diffusion model, which uses an open-source soft-
ware to obtain molecule-agnostic binding priors as templates
for the generation process. In contrast, our BINDDM is a
single-stage approach that generates molecules from scratch
without relying on external knowledge. It adaptively mines
binding-related subcomplexes from the original complex to
enhance the generation process, fully considering the inter-
action between protein pockets and ligands.

Preliminary
The SBDD task from the perspective of generative mod-
els can be defined as generating molecules which can bind
to a given protein pocket. The target protein and molecule
can be represented as P = {(x(i)

P ,v
(i)
P )}NP

i=1 and M =

{(x(i)
M ,v

(i)
M )}NM

i=1 , respectively. Here NP (resp. NM ) refers
to the number of atoms of the protein P (resp. the molecule
M). x ∈ R3 and v ∈ RK denote the position and type
of the atom, respectively. And K denotes the number of
atom types. In the sequel, matrices are denoted by upper-
case boldface. For a matrix X, xi denotes the vector on its
i-th row, and X1:N denotes the submatrix comprising its 1-st
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to N -th rows. For brevity, the molecule is denoted as M =
[XM ,VM ] where XM ∈ RNM×3 and VM ∈ RNM×K ,
and the protein is denoted as P = [XP ,VP ] where XP ∈
RNP×3 and VP ∈ RNP×K . The task can be formulated as
modeling the conditional distribution p(M|P).

Denoising Diffusion Probabilistic Models (DDPMs)
equipped with SE(3)-invariant prior and SE(3)-equivariant
transition kernel have been applied on the SBDD task (Guan
et al. 2023a; Schneuing et al. 2023; Lin et al. 2022). Specifi-
cally, types and positions of the ligand molecule are modeled
by DDPM, while the number of atoms NM is usually sam-
pled from an empirical distribution (Hoogeboom et al. 2022;
Guan et al. 2023a) or predicted by a neural network (Lin
et al. 2022), and bonds are determined as post-processing.

In the forward diffusion process, a small Gaussian noise
is gradually injected into data as a Markov chain. Because
noises are only added on ligand molecules but not proteins
in the diffusion process, we denote the atom positions and
types of the ligand molecule at time step t as Xt and Vt

and omit the subscript M without ambiguity. The diffusion
transition kernel can be defined as follows:

q(Mt|Mt−1,P) =

NM∏
i=1

N (xi,t;
√
1− βtxi,t−1, βtI)·

C(vi,t|(1− βt)vi,t−1 + βt/K),

(1)

where N and C stand for the Gaussian and categorical dis-
tribution respectively, βt is defined by fixed variance sched-
ules. The corresponding posterior can be derived as follows:

q(Mt−1|Mt,M0,P) =

NM∏
i=1

N (xi,t−1; µ̃(xi,t,xi,0), β̃tI)·

C(vi,t−1|c̃(vi,t,vi,0)),

(2)

where µ̃(xi,t,xi,0) =
√
ᾱt−1βt

1−ᾱt
xi,0+

√
αt(1−ᾱt−1)

1−ᾱt
xi,t, β̃t =

1−ᾱt−1

1−ᾱt
βt, αt = 1 − βt, ᾱt =

∏t
s=1 αs, c̃(vi,t,vi,0) =

c∗∑K
k=1 c∗k

, and c∗(vi,t,vi,0) = [αtvi,t + (1 − αt)/K] ⊙
[ᾱt−1vi,0 + (1− ᾱt−1)/K].

In the approximated reverse process, also known as the
generative process, a neural network parameterized by θ
learns to recover data by iteratively denoising. The reverse
transition kernel can be approximated with predicted atom
types v̂i,0 and atom positions x̂i,0 as follows:

pθ(Mt−1|Mt,P) =

NM∏
i=1

N (xi,t−1; µ̃(xi,t, x̂i,0), β̃tI)·

C(vi,t−1|c̃(vi,t, v̂i,0)).

(3)

The Proposed BINDDM
As discussed in previous sections, we aim to develop a hi-
erarchical binding-specific diffusion model for SBDD. We
here present our proposed BINDDM, as illustrated in Fig-
ure 2. In this subsection, we will describe how to introduce
the selected protein-ligand binding subcomplex into the de-
sign of the neural network ϕθ which predicts (i.e., recon-
structs) M0 = [X0,V0] in the reverse generation process:

[X̂0, V̂0] = ϕθ([Xt,Vt], t,P). (4)

To extract essential interaction binding-adaptive protein-
ligand subcomplex, we design a learnable structural pooling
to filter the nodes in the original complex graph. To suffi-
ciently utilize both the complex and the subcomplex, we ap-
ply SE(3)-equivariant neural networks on them. Finally, we
design cross-hierarchy interaction nodes to iteratively ex-
change information between the complex and the subcom-
plex, and facilitate the target-aware 3D molecule generation.

Binding-Adaptive Subcomplex Extraction
We first elaborate on how we adaptively extract essential
binding subcomplex at each time step t. Different from the
denoising networks in previous SBDD methods (Guan et al.
2023a,b; Schneuing et al. 2023) that only process the full-
atom complex graph, our BINDDM produces a binding-
adaptive subcomplex graph from the complex graph with a
learnable structural pooling. Formally, we have a k-nearest
neighbors graph Gl

C based on the protein-ligand complex
C = [Mt,P] at each denoising time step, where the su-
perscripts l denotes the l-th graph layer of the denoising
network, and [·] denotes the concatenation along the first
dimension. We aim to extract a binding subcomplex graph
G̃l
S = (H̃l

S , X̃
l
S) from Gl

C = (Hl
C ,X

l
C) (and Gl

S =
(Hl

S ,X
l
S), for l > 0), where H ∈ RN×d is the node hidden

state matrix (initialized with Vt in first layer), X ∈ RN×3 is
the node position matrix. We calculate the confidence scores
Zl ∈ RN×1 of all nodes in the complex graph Gl

C contribut-
ing to the molecule generation with provided binding sites:

Ĥl
C =

®
fθ(H

0
C), l = 0

fθ([H
l
C , pad(Hl

S , idxl)]), l > 0
(5)

Zl =σ(Dl
C

− 1
2Al

CD
l
C

− 1
2 Ĥl

CΦatt) (6)

where Al
C ∈ RN×N is the adjacency matrix with pair-wise

node connections defined on k-nn graph according to Xl
C ,

Dl
C ∈ RN×N is the degree matrix of Al

C , fθ(·) is an MLP,
Φatt is the learnable parameter, pad(·) is the operation of fill-
ing empty nodes into the position of filtered nodes according
to the indices of selected nodes. In this way, the padded sub-
complex graph has the same number of nodes as the complex
graph. The idxl is indices of the top ⌈rN⌉ nodes which are
selected based on confidence scores Zl, and r ∈ (0, 1] is the
selection ratio that determines the number of nodes to keep:

idxl = top-rank(Zl, ⌈rN⌉) (7)

where the top-rank is the function that returns indices of top
⌈rN⌉ values. In practice, we set r = 0.5. Then, the hidden
state matrix H̃l

S and the position matrix X̃l
S of subcomplex

are obtained:

H̃l
S =Hl

C,idxl,: ⊙ Zl
idxl , (8)

X̃l
S =Xl

C,idxl,: (9)

where ·idxl is an indexing operation, ⊙ is the broadcasted el-
ementwise product, Hl

C,idxl,: and Xl
C,idxl,: are the row-wise

(i.e. node-wise) indexed matrix Hl
C and Xl

C , respectively.
Next, we process the selected subcomplex to better leverage
binding context for molecule generation.
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Figure 2: The overview of BINDDM.

3D Equivariant Complex-Subcomplex Processing
Our goal is to generate 3D molecules based on target pro-
tein binding sites, the model needs to generate both contin-
uous atom coordinates and discrete atom types, while being
SE(3)-equivariant to global translation and rotation during
the entire generative process. This property is a critical in-
ductive bias for generating 3D molecules (Hoogeboom et al.
2022; Schneuing et al. 2023; Guan et al. 2023a), and an in-
variant distribution composed with an equivariant transition
function will result in an invariant distribution. Thus, for
our hierarchical complex-subcomplex denoising network,
we have the following proposition in the setting of protein-
aware molecule generation.
Proposition 1. Denoting SE(3)-transformation as T , we
can achieve invariant likelihood w.r.t T on both the protein-
ligand complex and its subcomplex: pθ(TM0|TP) =
pθ(M0|P) if we shift the Center of Mass (CoM) of pro-
tein atoms to zero and parameterize the Markov transition
p(xt−1|xt,xP ) with a SE(3)-equivariant network.

We apply two SE(3)-equivariant neural networks on the
k-nn graphs (Gl

C and Ġl
S) of the protein-ligand complex and

its corresponding subcomplex in the denoising process, re-
spectively. For the subcomplex graph Ġl

S updated through
the complex-to-subcomplex (C2S) interaction, the SE(3)-
invariant hidden states Ḣl

S and SE(3)-equivariant positions
Ẋl

S are updated as follows to obtain the Gl+1
S :

hl+1
S,i =ḣl

S,i +
∑
j∈Ni

f l
S,h

(∥∥∥ẋl
S,i − ẋl

S,j

∥∥∥ , ḣl
S,i, ḣ

l
S,j , eS,ij

)
xl+1
S,i =ẋl

S,i +
∑
j∈Ni

Ä
ẋl
S,i − ẋl

S,j

ä
·

f l
S,x

(∥∥∥ẋl
S,i − ẋl

S,j

∥∥∥ ,hl+1
S,i ,h

l+1
S,j , eS,ij

)
· 1mol

(10)
where Ni is the set of k-nearest neighbors of atom i on the
subcomplex graph, eS,ij indicates the atom i and atom j are

both protein atoms or both ligand atoms or one protein atom
and one ligand atom, and 1mol is the ligand atom mask since
the protein atom coordinates are known and thus supposed
to remain unchanged during this update. The similar process
are applied on the complex graph Gl

C = (Hl
C ,X

l
C) to ob-

tained the Ġl+1
C = (Ḣl+1

C , Ẋl+1
C ).

Iterative Cross-Hierarchy Interaction
In BINDDM, we introduce two cross-hierarchy interaction
nodes to facilitate the information exchange between the
binding contexts of two hierarchies, the complex graph and
its subcomplex graph. Specifically, we initialize the interac-
tion node of subcomplex graph via sum pooling:

clint = Poolsum(Gl
S). (11)

Then the binding context of the extracted subcomplex graph
is transmitted back to the complex graph Gl

C for cross-
hierarchy information fusion via the interaction node clint
and the gated transmission module as shown in Figure 3:

ĉlint = Attn(Query(clint),Key(Hl
S)) · Value(Hl

S) (12)

αl
c = σ(f1(c

l
int) + f2(ĉ

l
int)) (13)

clint = GRU(cl−1
int , α

l
c · clint + (1− αl

c) · ĉlint) (14)

hl
C,i = f3(ḣ

l
C,i, c

l
int) (15)

where σ is sigmoid, f1, f2 and f3 are MLPs, ḣl
C,i is

the SE(3)-invariant hidden state of i-th node in Ġl
C . Equa-

tions (12) to (14) mix the messages between the subcomplex
graph and the interaction node through gated recurrent unit
(GRU) (Chung et al. 2014) for updating clint. Equation (15)
perform node-wise fusion with clint for subcomplex-to-
complex (S2C) interaction. Similarly, we also have the inter-
action node slint for complex-to-subcomplex (C2S) interac-
tion, and we iterate these cross-hierarchy processes for suffi-
ciently incorporating binding-adaptive subcomplex into the
3D molecule generation process as shown in Figure 2.
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Training and Sampling
To train BINDDM (i.e., optimize the evidence lower bound
induced by BINDDM), we use the same objective function
as Guan et al. (2023a). The atom position loss and atom type
loss at time step t− 1 are defined as follows respectively:

L
(x)
t−1 =

1

2β̃2
t

NM∑
i=1

∥µ̃(xi,t,xi,0)− µ̃(xi,t, x̂i,0)∥2

= γt

NM∑
i=1

∥xi,0 − x̂i,0∥

(16)

L
(v)
t−1 =

NM∑
i=1

K∑
k=1

c̃(vi,t,vi,0)k log
c̃(vi,t,vi,0)k
c̃(vi,t, v̂i,0)k

(17)

where X̂0 and V̂0 are predicted from Xt and Vt, and
γt =

ᾱt−1β
2
t

2β̃2
t (1−ᾱt)2

. Kindly recall that xi,t, vi,t, x̂i,0, and

v̂i,0 correspond to the i-th row of Xt, Vt, X̂0, and V̂0, re-
spectively. The final loss is a weighted sum of atom coor-
dinate loss and atom type loss with a hyperparameter λ as:
L = L

(x)
t−1 + λL

(v)
t−1.

Experiments
Experimental Settings
Datasets and Baseline Methods As for molecular gener-
ation, following the previous work (Luo et al. 2021; Peng
et al. 2022; Guan et al. 2023a), we train and evaluate
BINDDM on the CrossDocked2020 dataset (Francoeur et al.
2020). We follow the same data preparation and splitting
as Luo et al. (2021), where the 22.5 million docked bind-
ing complexes are refined to high-quality docking poses
(RMSD between the docked pose and the ground truth <
1Å) and diverse proteins (sequence identity < 30%). This
produces 100, 000 protein-ligand pairs for training and 100
proteins for testing. We compare our model with four recent
representative methods for SBDD. LiGAN (Ragoza, Ma-
suda, and Koes 2022a) is a conditional VAE model trained
on an atomic density grid representation of protein-ligand
structures. AR (Luo et al. 2021) and Pocket2Mol (Peng
et al. 2022) are autoregressive schemes that generate 3D
molecules atoms conditioned on the protein pocket and pre-
vious generated atoms. TargetDiff (Guan et al. 2023a) and

DecompDiff (Guan et al. 2023b) are recent state-of-the-
art diffusion methods which generate atom coordinates and
atom types in a non-autoregressive way.

Evaluation We comprehensively evaluate the generated
molecules from three perspectives: molecular structures,
target binding affinity, and molecular properties. In terms
of molecular structures, we calculate the Jensen-Shannon
divergences (JSD) in empirical distributions of atom/bond
distances between the generated molecules and the refer-
ence ones. To estimate the target binding affinity, fol-
lowing previous work (Luo et al. 2021; Ragoza, Masuda,
and Koes 2022b; Guan et al. 2023a), we adopt AutoDock
Vina (Eberhardt et al. 2021) to compute and report the mean
and median of binding-related metrics, including Vina Score,
Vina Min, Vina Dock and High Affinity. Vina Score directly
estimates the binding affinity based on the generated 3D
molecules; Vina Min performs a local structure minimiza-
tion before estimation; Vina Dock involves an additional re-
docking process and reflects the best possible binding affin-
ity; High affinity measures the ratio of how many generated
molecules binds better than the reference molecule per test
protein. To evaluate molecular properties, we utilize QED,
SA, Diversity as metrics following Luo et al. (2021); Ragoza,
Masuda, and Koes (2022a). QED is a quantitative estima-
tion of drug-likeness combining several desirable molecular
properties; SA (synthesize accessibility) is a measure esti-
mation of the difficulty of synthesizing the ligands; Diversity
is computed as average pairwise dissimilarity between all
generated ligands. All sampling and evaluation procedures
follow Guan et al. (2023a) for fair comparison.

Main Results
Generated 3D Molecular Structures We compare our
BINDDM and the representative methods in terms of molec-
ular structures. We compute different bond distributions of
the generated molecules and compare them against the cor-
responding reference empirical distributions in Tab. 1. Our
model has a comparable performance with TargetDiff and
DecompDiff and substantially outperforms all other base-
lines across all major bond types, indicating the great poten-
tial of BINDDM for generating stable molecular structures.

Bond liGAN AR Pocket2
Mol

Target
Diff

Decomp
Diff Ours

C−C 0.601 0.609 0.496 0.369 0.359 0.380
C=C 0.665 0.620 0.561 0.505 0.537 0.229
C−N 0.634 0.474 0.416 0.363 0.344 0.265
C=N 0.749 0.635 0.629 0.550 0.584 0.245
C−O 0.656 0.492 0.454 0.421 0.376 0.329
C=O 0.661 0.558 0.516 0.461 0.374 0.249
C:C 0.497 0.451 0.416 0.263 0.251 0.282
C:N 0.638 0.552 0.487 0.235 0.269 0.130

Table 1: Jensen-Shannon divergence between bond distance
distributions of reference and generated molecules, lower
values indicate better performances. “-”, “=”, and “:” rep-
resent single, double, and aromatic bonds, respectively.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12675



Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -
LiGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78
AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
DecompDiff -5.67 -6.04 -7.04 -6.91 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68
BINDDM -5.92 -6.81 -7.29 -7.34 -8.41 -8.37 64.8% 71.6% 0.51 0.52 0.58 0.58 0.75 0.74

Table 2: Summary of different properties of reference molecules and molecules generated by our model and other baselines. (↑)
/ (↓) denotes a larger / smaller number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Target Binding Affinity and Molecule Properties We
evaluate the effectiveness of BINDDM in terms of binding
affinity. We can see in Tab. 2 that our BINDDM outperforms
baselines in binding-related metrics. Specifically, BINDDM
surpasses strong autoregressive method Pocket2Mol by a
large margin of 15.2%, 13.6% and 17.6% in Avg. Vina
Score, Vina Min and Vina Dock, respectively. Compared
with the state-of-the-art diffusion-based method Decom-
pDiff, BINDDM not only increased the binding-related met-
rics Avg. Vina Score and Vina Min by 4.4% and 3.6%,
respectively, but also significantly increased the property-
related metric Avg. QED by 13.3%. In terms of high-affinity
binder, we find that on average 64.8% of the BINDDM
molecules show better binding affinity than the reference
molecule, which is significantly better than other baselines.
These gains demonstrate that the proposed BINDDM ef-
fectively captures significant binding-related subcomplex
to enable generating molecules with improved target bind-
ing affinity. Moreover, we can see a trade-off between
property-related metrics QED and binding-related metrics
in previous methods. DecompDiff performs better than AR
and Pocket2Mol in binding-related metrics, but falls be-
hind them in QED scores. In contrast, our BINDDM not
only achieves state-of-the-art binding-related scores but also
maintains proper QED scores, achieving a better trade-off
than DecompDiff. Nevertheless, we put less emphasis on
QED and SA because they are often applied as rough screen-
ing metrics in real drug discovery scenarios, and it would
be fine as long as they are within a reasonable range. Fig-
ure 4 shows some examples of generated ligand molecules
and their properties. Molecules generated by our model have
valid structures and reasonable binding poses to the target.

Model Analysis
Effect of the Iterative Cross-Hierarchy Interaction on
Target-specific Molecule Generation We conduct a set
of ablation experiments to study the effect of iterative cross-
hierarchy interaction on the generation ability of diffusion
models for the target-specific molecules: (1) Exp0: the base-
line model without applying the iterative cross-hierarchy in-
teraction, (2) Exp1: we replace the binding-adaptive sub-
complex extraction (BASE) module with a random selec-
tion of atoms from the complex for constructing the sub-

complex. The selection ratio is set to 0.5, (3) Exp2: we re-
move subcomplex graphs in iterative cross-hierarchy inter-
action and keep interaction nodes cint unchanged for infor-
mation propagation between cross-layer complex graphs, (4)
Exp3: we remove interaction nodes cint and sint and keep
the extracted subcomplex graphs unchanged, (5) Exp4: we
remove the gated transmission module in the update of inter-
action nodes cint and sint. The results are present in Tab. 3.

In the comparison between Exp0 and Exp1, we can find
that randomly selected subcomplex can not provide useful
information about pocket-ligand binding. And the compar-
ison between Exp1 and BINDDM suggests that BASE is
more effective than random selection in exploring binding-
related clues from the complex. The effectiveness of BASE
is beneficial for BINDDM in generating molecules that
are tightly bound to the given protein pocket. In compar-
ing Exp2 with BINDDM, it is evident that solely rely-
ing on global interaction nodes for information propaga-
tion between cross-layer complex graphs does not provide
significant binding-related information for pocket-specific
molecular generation. In comparing Exp3 with BINDDM,
we observe that the utilization of global interaction nodes
for information exchange between complex and subcom-
plex not only improves the performance of BINDDM in
binding-related metrics but also contributes to the molecu-
lar property-related ones. And the same conclusion is also
observed in the comparison between Exp4 and BINDDM.

Influence of Extracting Binding Clues from Complex,
Pocket and Ligand Since the presence of binding clues
in both the molecular ligands and protein pockets, we con-
duct three experiments to explore the effects of extract-
ing binding-related clues from different structures on how
tightly the generated molecules bind to the specific protein
pockets: the binding-related substructures are extracted from
(1) the molecular ligands, (2) the protein pockets, and (3) the
complexes (treating the molecule and pocket as a unified en-
tity) to enhance the generation of molecular ligands binding
tightly to specific protein pockets, respectively. As present
in Tab. 4, BINDDM can achieve the best performance on
binding-related metrics when binding-related substructures
are extracted from complexes and used to enhance the gen-
eration process of protein-specific molecular ligands.
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BindDMTargetDiff

Vina: -7.92, QED: 0.28, SA: 0.46

Vina: -6.05, QED: 0.56, SA: 0.56

Vina: -10.95, QED: 0.79, SA: 0.59

Vina: -10.15, QED: 0.82, SA: 0.66

1ai4

Vina: -8.86, QED: 0.33, SA: 0.45 Vina: -11.63, QED: 0.85, SA: 0.62

Vina: -10.17, QED: 0.26, SA: 0.37 Vina: -12.17, QED: 0.78, SA: 0.54

BindDMTargetDiff

5d7n

Vina: -6.53, QED: 0.39, SA: 0.31 Vina: -8.92, QED: 0.74, SA: 0.57

Vina: -7.25, QED: 0.14, SA: 0.56 Vina: -9.98, QED: 0.65, SA: 0.62

BindDMTargetDiff

4aaw

Figure 4: The generated ligand molecules of TargetDiff (Guan et al. 2023a) and BINDDM for the given protein pockets. Carbon
atoms in ligands generated by TargetDiff and BINDDM are visualized in green and orange, respectively.

Methods
Vina Score (↓) Vina Min (↓) QED (↑)
Avg. Med. Avg. Med. Avg. Med.

Exp0 -5.04 -5.75 -6.38 -6.52 0.46 0.46
Exp1 -4.79 -5.92 -6.36 -6.66 0.50 0.51
Exp2 -5.65 -6.25 -6.64 -6.65 0.45 0.45
Exp3 -5.62 -6.74 -6.83 -6.92 0.47 0.46
Exp4 -5.60 -6.28 -6.78 -6.83 0.47 0.47
BINDDM -5.92 -6.81 -7.29 -7.34 0.51 0.52

Table 3: Effect of the iterative cross-hierarchy interaction on
target-specific molecule generation.

Methods
Vina Score (↓) Vina Min (↓) QED (↑)
Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 0.46 0.46
Pocket -5.37 -6.84 -7.03 -7.38 0.51 0.52
Ligand -5.46 -6.77 -6.98 -7.27 0.51 0.52
Complex -5.92 -6.81 -7.29 -7.34 0.51 0.52

Table 4: Influence of extracting binding clues from complex,
pocket and ligand.

Correlation between Adaptively Extracted Subcomplex
and Pocket-Ligand Binding Clues To validate the pres-
ence of binding-related clues in the subcomplex extracted
by BASE in BINDDM and their suitability for generating
molecular ligands tightly bound to specific protein pockets,
we initially employed the pre-trained binding affinity predic-
tion model BAPNet (Li, Pei, and Lai 2021). By predicting
binding affinity of the complex which consists of the given
protein pocket and the molecules generated by BINDDM,
the binding-related subcomplex is obtained by ranking the
complex atoms according to contributions to the binding
affinity prediction. We take the subcomplexes predicted by
BAPNet as the reference subcomplexes, and calculate the
accuracy of the subcomplexes predicted by BASE as a met-
ric to assess the effectiveness of BASE in extracting binding-
related subcomplex. Considering that the sampling process
consists of 1000 steps, we calculate the average accuracy

Figure 5: The subcomplex prediction accuracy of BASE in
each layer of the de-nosing network.

by comparing the reference subcomplex with all the sub-
complexes extracted by each layer of the denoising network
in BINDDM (9 layers in total) throughout the entire sam-
pling process. As shown in Figure 5, each layer of the de-
noising network of BINDDM achieves an accuracy rate of
around 0.65 for subcomplex extracted through BASE, which
is higher than the accuracy rate of around 0.5 for random se-
lection. This suggests that BASE in BINDDM is capable of
extracting binding-related subcomplex to a certain degree. In
addition, we replace the process of using BASE to adaptively
select binding-related subcomplex with randomly selecting
atoms from the complex to construct a substructure. The
performance present in Tab. 3 (Exp1) demonstrates subcom-
plexes extracted from BASE benefit the final performance.

Conclusion
In this paper, we propose an effective diffusion model
BINDDM to adaptively extract the essential part of bind-
ing sites responsible for protein-ligand interactions, sub-
complex, for enhancing protein-aware 3D molecule gener-
ation. The cross-hierarchy interaction node is designed to
exchange the hierarchical information between complex and
subcomplex. Empirical results demonstrate that BINDDM
can generate realistic 3D molecules with high binding affini-
ties and proper molecular properties toward protein targets.
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